Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52159
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭瑩
dc.contributor.authorPo-Liang Chenen
dc.contributor.author陳柏良zh_TW
dc.date.accessioned2021-06-15T16:08:48Z-
dc.date.available2017-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citation1. 行政院農業委員會農糧署。2015。103年農業統計年報。行政院農業委員會。
2. 李昱輝、呂理燊。1994。臺灣草莓炭疽病。植病會刊 3: 256-257。
3. 李昱輝、呂理燊。2004。草莓病害管理。果菜健康管理研討會專集。p109-118。財團法人全方位農業振興基金會。
4. 李國譚。2011。草莓園夏季休耕與輪作植株管理。臺大農業推廣通訊88: 3-7。
5. 李窗明、李聯興、倪萬丁。1993。草莓新品種「桃園二號」育種研究。桃園區農業改良場研究彙報13: 1-18。
6. 李窗明。2006。草莓。臺灣農家要覽。豐年社。臺北。575-580頁。
7. 李窗明、李聯興。1999。草莓桃園三號之育成。桃園區農業改良場研究彙報 39: 1-17。
8. 李聯興、葉俊巖、賴守正。1992。草莓主要病害綜合防治。農藥世界 104: 17-18。
9. 張廣淼。2002。草莓重要病害之防治策略。苗栗區農業專訊19: 12-14。
10. 陳鈺婷。2013。草莓灰黴病生物防治之應用研究。國立臺灣大學。植物病理與微生物研究所碩士論文。臺灣。臺北。62 頁。
11. 彭淑貞、張廣淼。2009。草莓重要病害防治管理。苗栗區農業專訊48: 5-7。
12. 彭淑貞。2006。草莓炭疽病之發生及防治要領。苗栗區農業專訊33: 10-11。
13. 費雯綺、王喻其。2007。植物保護手冊-果樹篇,第206頁。農業藥物毒物試驗所。臺中。297頁。
14. 齊文隆、林進財。1998。健康草莓苗的栽培與管理。苗栗區農業專訊3: 7-9。
15. 劉增城。1998。草莓王國大湖鄉。苗栗區農業專訊 4: 65-71。
16. 蕭鈺霏。2014。C1L細菌處理與葉枯病菌感染改變玉米根圈之細菌族群。國立臺灣大學。植物病理與微生物研究所碩士論文。臺灣。臺北。62 頁。
17. 鍾仁賜。2004。草莓之土壤水分與營養管理。果菜健康管理研討會專集。p213-225。財團法人全方位農業振興基金會。
18. 羅國偉、張志展、李窓明。2013。草莓品種「桃園4號」。桃園區農業改良場農技報導 65: 1-4。
19. 羅國偉。2012。草莓產業概況。桃園區農業改良場草莓專刊9: 1-5。
20. 鐘珮哲、彭淑貞、張廣淼、楊秀珠、余思葳。2012。草莓病蟲害之發生與管理。行政院農委會藥物毒物試驗所。臺中。31頁。
21. Ahemad, M., and Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 26: 1-20.
22. Akhtar, M. S., and Siddiqui, Z. A. 2007. Biocontrol of a chickpea root-rot disease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa. Australas. Plant Pathol. 36: 175-180.
23. Alkotaini, B., Anuar, N., Kadhum, A. A. H., and Sani, A. A. A. 2014. Isolation and identification of a new intracellular antimicrobial peptide produced by Paenibacillus alvei AN5. World J. Microbiol. Biotechnol. 30: 1377-1385.
24. Bailey, J. A., O'Connell, R. J., Pring, R. J., and Nash, C. 1992. Infection strategies of Colletotrichum species. pp. 88-120 In: 0: Biology Pathology and Control. J. A. Bailey, and M. J. Jeger (Eds), Wallingford, Oxon, UK: CAB Int.
25. Bar-Yosef, B., Rogers, R. D., Wolfram, J. H., and Richman, E. 1999. Pseudomonas cepacia–mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci. Soc. Am. J. 63: 1703-1708.
