請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52148
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳昭瑩(Chao-Ying Chen) | |
dc.contributor.author | Shu-Yu Chang | en |
dc.contributor.author | 張淑瑜 | zh_TW |
dc.date.accessioned | 2021-06-15T16:08:39Z | - |
dc.date.available | 2017-09-01 | |
dc.date.copyright | 2015-08-28 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-19 | |
dc.identifier.citation | 1. 王伯徹。1985。玉米葉枯病之生態及生物防治研究。國立臺灣大學植物病蟲害學研究所。臺北。臺灣。112頁。
2. 呂佳燕。2014。臘狀芽孢桿菌C1L之磷酸轉移酶系統ptsG基因參與根分泌物調節其對玉米系統抗病性之誘導能力。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。79頁。 3. 曾安慈。2010。臘狀芽孢桿菌於玉米根圈群聚與誘導抗病能力相關性探討。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。76頁。 4. 連顗婷。2011。臘狀芽孢桿菌C1L內孢子製劑之發展與應用。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。69頁。 5. 楊耿豪。2007。臘狀芽孢桿菌C1L菌株誘導玉米系統抗玉米葉枯病之應用研究。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。78頁。 6. 黃儒音。2008。臘狀芽孢桿菌C1L菌株之轉位子誘變及抗真菌相關基因選殖。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。66頁。 7. 劉益宏。2004。臺灣百合根圈細菌之篩選及灰黴病防治應用研究。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。64頁。 8. 劉益宏。2008。臘狀芽孢桿菌C1L菌株誘導百合系統性抗灰黴病之研究。國立臺灣大學植物病理與微生物學系博士論文。臺北。臺灣。151頁。 9. 蕭鈺霏。2014。C1L細菌處理與葉枯病菌感染改變玉米根圈之細菌族群。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。64頁。 10. Agrawal, G. K., Rawkwal, R., and Jwa, N. S. 2001. Differential induction of three pathogenesis-related genes, PR10, PR1b, and PR5 by the ethylene generator ethephon under light and dark in rice (Oryza sativa L.) seedlings. J. Plant Physiol. 158:133-137. 11. Ahemada, M. and Kibretb, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King. Saud. Univ. Sci. 26:1-20. 12. Ahn, I. P., Kim, S., Kang, S., Suh, S. C., and Lee, Y. H. 2005. Rice defense mechanisms against Cochliobolus miyabeanus and Magnaporthe grisea are distinct. Phytopathology 95:1248-1255. 13. Asselbergh, B., Curvers, K., Franca, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F., and Höfte M. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144:1863-1877. 14. Audenaert, K., Pattery, T., Cornelis, P., and Höfte, M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15:1147-1156. 15. Balmer, D., de Papajewski, D. V., Planchamp, C., Glauser, G., and Mauch-Mani, B. 2013a. Induced resistance in maize is based on organ-specific defence responses. Plant J. 74:213-225. 16. Balmer, D., Planchamp, C., and Mauch-Mani, B. 2013b. On the move: induced resistance in monocots. J. Exp. Bot. 64:1249-1261. 17. Barna, B., Fodor, J., Harrach, B. D., Pogány, and M., Király, Z. 2012. The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol. Biochem. 59:37-43. 18. Benhamou, N., Bclanger, R. R., and Paulitiz, T. 1996a. Pre-inoculation of Ri T-DNA-transformed pea roots with Pseudomonas fluorescens inhibits colonization by Pythium ultimum Trow: an ultrastructural and cytochemical study. Planta 199:105-117. 19. Benhamou, N., Kloepper, J. W., Quadt-Hallmann, A., and Tuzun, S. 1996b. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112:919-929. 20. Bloem, E., Haneklaus S., and Schnug, E. 2015. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Front. Plant Sci. doi:10.3389/fpls.2014.00779 21. Boller, T., and Felix, G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406. 22. Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S. H., and Sheen, J. 2010. Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418-422. 23. Braun, E. J. and Howard R. J. 1994. Adhesion of Cochliobolus heterostrophus conidia and germlings to leaves and artificial surfaces. Exp. Mycol. 18:211-220. 