26. Beatty, P. H., and Jensen, S. E. 2002. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol. 48: 159-169.
27. Berggrena, I., van Vuurdeb, J. W. L., and Mårtenssona, A. M. 2001. Factors influencing the effect of deleterious Pseudomonas putida rhizobacteria on initial infection of pea roots by Rhizobium leguminosarum bv. Viceae. Appl. Soil Ecol. 17: 97-106.
28. Bloemberg, G. V., and Lugtenberg, B. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350.
29. Bottini, R., Cassán, F., and Piccoli, P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65: 497-503.
30. Brooks, A. N. 1931. Anthracnose of strawberry caused by Colletotrichum fragariae, n. sp. Phytopathology 21: 739-744.
31. Cameron, R. K., Dixon, R. A., and Lamb, C. J. 1994. Biologically induced systemic acquired resistance in Arabidopsis thaliana. Plant J. 5: 715-725.
32. Cameron, R. K., Paiva, N. L., Lamb, C. J., and Dixon, R. A. 1999. Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Path. 55: 121-130.
33. Chalfoun, N. R., Castagnaro, A. P., and Diaz Ricci, J. C. 2011. Induced resistance activated by a culture filtrate derived from an avirulent pathogen as a mechanism of biological control of anthracnose in strawberry. Biol. Control 58: 319-329.
34. Chen, X., Wang, G., Xu, M., Jin, J., and Liu, X. 2010. Antifungal peptide produced by Paenibacillus polymyxa BRF-1 isolated from soybean rhizosphere. Afr. J. Microb. Res. 4: 2692-2698.
35. Dijksterhuis, J., Sanders, M., Gorris, L. G. M., and Smid, E. J., 1999. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J. Appl. Microbiol. 86: 13-21.
36. Droby, S., and Lichter, A. 2007. Post-harvest Botrytis infection: etiology, development and management. In: Elad, Y., Williamson, B., Tudzynski, P., Delen, N.N. (Eds.), Botrytis: Biology, Pathology and Control. Spinger, Dordrecht, The Netherlands, pp. 349-368.
37. Folman, L. B., Postma, J., and Veen, J. A. 2003. Inability to find consistent bacterial biocontrol agents of Pythium aphanidermatum in cucumber using screens based on ecophysiological traits. Microb. Ecol. 45: 72-87.
38. Freeman, S. 2008. Management, survival strategies, and host range of Colletotrichum acutatum on strawberry. HortScience 43: 66-68.
39. Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., Nitzani, Y., Kirshner, B., Rav-David, D., Bilu, A., Dag, A., Shafir, S., and Elad, Y. 2004. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur. J. Plant Pathol. 110: 361-370.
40. Goellner, K., and Conrath, U. 2008. Priming: it's all the world to induced disease resistance. Eur. J. Plant Pathol. 121: 233-242.
41. Guemouri-Athmani, S., Berge, O., Bourrain, M., Mavingui, P., Thiery, J. M., Bhatnagar, T., and Heulin, T. 2000. Diversity of Paenibacillus polymyxa populations in the rhizosphere of wheat (Triticum durum) in Algerian soils. Eur. J. Soil Biol. 36: 149-159.
42. Guo, Y. Q., Huang, E., Yuan, C. H., Zhang, L. W., and Yousef, A. E. 2012. Isolation of a Paenibacillus sp. strain and structural elucidation of its broad-spectrum lipopeptide antibiotic. Appl. Environ. Microbiol. 78: 3156-3165.
43. Hancock, J. F. 1999. Strawberries. CAB International, Wallingfer, UK. 237 pp.
44. Helbig, J. 2001. Biological Control of Botrytis cinerea Pers. ex Fr. in Strawberry by Paenibacillus polymyxa (Isolate 18191). J. Phytopathol. 149: 265-273.
45. Howard, C. M., and Albregts, E. E. 1983. Black leaf spot phase of strawberry anthracnose caused by Colletotrichum gloeosporioides (=C. fragariae). Pl. Dis. 67: 1144-1146.
46. Howard, C. M., Maas, J. L., Chandler, C. K., and Albregts, E. E. 1992. Anthracnose of strawberry caused by the Colletotrichum complex in Florida. Plant Dis. 76: 976-981.
47. Joo, G. J., Kim, Y. M., Lee, I. J., Song, K. S., and Rhee, I. K. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26: 487-491.