24. Cabrera J. A., Wang, D., Gerik, J. S., and Gan, J. 2014. Spot drip application of dimethyl disulfide as a post-plant treatment for the control of plant parasitic nematodes and soilborne pathogens in grape production. Pest. Manag. Sci. 79: 1151-1157. 25. Cai, H. W., Gao, Z. S., Yuyama, N., and Ogawa N. 2003. Identification of AFLP markers closely linked to the rhm gene for resistance to Southern Corn Leaf Blight in maize by using bulked segregant analysis. Mol. Gen. Genomics 269:299-303. 26. Chen, Z., Iyer, S., Caplan, A., Klessig, D. F. and Fan B. 1997. Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues. Plant Physiol. 114:93-201. 27. Chern, M., Fitzgerald, H. A., Canlas, P. E., Navarre, D. A., and Ronald, P. C. 2005. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant-Microbe Interact. 18:511-520. 28. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., Felix, G., and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497-500. 29. Choudhary, D. K., Prakash, A., and Johr, B. N. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol. 47:289-297. 30. Condon, B. J., Leng, Y., Wu, D., Bushley, K. E., Ohm, R. A., Otillar, R., Martin, J., Schackwitz, W., Grimwood, J., MohdZainudin, N., Xue, C., Wang, R., Manning, V. A., Dhillon, B., Tu, Z. J., Steffenson, B. J., Salamov, A., Sun, H., Lowry, S., LaButti, K., Han, J., Copeland, A., Lindquist, E., Barry, K., Schmutz, J., Baker, S. E., Ciuffetti, L. M., Grigoriev, I. V., Zhong, S., and Turgeon, B. G. 2013. Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet. 9:e1003233. 31. Conrath, U. 2006. Systemic acquired resistance. Plant Signal. Behav. 1:179-84. 32. Conrath, U., Thulke, O., Katz, V., Schwindling, S., and Kohler, A. 2001. Priming as mechanism in induced systemic resistance of plants. Eur. J. Plant Pathol. 107:113-119. 33. Cui, Y., Ma, C., Liu, K., and Wei, J. 1992. Effect of Bipolaris (Helminthosporium) maydis race C (HMC) toxin on superoxide dismutase and peroxidase activities of corn with male sterile or normal cytoplasms. Acta Agr. Boreal-Sin. 1:25-30. 34. Coosemans, J. 2004. Dimethyl disulfide (DMDS): a potential novel nematicide and soil disinfectant. Acta. Hort. 698:57-63. 35. Dalton, DA., Boniface, C., Turner, Z., Lindahl, A., Kim, H. J., Jelinek, L., Govindarajulu, M., Finger, R. E., and Taylor, C. G. 2009. Physiological roles of glutathione s-transferases in soybean root nodules. Plant Physiol. 150:521-530. 36. De Meyer, G., Gapieau, K., Audenaert, K., Buchela, A., Métraux, J. P., and Höfte, M. 1999. Nanogram amounts of SA produced by rhizobacteria P. aeruginosa 7NSK2 activate the SAR pathway in bean. Mol. Plant-Microbe Interact. 1999. 12:450-458. 37. De Meyer, G., Audenaert, K., and Höfte, M. 1999. Pseudomonas aeruginosa 7NSK2 induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur. J. Plant Pathol. 105:513-517. 38. De Meyer, G. and Höfte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588-593. 39. De Vleesschauwer, D., Chernin, L., and Höfte, M. 2009. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol. doi: 10.1186/1471-2229-9-9. 40. De Vleesschauwer, D., Yang, Y., Cruz, C. V., and Höfte, M. 2010. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol. 152:2036-2052. 41. De Vleesschauwer, D., Gheysen, G., and Höfte, M. 2013. Hormone defense networking in rice: tales from a different world. Trends Plant Sci.18:555-65. 42. De Vleesschauwer, D., Xu, J., and Höfte, M. 2014. Making sense of hormone-mediated defense networking: from rice to Arabidopsis. Front Plant Sci. doi: 10.3389/fpls.2014.00611.. 43. Djonovic, S., Vargas, W. A., Kolomiets, M. V., Horndeski, M., Wiest, A., and Kenerley, C. M. 2007. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol. 145:875-889. 44. Doehlemann, G., Wahl, R., Horst, R. J, Voll, L. M., Usadel, B., Poree, F., Stitt, M., Pons-Kühnemann, J., Sonnewald, U., Kahmann, R., and Kämper, J. 2008. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J. 56:181-195. 45. Drechsler, C. 1925. Leafspot of maize caused by Ophiobolus heterostrophus, n. sp. the ascigerous stage of a Helminthosporium exhibiting bipolar germination. J. Agr. Res. 3l:70l-726. 46. Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Zhen. 2010. agriGO: a GO analysis toolkit for the agricultural community. Nucl. Acids Res. 38:W64-W70. 47. Dworkin, M., and Foster J. W. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 5:592-603. 48. Edwards, R., and Dixon, D. P. 2005. Plant glutathione transferases. Methods Enzymol. 401:169-186. 49. Fang, R., Lin, J., Yao, S., Wang, Y., Wang, J., Zhou, C., Wang, H., and Xiao, M. 2013. Promotion of plant growth, biological control and induced systemic resistance in maize by Pseudomonas aurantiaca JD37. Ann. Microbiol. 63:1177-1185. 50. Farag, M. A., Fokar, M., Abd, H., Zhang, H., Allen, R. D., Paré, and P. W. 2005. (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220:900-999. 51. Farag, M. A,, Zhang, H., and Ryu, C. M. 2013. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J. Chem. Ecol. 39:1007-1018. 52. Felix, G., Duran, J. D., Volko, S., and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265-276. 53. Feng, J. X., Cao, L., Li, J., Duan, C. J., Luo, X. M., Le N., Wei, H., Liang, S., Chu, C., Pan, Q., and Tang, J. L. 2011. Involvement of OsNPR1/NH1 in rice basal resistance to blast fungus Magnaporthe oryzae. Eur. J. Plant Pathol. 131:221-235. 54. Fritsch, J. 2004. Dimethyl disulfide as a new chemical potential alternative to methyl bromide in soil disinfestation in France. Acta Hort. 698:71-76. 55. Gao, X., Shim, W. B., Goぴbel, C., Kunze, S., Feussner, I., Meeley, R., BalintKurti, P., and Kolomiets, M. 2007. Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol. Plant-Microbe Interact. 20:922-933. 56. Gao, X., Starr, J., Göbel, C., Engelberth, J., Feussner, I., Tumlinson, J., and Kolomiets, M. 2008. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol. Plant-Microbe Interact. 21:98-109. 57. Gao, X., Brodhagen, M., Isakeit, T., Brown, S.H., Goぴbel, C., Betran, J., Feussner, I., Keller, N. P., and Kolomiets, M. V. 2009. Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol. Plant-Microbe Interact. 22:222–231. 58. Gallie, D. R., and Young, T. E. 2008. Genes which produce staygreen characteristics in maize and their uses. United States Patent No. US 2008/0209585 A1. 59. Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (doi:10.6064/2012/963401). 60. Gómez-Gómez, L., Felix, G., and Boller, T. 1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18:277–8 61. He, G., Tarui, Y., and Iino, M. 2005. A novel receptor kinase involved in jasmonate-mediated wound and phytochrome signaling in maize coleoptiles. Plant Cell Physiol. 46:870-883. 62. Heil, M., and Bostock, R. M. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot. 89:503-512. 63. Heller, J. J., Sunder, P. H., Charles, P., Pommier, J. J., and Fritsch J. 2008. Dimethyl disulfide, a new alternative to existing fumigants on strawberries in France and Italy. Acta Hort. 842:953-956. 64. Helliwell, E. E., Wang, Q., and Yang, Y. 2013. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol. J. 11:33-42. 65. Hsu, T. L., Chung, W. C., and Chung, W. H. 2014. Application of acibenzolar-S-methyl (ASM) for controlling anthracnose disease of non-heading chinese cabbage in greenhouse. Plant Pathol. Bull. 23(2):79-98. 66. Hu, Z. L., Bao, J., and Reecy, J. M. 2008. CateGOrizer: a web-based program to batch analyze gene ontology classification categories. Online J. Bioinformatics 9:108-112. 67. Huang, C. J., Yang, K. H., Liu, Y. H., Lin, Y. J., and Chen, C. Y. 2010. Suppression of southern corn leaf blight by a plant growth-promoting rhizobacterium Bacillus cereus C1L. Ann. Appl. Biol. 157:45–53. 68. Huang, C. J., Tsay, J. F., Chang, S. Y., Yang, H. P., Wu, W. S., and Chen, C. Y. 2012. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest. Manag. Sci. 68:1306-1310. 69. Huffaker, A., Kaplan, F., Vaughan, M. M., Dafoe, N. J., Ni, X., Rocca, J. R., Alborn, H. T., Teal, P. E., and Schmelz, E. A. 2011. Novel acidic sesquiterpenoids constitute a dominant class of pathogeninduced phytoalexins in maize. Plant Physiol. 156:2082-2097. 70. Iavicoli, A., Boutet, E., Buchala, A., and Métraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 6:851-858. 71. Jaluria, P., Konstantopoulos, K., Betenbaugh1, M., and Shiloach, J. 2007. A perspective on microarrays: current applications, pitfalls, and potential uses. Microb. Cell Fact. doi: 10.1186/1475-2859-6-4. 72. Jarosch, B., Kogel, K.-H., and Schaffrath, U. 1999. The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 12:508-513. 73. Kandasamy, S., Loganathan, K., Muthuraj, R., Duraisamy, S., Seetharaman, S., Thiruvengadam, R., Ponnusamy, B., and Ramasamy, S. 2009. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome. Sci. doi:10.1186/1477-5956-7-47. 74. Khandelwal, A., and Sindhu, S. S. 2012. Expression of 1-aminocyclopropane -1-carboxylate deaminase in rhizobia promotes nodulation and plant growth of clusterbean (Cyamopsis tetragonoloba L.). Res. J. Microbiol. 7:158-170. 75. Koga, H., Dohi, K., and Mori, M. 2004. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol. Mol. Plant Pathol. 65:3-9. 76. Kumar, J., Hückelhoven, R., Beckhove, U., Nagarajan, S., and Kogel, K. H. 2001. A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127-133. 77. Lee, B., Farag, M. A., Park, H. B., Kloepper, J. W., Lee, S. H., and Ryu, C. M. 2012. Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7:e48744. 78. Lyons, R., Manners, J. M., and Kazan, K. 2013. Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Rep. 32:815-827. 79. Mathys, J., De Cremer, K., Timmermans, P., Van Kerckhove, S., Lievens, B., Vanhaecke, M., Cammue, B. P., and De Coninck, B. 2012. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front. Plant Sci. doi: 10.3389/fpls.2012.00108. 80. Meldau, D. G., Meldau, S., Hoang, L. H., Underberg, S., Wünsche, H., and Baldwin, I. T. 2013. Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731-47. 81. Meziane, H., Van der Sluis, I., Van Loon, L. C., Höfte, M., and Bakker, P. A. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6:177-185. 82. Mizuno, H., Kawahigashi, H., Kawahara, Y., Kanamori, H., Ogata, J., Minami, H., Itoh, T., and Matsumoto, T. 2012, Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-interaction. BMC Plant Biol. doi: 10.1186/1471-2229-12-121. 83. Mohamed, S., and Caunter, I. G. 2008. Isolation and characterization of a Pseudomonas fluorescens strain suppressive to Bipolaris maydis. J. Phytopathol. 143:111-114. 84. Morris, S. W., Vernooij, B., Titatarn, S., Starrett, M., Thomas, S., Wiltse, C. C., Frederiksen, R. A., Bhandhufalck, A., Hulbert, S., and Uknes, S. 1998. Induced resistance responses in maize. Mol. Plant Microbe-Interact. 11:643-658. 85. M'Piga, P., Belanger, R. R., Paulitz, T. C., and Benhamou, N. 1997. Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63-28. Physiol. Mol. Pl. Pathol. 50:301-320. 86. Niu, D. D., Liu, H. X., Jiang, C. H., Wang, Y. P., Wang, Q. Y., Jin, H. L., and Guo, J. H. 2011. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol. Plant Microbe. Interact. 24:533-542. 87. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-1090. 88. Park, H. B, Lee, B., Kloepper, J. W., and Ryu, C. M. 2013. One shot-two pathogens blocked: exposure of Arabidopsis to hexadecane, a long chain volatile organic compound, confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae. Plant Signal Behav. 8:e24619. 89. Payaka, M. M., and Sharmaa R. C. 1985. Maize diseases and approaches to their management in India. Trop. Pest Manag. 31:302-310. 90. Penmetsa, R. V., Uribe, P., Anderson, J., Lichtenzveig, J., Gish, J. C., Nam, Y. W., Engstrom, E., Xu, K., Sckisel, G., Pereira, M., Baek, J. M., Lopez-Meyer, M., Long, S. R., Harrison, M. J., Singh, K. B., Kiss, G. B., and Cook, D. R. 2008. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J. 55:580-595. 91. Penrose, D. M., and Glick, B. R. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118:10-15. 92. Pieterse, C. M.,van Wees, S. C., Hoffland, E.,van Pelt, J. A., and van Loon L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237. 93. Pieterse, C.M., van Wees, S.C., van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J., and van Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Pant Cell 10:1571-1580. 94. Pozo, M.J., Van Der Ent, S., Van Loon, L.C., and Pieterse, C.M. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 180:511-23. 95. Press, C.M., Wilson, M., Tuzun, S., Kloepper, J.W. 1997. Salicylic acid produced by Serratia marscescens 90–166 is not primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact. 6:761–768. 96. Raid, R. N. 1991. Fungididal control of foliar sweet corn diseases in the presence of high inoculum levels. Proc. Fla. State Hort. Soc. 104:267-270. 97. Ran, L. X., van Loon, L. C., and Bakker, P. A. 2005. No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:1349-1355. 98. Ramamoorthy, V., Raguchander, T., and Samiyappan, R. 2002. Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant Soil 239:55-68. 99. Reddy, P. P. 2014. Plant growth promoting rhizobacteria for horticultural crop protection. Springer Verlag. 100. Riemann, M., Haga, K., Shimizu, T., Okada, K., Ando, S., Mochizuki, S., Nishizawa, Y., Yamanouchi, U., Nick, P., Yano, M., Minami, E., Takano, M., Yamane, H., and Iino, M. 2013. Identification of rice allene oxide cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J. 74:226-38. 101. Rivas, S., and Thomas, C.M. 2005. Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu. Rev. Phytopathol. 43:395-436. 102. Rudrappa, T., Biedrzycki, M. L, Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Paré, P. W., and Bais, H.P. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun. Integr. Biol. 3:130-138. 103. Ryals, J., Lawton, K. A., Delaney, T. P., Friedrich, F., Kessmann, H., Neuenschwander, U., Uknes, S., Vernooij, B., and Weymann, K. 1995. Signal transduction in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 92:4202-4205. 104. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Paré, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. 105. Sartori, M., Nesci, A., Formento, Á., and Etcheverry, M. 2015. Selection of potential biological control of Exserohilum turcicum with epiphytic microorganisms from maize. Rev. Argent. Microbiol. 47:62-71. 