48. Kado, C. I., and Heskett, M. G. 1970. Selective media for Isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60: 969–976.
49. Kajimura, Y., and Kaneda, M. 1996. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation, and biological activity. J. Antibiot. 49: 129-135.
50. Kajimura, Y., and Kaneda, M., 1997. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8, isolation, structure elucidation and biological activity. J. Antibiot. 50: 220-228.
51. Khan, Z., Son, S. H., Akhtar, J., Gautamn, N. K., and Kim, Y. H. 2012. Plant growth-promoting rhizobacterium (Paenibacillus polymyxa) induced systemic resistance in tomato (Lycopersicon esculentum) against root-knot nematode (Meloidogyne incognita). Indian J. Agr. Sci. 82: 603-607.
52. Kim, P. I., and Chung, K. C. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234: 177-183.
53. Kloepper, J. W., Lifshitz, R., and Zablotowicz, R. M. 1989. Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-44.
54. Kurusu, K., Ohba, K., Arai, T., and Fukushima, K. 1987. New peptide antibiotics LI-FO3, FO4, FO5, FO7, and FO8, produced by Bacillus polymyxa I. Isolation and characterization. J. Antibiot. 40: 1506-1514.
55. Lamb, C. J., and Dixon, R. A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 251-275.
56. Lapidot, D., Dror, R., Vered, E., Mishli, O., Levy, D., and Helman, Y. 2015. Disease protection and growth promotion of potatoes (Solanum tuberosum L.) by Paenibacillus dendritiformis. Plant Pathol. 64: 545-551.
57. Lee, B., Farag, M. A., Park, H. B., Kloepper, J. W., Lee, S. H., and Ryu, C. M. 2012. Induced resistance by a long-chain bacterial volatile: Elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS ONE 7: 1-11.
58. Lee, S. H., Cho, Y. E., Park, S. H., Balaraju, K., Park, J. W., Lee, S. W., and Park, K. 2013. An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41: 49-58.
59. Ling, N., Raza, W., Ma, J., Huang, Q., and Shen, Q., 2011. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur. J. Soil Biol. 47: 374-379.
60. Liu, L., Kloepper, J. W., and Tuzun, S. 1995. Induction of systemic resistance in cucumber against bacterial leaf spot by plant growth promoting rhizhobacteria. Phytopathology 85: 843-847.
61. Liu, W., Mu, W., Zhu, B., Du, Y., and Liu, F. 2008. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agr. Sci. Chin. 7: 1104–1114.
62. Lugtenberg, B., and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541–556.
63. MacKenzie, S. J., Mertely, J. C., and Peres, N. A. 2009. Curative and protectant activity of fungicides for control of crown rot of strawberry caused by Colletotrichum gloeosporioides. Plant Dis. 93: 815-820.
64. Mamani, A., Filippone, M. P., Grellet, C., Welin, B., Castagnaro, A. P., and Diaz Ricci, J. C. 2012. Pathogen-induced accumulation of an ellagitannin elicits plant defense response. Mol. Plant-Microbe Interact. 25: 1430-1439.
65. Mei, L., Liang, Y., Zhang, L., Wang, Y., and Guo, Y. 2014. Induced systemic resistance and growth promotion in tomato by an indole-3-acetic acid-producing strain of Paenibacillus polymyxa. Ann. Appl. Biol. 165: 270-279.
66. Naing, K. W., Nguyen, X. H., Anees, M., Lee, Y. S., Kim, Y. C., Kim, S. J., Kim, M. H., Kim, Y. H., and Kim, K. Y. 2015. Biocontrol of Fusarium wilt disease in tomato by Paenibacillus ehimensis KWN38. World J. Microbiol. Biotechnol. 31: 165-174.
67. Nakajima N., Chihara S., and Koyama Y., 1972. A new antibiotic, gatavalin. I. Isolation and characterization. J. Antibiot. 25: 243-247.
68. Nakayama, T., Homma, Y., Hashidoko, Y., Mizutani, J., and Tahara, S. 1999. Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl. Environ. Microbiol. 65: 4334-4339.
69. Nam, M. H., Jeong, S. K., Lee, Y. S., Choi, J. M., and Kim, H. G. 2006. Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. Plant Pathol. 55: 246-249.