106. Schmelza, E. A., Kaplana F., Huffakera, A., Dafoea, N. J., Vaughana, M. M., Nib, X., Roccac, J. R., Alborna, H. T., and Teala, P. E. 2011. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc. Natl. Acad. Sci. U SA 108:5455-5560. 107. Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., and Zipfel, C. 2011. Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet. 7:e1002046. 108. Shabana, Y. M., Abdel-Fattah, G. M., Ismail, A. E., and Rashad, Y. M. 2008. Control of brown spot pathogen of rice (Bipolaris oryzae) using some phenolic antioxidants. Braz. J. Microbiol. 39:438-44. 109. Sharma, P., Khanna, V., and Kumari, P. 2013. Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr. J. Microbiol. Res. 7:5749-5757. 110. Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J. P., and Raskin, I. 1995. Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol. 108:633-639. 111. Singh, M. P., Lee, F. N, Counce, P.A., and Gibbons, J. H. 2004. Mediation of partial resistance to rice blast through anaerobic induction of ethylene. Phytopathology 94:819-825. 112. Singh, R. and Srivastava, R. P. 2012. Southern corn leaf blight- an important disease of maize: an extension fact sheet. Indian Res. J. Ext. Edu. Spec. Iss. 1:334-337. 113. Sticher, L., Mauch‐Mani, B., and Métraux, J. P. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35:235-270. 114. Song, Y. Y., Cao, M., Xie, L. J., Liang, X. T., Zeng, R. S., Su, Y. J., Huang, J. H., Wang, R. L., and Luo, S. M. 2011. Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza. 21:721-731. 115. Takahashi, H., Nakaho, K., Ishihara, T., Ando, S., Wada, T., Kanayama, Y., Asano, S., Yoshida, S., Tsushima, S., Hyakumachi, M. 2014. Transcriptional profile of tomato roots exhibiting Bacillus thuringiensis-induced resistance to Ralstonia solanacearum. Plant Cell Rep. 33:99-110. 116. Temme, N., and Tudzynski, P. 2009. Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol. Plant-Microbe Interact. 22:987-998. 117. Ton, J., De Vos, M., Robben, C., Buchala, A., Métraux, J.P., Van Loon, L.C., and Pieterse, C.M. 2002. Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J. 29:11-21. 118. Tsavkelova, E. A., Klimova, SIu., Cherdyntseva, T. A., and Netrusov, A. I. 2006. Microbial producers of plant growth stimulators and their practical use: a review. Prikl. Biokhim. Mikrobiol. 42:133-143. 119. Ullstrup, A. J. 1970. History of southern corn leaf blight. Plant Dis. Reptr. 54:1100-1102. 120. Ullstrup, A. J. 1972. The impacts of the southern corn leaf blight epidemics of 1970-1971. Ann. Rev. Phytopathol. 10:37-50. 121. Van Bockhaven, J., Spíchal, L., Novák, O., Strnad, M., Asano, T., Kikuchi, S., Höfte, M., and De Vleesschauwer, D. 2015. Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytol. 206:761-73. 122. Van Loon, L.C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119:243-254. 123. Van Peer, R., Niemann, G. J., and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728-734. 124. Vallada, G. E. and Goodman, R. M. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop. Sci. 44:1920-1934. 125. Verhagen, B. W., Glazebrook, J., Zhu, T., Chang, H. S., van Loon, L. C., and Pieterse, C. M. 2004. The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis. Mol. Plant-Microbe Interact.17:895-908. 126. Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals J. 1994. Salicylic acid is not the translocated signal responsible for inducing aystemic acquired resistance but is required in signal transduction. Plant Cell 6:959-965. 127. Vlot, A. C., Dempsey, D. A., and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 47:177-206. 128. Wang, Z., Gerstein, M., and Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63. 129. Wang, J., Ding, H., Zhang, A., Ma, F., Cao, J., and Jiang, M. 2010. A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J. Integr. Plant Biol. 52:442-452. 130. Wang, X., Ma, J., Li, X., Zhao, X., Lin, Z., Chen, J., and Shao, Z. 2015. Optimization of chemical fungicide combinations targeting the maize fungal pathogen, Bipolaris maydis: a systematic quantitative approach. IEEE Trans Biomed. Eng. 62:80-87. 131. Wei, J. K., Liu, K. M., Chen, J. P., Luo, P. C. and Stadelmann, O. 1988. Pathological and physiological identification of race C of Bipolaris maydis in China. Phytopathology 78:550-554. 132. Wisser, R. J., Kolkman, J. M., Patzoldt, M. E., Holland, J. B., Yu, J., Krakowsky, M., Nelson, R. J., and Balint-Kurti, P. J. 2011. Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc. Natl. Acad. Sci. USA 108:7339-7344. 133. Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322:681-692. 134. Yamada, S., Kano, A., Tamaoki, D., Miyamoto, A., Shishido, H., Miyoshi, S., Taniguchi, S., Akimitsu, K., and Gomi, K. 2012. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiol. 53:2060-2072. 135. Yan, Y., Christensen, S., Isakeit, T., Engelberth, J., Meeley, R., Hayward, A., Emery, R. J., and Kolomiets, M. V. 2012. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24:1420-1436. 136. Yang, Y., Qi, M., and Mei, C. 2004. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J. 40:909-919. 137. Yazawa, K., Jiang, C.-J., Kojima, M., Sakakibara, H., and Takatsuji H. 2012. Reduction of abscisic acid levels or inhibition of abscisic acid signaling in rice during the early phase of Magnaporthe oryzae infection decreases its susceptibility to the fungus. Physiol. Mol. Plant Pathol. 78:1-7. 138. Ye, Y. F., Li, Q. Q., Fu, G., Yuan, G. Q., Miao, J. H., and Lin, W. 2012. Identification of antifungal substance (Iturin A2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J. Integr. Agr. 11:90-99. 139. Yoder, O. C. 1980. Toxins in pathogenesis. Ann. Rev. Phytopathol. 18:103-129. 140. Yoder, O. C. 1988. Cochliobolus heterostrophus, cause of southern corn leaf blight. Adv. Plant Pathol. 6:93–112. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52148 | - |
dc.description.abstract | 玉米為單子葉禾本科植物,為目前世界重要的糧食及飼料作物,具高度經濟價值;在臺灣,玉米常見的病害有紋枯病、銹病、露菌病,以及南方玉米葉枯病。南方玉米葉枯病由病原真菌Cochliobolus heterostrophus所引起,其孢子可藉空氣傳播,玉米受到感染後,病斑可快速擴展相連致使葉片枯死,對產量有顯著影響,目前以抗病品種或施用錳乃浦藥劑為主要防治方式。本研究室使用能誘導百合抗灰黴病之臘狀芽孢桿菌Bacillus cereus C1L防治玉米葉枯病,已於田間試驗指出,定期於玉米根圈澆灌C1L菌液對葉枯病有良好的防治效果。本研究在基因表現與顯微層次探討C1L菌株誘導玉米系統性抗葉枯病之機制。C1L菌株或其培養後產生之氣體分子二甲基二硫醚處理組之玉米葉片的抗壞血酸過氧化物酶基因與酚類化合物合成相關之苯丙胺酸氨解酶基因皆於葉枯病菌接種後,表現量有提前上升的情形。由組織化學染色結果得知,玉米根圈處理C1L菌株後接種葉枯病菌,葉表細胞癒傷葡聚糖及酚類化合物之累積增加;而過氧化氫累積量較對照組低,顯示具較優之抗氧化力。其次,探討植物荷爾蒙誘導物及荷爾蒙生合成抑制劑對玉米葉枯病罹病程度的影響,發現外施乙烯生合成抑制劑艾微激素能降低感染葉枯病之病斑大小;並以玉米已知之荷爾蒙誘導性標誌基因作為偵測目標的反轉錄聚合酶連鎖反應結果指出,C1L菌株處理致使葉片EIN2基因表現量呈下降趨勢,故C1L菌株可能藉由抑制乙烯路徑增加植物抗病性。另一方面,以基因微陣列分析及酵素活性測試指出,C1L菌株處理可誘發玉米罹病葉片提高一系列穀胱甘肽轉移酶相關基因及活性表現,暗示C1L菌株可透過增強植物解毒能力,提升其對葉枯病之抗性。 | zh_TW |
dc.description.abstract | Corn is one of the most important crops in the world since it is a staple food of many people and animals. Southern corn leaf blight (SCLB) is caused by the air-borne fungal pathogen Cochliobolus heterostrophus. Infected lesions expand and merge rapidly, cauing corn leaves shrivel and ultimately end up with low yield. Foliar spray with fungicide Maneb is a usual measure of disease control. Previous field trials had shown Bacillus cereus C1L application in corn rhizosphere suppressed SCLB disease severity. This research attempts to demonstrate possible defense mechanisms involved in C1L-induced systemic resistance to SCLB by gene expression analysis and microscopical examination. Gene expressions of cytosolic ascorbate peroxidase (cAPX) and phenylalanine ammonia lyase (PAL) increased earlier and to higher level in the C1L- and dimethyl disulfide (DMDS)-treated corn leaves after pathogen inoculation as compared with the control. In addition, through histochemical staining, lower H2O2, more phenolic compounds, and increased callose deposition were observed in the C1L- and DMDS-treated corn leave than the control after inoculation with C. heterostrophus. In addition, since lesion sizes were significantly reduced by application of ethylene biosynthesis inhibitor Retain® and the ethylene-inducible EIN2 gene were down regulated in the leaves by C1L treatment, it appears that strain C1L can prevent the disease by suppressing ethylene pathway. On the other hand, increased expression of glutathione transferase genes and activities in C. heterostrophus-inoculated leaves were observed in microarray analysis and GST activity assay, suggesting that strain C1L could build disease resistance capacity through enhancing detoxification in maize. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:08:39Z (GMT). No. of bitstreams: 1 ntu-104-R99633006-1.pdf: 2761774 bytes, checksum: ec48a9114b6040ef2a323881a1cbeca6 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 II
英文摘要 III 壹、前言 1 貳、前人研究 3 一、南方玉米葉枯病 3 二、植物系統抗病性 4 三、誘導植物產生抗性之微生物訊息分子 (elicitor or signal molecules ) 6 四、植物活性氧分子、抗氧化能力與抗病之關係 7 五、有益根圈細菌參與植物荷爾蒙調節 8 六、抗病相關荷爾蒙於單子葉植物上之功能 8 七、轉錄體應用於ISR之研究 11 參、材料與方法 13 一、供試植株與菌株 13 二、玉米根圈處理 14 三、玉米葉盤添加藥劑處理 14 四、玉米葉枯病菌接種 15 五、罹病嚴重度與統計方式 16 六、組織染色與觀察 16 七、植物酵素活性測試 17 八、本研究所使用之藥劑對孢子萌芽影響測試 18 九、基因表現探討 19 十、C1L菌株與乙烯前驅物與發芽玉米共培養測試 21 十一、C1L利用ACC為氮源能力測試 22 肆、結果 23 一、C1L 菌株對玉米之誘導抗病作用 23 二、C1L菌株對罹病玉米葉片癒傷葡聚糖累積之影響 23 三、C1L菌株/DMDS對罹病玉米葉片酚類化合物累積之影響 24 四、C1L菌株/DMDS對罹病玉米葉片過氧化氫累積之影響 25 五、植物荷爾蒙對玉米葉枯病罹病之影響 26 六、C1L培養稀釋液處理對玉米葉片MPK3、EIN2基因之調控 27 七、C1L與乙烯前驅物質共處理對玉米根部長度影響測試 27 八、C1L分解植物乙烯前驅物質之能力測試 28 九、C1L對玉米接種葉枯病菌後全基因表現影響探討 28 十、C1L對罹病玉米葉片總榖胱甘肽硫轉移酶(GST)基因表現及活性影響 29 伍、討論 31 陸、參考文獻 38 柒、圖表集 55 表一、本研究使用之引子對序列 56 表二、訊號1.5倍差異以上之穀胱甘肽轉移酶相關基因 57 圖一、溫室試驗處理 C1L菌株於玉米根圈對葉枯病之防治效果 58 圖二、DMDS 根圈澆灌對玉米葉枯病之保護效果持續性 59 圖三、C1L 菌株對玉米葉片癒傷葡聚糖累積之影響 60 圖四、C1L 菌株與DMDS處理對玉米葉片PAL基因表現之影響 61 圖五、C1L 菌株與DMDS處理對罹病玉米葉片PAL酵素活性之影響 62 圖六、C1L 菌株與DMDS處理對罹病玉米葉片酚類化合物累積之影響 63 圖七、玉米葉片二苯基碘處理對病斑面積及過氧化氫累積之影響 64 圖八、C1L菌株與DMDS處理對玉米罹病葉片過氧化氫累積之影響 65 圖九、C1L 菌株與DMDS處理對玉米葉片cAPX基因表現之影響 66 圖十、抑制劑對玉米葉枯病菌孢子萌芽之影響測試 67 圖十一、外施植物荷爾蒙對玉米葉枯病病斑發展之影響(葉盤試驗) 68 圖十二、施用植物荷爾蒙抑制劑對玉米葉枯病病斑發展之影響 69 圖十三、C1L菌株處理對玉米葉片荷爾蒙反應標誌基因相對表現之影響 70 圖十四、C1L菌株與乙烯前驅物質ACC處理對玉米根部長度影響 71 圖十五、C1L菌株利用乙烯前驅物質ACC能力測試 72 圖十六、C1L菌株處理誘導罹病玉米葉片差異性表現之基因分群 73 圖十七、C1L誘導罹病玉米葉片基於生物性程序及分子功能之正調控基因分群 74 圖十八、榖胱甘肽硫轉移酶抑制劑對玉米葉枯病菌病徵發展影響 75 圖十九、C1L處理對接種葉片榖胱甘肽硫轉移酶(GST31)基因表現之影響 76 圖二十、C1L處理對接種葉枯病菌後玉米葉片GST酵素活性之影響 77 捌、附錄 78 附錄一、Dworkin and Foster's (DF) 培養基之配方 79 附錄二、玉米葉片過氧化氫含量分析 80 附錄三、DMDS揮發氣體對玉米葉枯病孢子萌芽及菌絲抑制測試 81 附錄四、C1L處理後抗病相關路徑基因表現分析(microarray) 82 附錄五、外施植物荷爾蒙對玉米葉枯病病斑發展之影響(盆植試驗) 87 附錄六、本研究相關基因於晶片訊號分析 88 | |
dc.language.iso | zh-TW | |
dc.title | 臘狀芽孢桿菌誘導玉米系統性抗葉枯病之機制研究 | zh_TW |
dc.title | The mechanism study of Bacillus cereus-induced systemic resistance against southern corn leaf blight | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃祥恩,劉力瑜,沈偉強,鍾嘉綾 | |
dc.subject.keyword | 誘導抗病性,南方玉米葉枯病,臘狀芽孢桿菌,根圈細菌,生物防治, | zh_TW |
dc.subject.keyword | Induced systemic resistance (ISR),Cochliobolus heterostrophus,Bacillus cereus,rhizobacteria,biocontrol, | en |
dc.relation.page | 88 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。