70. Ojiambo, P. S., and Scherm, H. 2006. Biological and application-oriented factors influencing plant disease suppression by biological control: A meta-analytical review. Phytopathology 96: 1168-1174.
71. Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol.Trends Microbiol. 16: 115-125.
72. Ongena, M., Jourdan, E., Adam, A., Paquot, M., and Brans, A. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084–1090.
73. Osorio, L. F., Pattison, J. A., Peres, N. A., and Whitaker, V. M. 2013. Genetic variation and gains in resistance of strawberry to Colletotrichum gloeosporioides. Phytopathology 104: 67-74.
74. Pardo, E. M., Grellet, C. F., Salazar, S. M., Castagnaro, A. P., Diaz Ricci, J. C., and Arias, M. E. 2012. Histopathology of the resistance to Colletotrichum gloeosporioides of wild strawberries and species related to commercial strawberry. Aust. J. Crop Sci. 6: 1147-1153.
75. Pedraza, R. O., Motok, J., Tortora, M. L., Salazar, S.M., and Dı´az Ricci, J. C. 2007. Natural occurrence of Azospirillum brasilense in strawberry plants. Plant Soil 295: 169-178.
76. Perfect, S. E., Hughes, H. B., O'Connell, R. J., and Green, J. R. 1999. Colletotrichum - A model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27: 186-198.
77. Pharand, B., Carisse, O., and Benhamou, N. 2002. Cytological aspects of compost-mediated induced resistance against fusarium crown and rootrot in tomato. Phytopathology 92: 424-438.
78. Phi, Q. T., Park, Y. M., Seul, K. J., Ryu, C. M., Park, S. H., Kim, J. G., and Ghim, S. Y. 2010. Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J. Microbiol. Biotechnol. 20: 1605-1613.
79. Piuri M., Sanchez-Rivas C., and Ruzal S.M., 1998. A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett. Appl. Microbiol. 27: 9-13.
80. Raza, W., Yang, W., and Shen, Q. R. 2008. Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J. Plant Pathol. 90: 419-430.
81. Raza, W., Yang, X. M., Wu, H. S., Wang, Y., Xu, Y. C., and Shen, Q. R. 2009. Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f. sp niveum. Eur. J. Plant Pathol. 125: 471-483.
82. Raza, W., Yuan, J., Ling, N., Huang, Q. W., and Shen, Q. R. 2015. Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp niveum. Biol. Control 80: 89-95.
83. Rudrappa, T., Czymmek, K. J., Pare, P. W., and Bais, H. P. 2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148: 1547-1556.
84. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., and Wie, H. X. 2003. Bacterial volatiles promote growth of Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 4927–4932.
85. Sahin, F., Cakmakci, R., and Kantar, F. 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265: 123-129.
86. Salazar, S. M., Castagnaro, A. P., Arias, M. E., Chalfoun, N., Tonello, U., and Díaz Ricci, J. C. 2007. Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. Eur. J. Plant Pathol. 117: 109-122.
87. Salazar, S. M., Grellet, C. F., Chalfoun, N. R., Castagnaro, A. P., and Diaz Ricci, J. C. 2013. Avirulent strain of Colletotrichum induces a systemic resistance in strawberry. Eur. J. Plant Pathol. 135: 877-888.
88. Sang, M. K., Kim, E. N., Han, G. D., Kwack, M. S., Jeun, Y. C., and Kim, K. D. 2014. Priming-Mediated Systemic Resistance in Cucumber Induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology 104: 834-842.
89. Shaheen, M., Li, J. R., Ross, A. C., Vederas, J. C., and Jensen, S. E. 2011. Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chem. Biol. 18: 1640-1648.
90. Singh, P. P., Shin, Y. C., Park, C. S., and Chung, Y. R. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89: 92-99.
91. Smith, B. J., and Black, L. L. 1986. First report of Colletotrichum on strawberry in the United States. Pl. Dis. 70: 1074.
92. Smith, B. J., and Black, L. L. 1987. Resistance of strawberry plants to Colletotrichum fragariae affected by environmental-conditions. Plant Dis. 71: 834-837.
93. Spencer, D. M. 1978. Powdery mildew of strawberries. pp. 355-358. In: Spencer, D. M. (Ed.). The Powdery Mildews. Academic Press, New York.
94. Stabb, E. V., Jacobson, L. M., and Handelsman, J. 1994. Zwittermicin A-producing strains of Bacillus cereus from diverse soil. Appl. Environ. Microbiol. 60: 4404-4412.
95. Storm, D. R., Rosenthal, K. S., and Swanson, P. E. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46: 723-763.
96. Timmusk, S., and Wagner, E. G. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 12: 951-959.
97. Tortora, M. L., Díaz-Ricci, J. C., and Pedraza, R. O. 2011. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch. Microbiol. 193: 275-286.
98. Tortora, M. L., Díaz-Ricci, J. C., and Pedraza, R. O. 2012. Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant Soil 356: 279-290.
99. van Loon, L. C. 2007. Plant responses to plant growth-promoting bacteria. Eur. J. Plant Pathol. 119: 243–254.
100. von der Weid, I., Paiva, E., Nobrega, A., van Elsas, J. D., and Seldin, L. 2000. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res. Microbiol. 151: 369-381.
101. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511.
102. Winks, B. L., and Williams, Y. N., 1965. A wilt of strawberry caused by a new form of Fusarium oxysporum. Queensl. J. Agr. Anim. Sci. 22:475-479.
103. Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322: 681-692.
104. Yang, J., Kharbanda, P. D., and Mirza, M. 2004. Evaluation of Paenibacillus polymyxa PKB1 for biocontrol of Pythium disease of cucumber in a hydroponic system. Acta Hortic. 635: 59-66.
105. Yi, S. Y., Shirasu, K., Moon, J. S., Lee, S. G., and Kwon, S. Y. 2014. The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS ONE 9: e88951.
106. Zehnder, G. W., Murphy, J. F., Sikora, E. J., and Kloepper, J. W. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107: 39-50.
107. Zhang, S. S., Raza, W., Yang, X. M., Hu, J., Huang, Q. W., Xu, Y. C., Liu, X. H., Ran, W., and Shen, Q. R. 2008. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol. Fertil. Soils 44: 1073-1080.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52159-
dc.description.abstract草莓因為其獨特的香味和營養價值深受民眾喜愛,為一高經濟價值作物。Colletotrichum spp.引發之炭疽病對草莓生產影響甚鉅,但過度依賴化學農藥防治炭疽病卻容易造成環境汙染、病原抗藥性增加以及草莓的食品安全問題,是以許多替代防治方案被提出,使用生物性防治資材如生物防治細菌即為其中之一。類芽孢桿菌屬細菌 (Paenibacillus spp.) 是近年常被研究的生物防治細菌。已知本實驗室所分離之多黏類芽孢桿菌 (Paenibacillus polymyxa) 對於草莓灰黴病菌具有拮抗之作用,且於草莓植株或根圈土壤施用其營養細胞懸浮液,均能減緩灰黴病的發病程度,指出本菌株具有生物防治之潛力,故本研究進一步分析多黏類芽孢桿菌對草莓炭疽病之防治效力,並探討其作用機制。透過植體上之防治試驗發現於草莓葉部或冠部預先處理多黏類芽孢桿菌菌液,可降低該部位之炭疽病發病程度。另一方面,從生體外試驗得知,多黏類芽孢桿菌對炭疽病菌之菌絲生長與孢子發芽具有明顯的抑制效果,故多黏類芽孢桿菌可能藉由直接抑制炭疽病菌以防治草莓炭疽病。進一步以逆相高效能液相層析法分離多黏類芽孢桿菌所產生的抗菌活性物質,並以基質輔助雷射脫附游離質譜技術進行成份鑑定,結果顯示多黏類芽孢桿菌應可透過外泌殺鐮孢菌素(fusaricidins)類似物質抑制炭疽病菌之生長。此外,將多黏類芽孢桿菌之菌液處理草莓的葉部或是根部,也可以誘發草莓未處理葉部對炭疽病的系統抗病性,降低炭疽病菌發病的程度。而多黏類芽孢桿菌明顯誘導草莓抗性之效力至少可維持五天,最低有效誘導濃度為2 × 107 CFU/mL。後續以苯胺藍對草莓葉部染色,發現預先處理多黏類芽孢桿菌能在接種炭疽病後二至四天觀察到較對照組高量的癒傷葡聚糖沉積。而且多黏類芽孢桿菌於接種炭疽病菌前二至四天處理,在接種炭疽病菌後所誘發癒傷葡聚糖的沉積量最大。於葉片發現預先處理多黏類芽孢桿菌在接種炭疽病菌後4、8、12、24小時可觀察到較對照組高量的活性氧物質。綜合上述結果說明多黏類芽孢桿菌可藉由直接抑制病原菌或是誘發植物系統抗病性,減緩草莓炭疽病的發病程度。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-15T16:08:48Z (GMT). No. of bitstreams: 1
ntu-104-R02633001-1.pdf: 3187914 bytes, checksum: a716a4a2a326fe4ff0f33026945a49c6 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
壹、中文摘要 1
貳、英文摘要 2
參、前言 4
肆、前人研究 6
一、臺灣草莓產業沿革 6
二、草莓炭疽病 8
三、生物防治細菌 9
四、多黏類芽孢桿菌(Paenibacillus polymyxa) 11
伍、材料與方法 14
一、供試菌株之培養及保存 14
1. 供試細菌菌株之培養及保存 14
2. 供試真菌菌株之培養及保存 14
二、草莓植株之栽培條件 15
三、罹病指數計量方式及統計分析方法 15
1. 地上部罹病指數之計量 15
2. 冠部罹病指數之計量 15
3. 統計分析方法 16
四、於接種處以TP3菌株防治草莓炭疽病之溫室試驗 16
1. 草莓地上部處理TP3菌液之防治試驗 16
2. 草莓冠部處理TP3菌液之防治試驗 16
五、抑菌試驗 17
1. 細菌菌株與炭疽病菌之對峙培養 17
2. TP3菌株培養上清液對炭疽病菌孢子發芽抑制試驗 17
3. TP3菌株之揮發性氣體對炭疽病菌生長抑制試驗 17
六、TP3菌株外泌性抗菌物質分析 18
1. 以高效液相層析法與基質輔助雷射脫附游離飛行時間質譜儀分析TP3菌株於523固態培養基產生之抗菌物質 18
2. 以影像質譜法分析TP3菌株於PDA之外泌性抗菌物質分佈 19
七、TP3菌株誘導草莓抗病性之溫室防治試驗 20
1. 以葉部與葉柄處理TP3防治未處理葉部與葉柄的草莓炭疽病試驗……………………………………………………………………. 20
2. 根圈處理TP3防治葉部與葉柄草莓炭疽病之試驗 20
3. 葉部與葉柄處理TP3防治根冠草莓炭疽病之試驗 20
4. 根圈處理TP3防治根冠草莓炭疽病之試驗 21
5. 不同時間點根圈處理TP3防治葉部與葉柄草莓炭疽病之試驗…………………………………………………………………… 21
6. 不同濃度根圈處理TP3防治葉部與葉柄草莓炭疽病之試驗 22
八、以組織化學染色法檢測草莓防禦反應 22
1. 草莓葉部癒傷葡聚糖(callose)沉積的檢測 22
2. 草莓葉部活性氧物質(reactive oxygen species, ROS)檢測 23
陸、結果 24
一、P. polymyxa TP3能夠防治草莓炭疽病 24
二、P. polymyxa TP3在體外展現抑制炭疽病菌的活性 24
三、P. polymyxa TP3的外泌性物質能夠抑制炭疽病菌孢子發芽 25
四、P. polymyxa TP3的揮發性氣體不影響炭疽病菌的生長 25
五、P. polymyxa TP3的有機萃取物具有抑制炭疽病菌的活性 26
六、P. polymyxa TP3的部分逆向高效液相層析分液具有抑菌活性 26
七、P. polymyxa TP3透過殺鐮孢菌素類之抗生素拮抗炭疽病菌 26
八、以影像質譜分析P. polymyxa TP3與炭疽病菌對峙培養時產生的外泌抗菌物質 27
九、P. polymyxa TP3處理誘發草莓對炭疽病的系統抗病性 27
十、不同時間點處理P. polymyxa TP3誘發草莓對炭疽病的系統抗病性………………………………………………………………………… 28
十一、以不同濃度P. polymyxa TP3處理誘發草莓對炭疽病的系統抗病性………………………………………………………………………… 28
十二、P. polymyxa TP3處理誘發草莓之癒傷葡聚糖沉積 29
十三、P. polymyxa TP3處理誘發草莓之活性氧物質累積 29
柒、討論 31
捌、參考文獻 39
玖、圖表集 51
圖一、草莓葉部與葉柄受炭疽病菌感染之罹病指數示意圖 52
圖二、草莓冠部受炭疽病菌感染之罹病指數示意圖 53
圖三、P. polymyxa TP3於草莓葉部與葉柄處原位防治C. gloeosporioides之效果 54
圖四、P. polymyxa TP3於草莓冠部原位防治C. gloeosporioides之效果………………………………………………………………………… 55
圖五、P. polymyxa TP3抑制C. gloeosporioides菌絲之生長 56
圖六、P. polymyxa TP3之培養上清液抑制C. gloeosporioides之孢子發芽………………………………………………………………………… 58
圖七、P. polymyxa TP3於不同培養基所產生的揮發性氣體對C. gloeosporioides菌絲生長的影響 59
圖八、P. polymyxa TP3之ACN萃取物抑制C. gloeosporioides之菌落生長 60
圖九、P. polymyxa TP3之逆相高效液相層析分液對C. gloeosporioides菌絲生長的影響 61
圖十、使用MALDI-TOF質譜鑑定P. polymyxa TP3之逆相高效液相層析分液中的抗菌物質 63
圖十一、P. polymyxa TP3與C. gloeosporioides對峙培養之基質輔助雷射脫附游離影像質譜 64
圖十二、P. polymyxa TP3的葉面噴灑與土壤澆灌處理誘發草莓的未處理葉對C. gloeosporioides之抗性 65
圖十三、P. polymyxa TP3的葉面噴灑與土壤澆灌處理誘發草莓根冠對C. gloeosporioides之抗性 66
圖十四、於接種C. gloeosporioides前或後土壤澆灌P. polymyxa TP3對草莓葉部與葉柄之炭疽病防治效果 67
圖十五、不同濃度P. polymyxa TP3土壤澆灌處理誘發草莓葉部與葉柄對C. gloeosporioides之抗性 68
圖十六、P. polymyxa TP3誘導草莓葉部感染炭疽病菌後之癒傷葡聚糖沉積 69
圖十七、不同時間前處理P. polymyxa TP3誘導草莓葉部感染炭疽病菌後之癒傷葡聚糖沉積 70
圖十八、P. polymyxa TP3誘導草莓葉部感染炭疽病菌後之活性氧分子累積 71
dc.language.isozh-TW
dc.subject活性氧物質zh_TW
dc.subject草莓炭疽病zh_TW
dc.subject多黏類芽孢桿菌zh_TW
dc.subject生物防治zh_TW
dc.subject殺鐮孢菌素zh_TW
dc.subject誘導系統抗病性zh_TW
dc.subject癒傷葡聚糖zh_TW
dc.subjectfusaricidinsen
dc.subjectreactive oxygen speciesen
dc.subjectcalloseen
dc.subjectinduced systemic resistanceen
dc.subjectStrawberry anthracnoseen
dc.subjectPaenibacillus polymyxaen
dc.subjectbiocontrolen
dc.title利用多黏類芽孢桿菌防治草莓炭疽病zh_TW
dc.titlePaenibacillus polymyxa as a biocontrol agent against strawberry anthracnoseen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊玉良,黃健瑞,吳文希,洪挺軒
dc.subject.keyword草莓炭疽病,多黏類芽孢桿菌,生物防治,殺鐮孢菌素,誘導系統抗病性,癒傷葡聚糖,活性氧物質,zh_TW
dc.subject.keywordStrawberry anthracnose,Paenibacillus polymyxa,biocontrol,fusaricidins,induced systemic resistance,callose,reactive oxygen species,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved