Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52146
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳倩瑜
dc.contributor.authorMing-Yi Hongen
dc.contributor.author洪明邑zh_TW
dc.date.accessioned2021-06-15T16:08:37Z-
dc.date.available2020-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citationAbuznait, A.H. and A. Kaddoumi. 2012. Role of ABC transporters in the pathogenesis of Alzheimer's disease. ACS chemical neuroscience. 3(11): 820-831.
B. Debele, K. Ege, and B. A. Dal, “Mutasyon , DNA Hasarı ,Onarım Mekanizmaları ve Kanserle İlişkisi,” J. Fac. Pharm, Ankara, vol. 35, no. 2, pp. 149–170, 2006.
Bennett, K.P., Campbell, C., 2003. Support vector machines: hype or hallelujah? SIGKDD Explorations 2, 1–13.
Bermingham, Mairead L.; Pong-Wong, Ricardo; Spiliopoulou, Athina; Hayward, Caroline; Rudan, Igor; Campbell, Harry; Wright, Alan F.; Wilson, James F.; Agakov, Felix; Navarro, Pau; Haley, Chris S. (2015). 'Application of high-dimensional feature selection: evaluation for genomic prediction in man'. Sci. Rep. 5.
Bettens, K., K. Sleegers and C. Van Broeckhoven. 2013. Genetic insights in Alzheimer's disease. Lancet Neurol. 12(1): 92-104.
Burns, A. 1998. Mini-Mental State: A practical method for grading the cognitive state of patients for the clinician. M. Folstein, S. Folstein and P. McHugh, Journal of Psychiatric Research (1975) 12, 189-198. Introduction. Int J Geriatr Psych. 13(5): 285-285.
Cheng, W.Y., T.H.O. Yang and D. Anastassiou. 2013. Development of a Prognostic Model for Breast Cancer Survival in an Open Challenge Environment. Sci Transl Med. 5(181).
Clarke, G.M., C.A. Anderson, F.H. Pettersson, L.R. Cardon, A.P. Morris and K.T. Zondervan. 2011. Basic statistical analysis in genetic case-control studies. Nat Protoc. 6(2): 121-133.
Crum, R.M., J.C. Anthony, S.S. Bassett and M.F. Folstein. 1993. Population-Based Norms for the Mini-Mental-State-Examination by Age and Educational-Level. Jama-J Am Med Assoc. 269(18): 2386-2391.
Gareth James; Daniela Witten; Trevor Hastie; Robert Tibshirani (2013). An Introduction to Statistical Learning. Springer. p. 204.
Genomes Project, C., G.R. Abecasis, D. Altshuler, A. Auton, L.D. Brooks, R.M. Durbin, R.A. Gibbs, M.E. Hurles and G.A. McVean. 2010. A map of human genome variation from population-scale sequencing. Nature. 467(7319): 1061-1073.
Goate, A., M.C. Chartier-Harlin, M. Mullan, J. Brown, F. Crawford, L. Fidani, L. Giuffra, A. Haynes, N. Irving, L. James and et al. 1991. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 349(6311): 704-706.
G. Üskünkar, “An Integrative Approach To Structured SNP Prioritization and Representative SNP Selection For Genome-wide Association Studies: Algorithms and Systems,” Middle East Technical University, 2008.
Harold, D., R. Abraham, P. Hollingworth, R. Sims, A. Gerrish, M.L. Hamshere, J.S. Pahwa, V. Moskvina, K. Dowzell, A. Williams, N. Jones, C. Thomas, A. Stretton, A.R. Morgan, S. Lovestone, J. Powell, P. Proitsi, M.K. Lupton, C. Brayne, D.C. Rubinsztein, M. Gill, B. Lawlor, A. Lynch, K. Morgan, K.S. Brown, P.A. Passmore, D. Craig, B. McGuinness, S. Todd, C. Holmes, D. Mann, A.D. Smith, S. Love, P.G. Kehoe, J. Hardy, S. Mead, N. Fox, M. Rossor, J. Collinge, W. Maier, F. Jessen, B. Schurmann, H. van den Bussche, I. Heuser, J. Kornhuber, J. Wiltfang, M. Dichgans, L. Frolich, H. Hampel, M. Hull, D. Rujescu, A.M. Goate, J.S.K. Kauwe, C. Cruchaga, P. Nowotny, J.C. Morris, K. Mayo, K. Sleegers, K. Bettens, S. Engelborghs, P.P. De Deyn, C. Van Broeckhoven, G. Livingston, N.J. Bass, H. Gurling, A. McQuillin, R. Gwilliam, P. Deloukas, A. Al-Chalabi, C.E. Shaw, M. Tsolaki, A.B. Singleton, R. Guerreiro, T.W. Muhleisen, M.M. Nothen, S. Moebus, K.H. Jockel, N. Klopp, H.E. Wichmann, M.M. Carrasquillo, V.S. Pankratz, S.G. Younkin, P.A. Holmans, M. O'Donovan, M.J. Owen and J. Williams. 2009. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease (vol 41, pg 1088, 2009). Nat Genet. 41(10): 1156-1156.
Hollingworth, P., D. Harold, R. Sims, A. Gerrish, J.C. Lambert, M.M. Carrasquillo, R. Abraham, M.L. Hamshere, J.S. Pahwa, V. Moskvina, K. Dowzell, N. Jones, A. Stretton, C. Thomas, A. Richards, D. Ivanov, C. Widdowson, J. Chapman, S. Lovestone, J. Powell, P. Proitsi, M.K. Lupton, C. Brayne, D.C. Rubinsztein, M. Gill, B. Lawlor, A. Lynch, K.S. Brown, P.A. Passmore, D. Craig, B. McGuinness, S. Todd, C. Holmes, D. Mann, A.D. Smith, H. Beaumont, D. Warden, G. Wilcock, S. Love, P.G. Kehoe, N.M. Hooper, E.R.L.C. Vardy, J. Hardy, S. Mead, N.C. Fox, M. Rossor, J. Collinge, W. Maier, F. Jessen, E. Ruther, B. Schurmann, R. Heun, H. Kolsch, H. van den Bussche, I. Heuser, J. Kornhuber, J. Wiltfang, M. Dichgans, L. Frolich, H. Hampel, J. Gallacher, M. Hull, D. Rujescu, I. Giegling, A.M. Goate, J.S.K. Kauwe, C. Cruchaga, P. Nowotny, J.C. Morris, K. Mayo, K. Sleegers, K. Bettens, S. Engelborghs, P.P. De Deyn, C. Van Broeckhoven, G. Livingston, N.J. Bass, H. Gurling, A. McQuillin, R. Gwilliam, P. Deloukas, A. Al-Chalabi, C.E. Shaw, M. Tsolaki, A.B. Singleton, R. Guerreiro, T.W. Muhleisen, M.M. Nothen, S. Moebus, K.H. Jockel, N. Klopp, H.E. Wichmann, V.S. Pankratz, S.B. Sando, J.O. Aasly, M. Barcikowska, Z.K. Wszolek, D.W. Dickson, N.R. Graff-Radford, R.C. Petersen, C.M. van Duijn, M.M.B. Breteler, M.A. Ikram, A.L. DeStefano, A.L. Fitzpatrick, O. Lopez, L.J. Launer, S. Seshadri, C. Berr, D. Campion, J. Epelbaum, J.F. Dartigues, C. Tzourio, A. Alperovitch, M. Lathrop, T.M. Feulner, P. Friedrich, C. Riehle, M. Krawczak, S. Schreiber, M. Mayhaus, S. Nicolhaus, S. Wagenpfeil, S. Steinberg, H. Stefansson, K. Stefansson, J. Snaedal, S. Bjornsson, P.V. Jonsson, V. Chouraki, B. Genier-Boley, M. Hiltunen, H. Soininen, O. Combarros, D. Zelenika, M. Delepine, M.J. Bullido, F. Pasquier, I. Mateo, A. Frank-Garcia, E. Porcellini, O. Hanon, E. Coto, V. Alvarez, P. Bosco, G. Siciliano, M. Mancuso, F. Panza, V. Solfrizzi, B. Nacmias, S. Sorbi, P. Bossu, P. Piccardi, B. Arosio, G. Annoni, D. Seripa, A. Pilotto, E. Scarpini, D. Galimberti, A. Brice, D. Hannequin, F. Licastro, L. Jones, P.A. Holmans, T. Jonsson, M. Riemenschneider, K. Morgan, S.G. Younkin, M.J. Owen, M. O'Donovan, P. Amouyel, J. Williams, A.s.D. Neuroimaging, C. Consortium and E. Consortium. 2011. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet. 43(5): 429-+.
Jefferson, A.L., S.A. Cosentino, S.K. Ball, B. Bogdanoff, N. Leopold, E. Kaplan and D.J. Libon. 2002. Errors produced on the mini-mental state examination and neuropsychological test performance in Alzheimer's disease, ischemic vascular dementia, and Parkinson's disease. J Neuropsych Clin N. 14(3): 311-320.
Kohavi, Ron (1995). 'A study of cross-validation and bootstrap for accuracy estimation and model selection'. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (San Mateo, CA: Morgan Kaufmann) 2 (12): 1137–1143. CiteSeerX: 10.1.1.48.529
Lambert, J.C., S. Heath, G. Even, D. Campion, K. Sleegers, M. Hiltunen, O. Combarros, D. Zelenika, M.J. Bullido, B. Tavernier, L. Letenneur, K. Bettens, C. Berr, F. Pasquier, N. Fievet, P. Barberger-Gateau, S. Engelborghs, P. De Deyn, I. Mateo, A. Franck, S. Helisalmi, E. Porcellini, O. Hanon, M.M. de Pancorbo, C. Lendon, C. Dufouil, C. Jaillard, T. Leveillard, V. Alvarez, P. Bosco, M. Mancuso, F. Panza, B. Nacmias, P. Bossu, P. Piccardi, G. Annoni, D. Seripa, D. Galimberti, D. Hannequin, F. Licastro, H. Soininen, K. Ritchie, H. Blanche, J.F. Dartigues, C. Tzourio, I. Gut, C. Van Broeckhoven, A. Alperovitch, M. Lathrop, P. Amouyel and E.A.D. Initiative. 2009. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 41(10): 1094-U1068.
Lambert, J.C., C.A. Ibrahim-Verbaas, D. Harold, A.C. Naj, R. Sims, C. Bellenguez, G. Jun, A.L. DeStefano, J.C. Bis, G.W. Beecham, B. Grenier-Boley, G. Russo, T.A. Thornton-Wells, N. Jones, A.V. Smith, V. Chouraki, C. Thomas, M.A. Ikram, D. Zelenika, B.N. Vardarajan, Y. Kamatani, C.F. Lin, A. Gerrish, H. Schmidt, B. Kunkle, M.L. Dunstan, A. Ruiz, M.T. Bihoreau, S.H. Choi, C. Reitz, F. Pasquier, P. Hollingworth, A. Ramirez, O. Hanon, A.L. Fitzpatrick, J.D. Buxbaum, D. Campion, P.K. Crane, C. Baldwin, T. Becker, V. Gudnason, C. Cruchaga, D. Craig, N. Amin, C. Berr, O.L. Lopez, P.L. De Jager, V. Deramecourt, J.A. Johnston, D. Evans, S. Lovestone, L. Letenneur, F.J. Moron, D.C. Rubinsztein, G. Eiriksdottir, K. Sleegers, A.M. Goate, N. Fievet, M.J. Huentelman, M. Gill, K. Brown, M.I. Kamboh, L. Keller, P. Barberger-Gateau, B. McGuinness, E.B. Larson, R. Green, A.J. Myers, C. Dufouil, S. Todd, D. Wallon, S. Love, E. Rogaeva, J. Gallacher, P. St George-Hyslop, J. Clarimon, A. Lleo, A. Bayer, D.W. Tsuang, L. Yu, M. Tsolaki, P. Bossu, G. Spalletta, P. Proitsi, J. Collinge, S. Sorbi, F. Sanchez-Garcia, N.C. Fox, J. Hardy, M.C.D. Naranjo, P. Bosco, R. Clarke, C. Brayne, D. Galimberti, M. Mancuso, F. Matthews, S. Moebus, P. Mecocci, M. Del Zompo, W. Maier, H. Hampel, A. Pilotto, M. Bullido, F. Panza, P. Caffarra, B. Nacmias, J.R. Gilbert, M. Mayhaus, L. Lannfelt, H. Hakonarson, S. Pichler, M.M. Carrasquillo, M. Ingelsson, D. Beekly, V. Alvarez, F.G. Zou, O. Valladares, S.G. Younkin, E. Coto, K.L. Hamilton-Nelson, W. Gu, C. Razquin, P. Pastor, I. Mateo, M.J. Owen, K.M. Faber, P.V. Jonsson, O. Combarros, M.C. O'Donovan, L.B. Cantwell, H. Soininen, D. Blacker, S. Mead, T.H. Mosley, D.A. Bennett, T.B. Harris, L. Fratiglioni, C. Holmes, R.F.A.G. de Bruijn, P. Passmore, T.J. Montine, K. Bettens, J.I. Rotter, A. Brice, K. Morgan, T.M. Foroud, W.A. Kukull, D. Hannequin, J.F. Powell, M.A. Nalls, K. Ritchie, K.L. Lunetta, J.S.K. Kauwe, E. Boerwinkle, M. Riemenschneider, M. Boada, M. Hiltunen, E.R. Martin, R. Schmidt, D. Rujescu, L.S. Wang, J.F. Dartigues, R. Mayeux, C. Tzourio, A. Hofman, M.M. Nothen, C. Graff, B.M. Psaty, L. Jones, J.L. Haines, P.A. Holmans, M. Lathrop, M.A. Pericak-Vance, L.J. Launer, L.A. Farrer, C.M. van Duijn, C. Van Broeckhoven, V. Moskvina, S. Seshadri, J. Williams, G.D. Schellenberg, P. Amouyel, Eadi, Gerad, Adgc and Charge. 2013. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 45(12): 1452-U1206.
Levy, E., M.D. Carman, I.J. Fernandez-Madrid, M.D. Power, I. Lieberburg, S.G. van Duinen, G.T. Bots, W. Luyendijk and B. Frangione. 1990. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science. 248(4959): 1124-1126.
Levy-Lahad, E., W. Wasco, P. Poorkaj, D.M. Romano, J. Oshima, W.H. Pettingell, C.E. Yu, P.D. Jondro, S.D. Schmidt, K. Wang and et al. 1995. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science. 269(5226): 973-977.
Manolio, T.A. 2010. Genomewide Association Studies and Assessment of the Risk of Disease. New Engl J Med. 363(2): 166-176.
M. Marinus, “Mutation,” in Molecular Genetics of Bacteria, 2. ed., 2003, pp. 1–7.
Mungas, D. 1991. In-Office Mental Status Testing - a Practical Guide. Geriatrics. 46(7): 54-&.
Naj, A.C., G. Jun, G.W. Beecham, L.S. Wang, B.N. Vardarajan, J. Buros, P.J. Gallins, J.D. Buxbaum, G.P. Jarvik, P.K. Crane, E.B. Larson, T.D. Bird, B.F. Boeve, N.R. Graff-Radford, P.L. De Jager, D. Evans, J.A. Schneider, M.M. Carrasquillo, N. Ertekin-Taner, S.G. Younkin, C. Cruchaga, J.S.K. Kauwe, P. Nowotny, P. Kramer, J. Hardy, M.J. Huentelman, A.J. Myers, M.M. Barmada, F.Y. Demirci, C.T. Baldwin, R.C. Green, E. Rogaeva, P. St George-Hyslop, S.E. Arnold, R. Barber, T. Beach, E.H. Bigio, J.D. Bowen, A. Boxer, J.R. Burke, N.J. Cairns, C.S. Carlson, R.M. Carney, S.L. Carroll, H.C. Chui, D.G. Clark, J. Corneveaux, C.W. Cotman, J.L. Cummings, C. DeCarli, S.T. DeKosky, R. Diaz-Arrastia, M. Dick, D.W. Dickson, W.G. Ellis, K.M. Faber, K.B. Fallon, M.R. Farlow, S. Ferris, M.P. Frosch, D.R. Galasko, M. Ganguli, M. Gearing, D.H. Geschwind, B. Ghetti, J.R. Gilbert, S. Gilman, B. Giordani, J.D. Glass, J.H. Growdon, R.L. Hamilton, L.E. Harrell, E. Head, L.S. Honig, C.M. Hulette, B.T. Hyman, G.A. Jicha, L.W. Jin, N. Johnson, J. Karlawish, A. Karydas, J.A. Kaye, R. Kim, E.H. Koo, N.W. Kowall, J.J. Lah, A.I. Levey, A.P. Lieberman, O.L. Lopez, W.J. Mack, D.C. Marson, F. Martiniuk, D.C. Mash, E. Masliah, W.C. McCormick, S.M. McCurry, A.N. McDavid, A.C. Mckee, M. Mesulam, B.L. Miller, C.A. Miller, J.W. Miller, J.E. Parisi, D.P. Perl, E. Peskind, R.C. Petersen, W.W. Poon, J.F. Quinn, R.A. Rajbhandary, M. Raskind, B. Reisberg, J.M. Ringman, E.D. Roberson, R.N. Rosenberg, M. Sano, L.S. Schneider, W. Seeley, M.L. Shelanski, M.A. Slifer, C.D. Smith, J.A. Sonnen, S. Spina, R.A. Stern, R.E. Tanzi, J.Q. Trojanowski, J.C. Troncoso, V.M. Van Deerlin, H.V. Vinters, J.P. Vonsattel, S. Weintraub, K.A. Welsh-Bohmer, J. Williamson, R.L. Woltjer, L.B. Cantwell, B.A. Dombroski, D. Beekly, K.L. Lunetta, E.R. Martin, M.I. Kamboh, A.J. Saykin, E.M. Reiman, D.A. Bennett, J.C. Morris, T.J. Montine, A.M. Goate, D. Blacker, D.W. Tsuang, H. Hakonarson, W.A. Kukull, T.M. Foroud, J.L. Haines, R. Mayeux, M.A. Pericak-Vance, L.A. Farrer and G.D. Schellenberg. 2011. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet. 43(5): 436-+.
Pahnke, J., O. Langer and M. Krohn. 2014. Alzheimer's and ABC transporters--new opportunities for diagnostics and treatment. Neurobiology of disease. 72 Pt A54-60.
Palmqvist, S., O. Hansson, L. Minthon and E. Londos. 2009. Practical suggestions on how to differentiate dementia with Lewy bodies from Alzheimer's disease with common cognitive tests. Int J Geriatr Psych. 24(12): 1405-1412.
Pearson, T.A. and T.A. Manolio. 2008. How to interpret a genome-wide association study. Jama-J Am Med Assoc. 299(11): 1335-1344.
Rogaev, E.I., R. Sherrington, E.A. Rogaeva, G. Levesque, M. Ikeda, Y. Liang, H. Chi, C. Lin, K. Holman, T. Tsuda and et al. 1995. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature. 376(6543): 775-778.
Schölkopf, B., Smola, A., 2002. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA.
Seshadri, S., A.L. Fitzpatrick, M.A. Ikram, A.L. DeStefano, V. Gudnason, M. Boada, J.C. Bis, A.V. Smith, M.M. Carassquillo, J.C. Lambert, D. Harold, E.M.C. Schrijvers, R. Ramirez-Lorca, S. Debette, W.T. Longstreth, A.C.J.W. Janssens, V.S. Pankratz, J.F. Dartigues, P. Hollingworth, T. Aspelund, I. Hernandez, A. Beiser, L.H. Kuller, P.J. Koudstaal, D.W. Dickson, C. Tzourio, R. Abraham, C. Antunez, Y.C. Du, J.I. Rotter, Y.S. Aulchenko, T.B. Harris, R.C. Petersen, C. Berr, M.J. Owen, J. Lopez-Arrieta, B.N. Varadarajan, J.T. Becker, F. Rivadeneira, M.A. Nalls, N.R. Graff-Radford, D. Campion, S. Auerbach, K. Rice, A. Hofman, P.V. Jonsson, H. Schmidt, M. Lathrop, T.H. Mosley, R. Au, B.M. Psaty, A.G. Uitterlinden, L.A. Farrer, T. Lumley, A. Ruiz, J. Williams, P. Amouyel, S.G. Younkin, P.A. Wolf, L.J. Launer, O.L. Lopez, C.M. van Duijn, M.M.B. Breteler and C.G.E. Consortia. 2010. Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease. Jama-J Am Med Assoc. 303(18): 1832-1840.
Shastry, B.S. 2002. SNP alleles in human disease and evolution. Journal of human genetics. 47(11): 561-566.
Stonnington, C.M., C. Chu, S. Kloppel, C.R. Jack, J. Ashburner, R.S.J. Frackowiak and A.D. Neuroimaging. 2010. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. Neuroimage. 51(4): 1405-1413.
Wolf, A., B. Bauer and A.M. Hartz. 2012. ABC Transporters and the Alzheimer's Disease Enigma. Frontiers in psychiatry. 354.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52146-
dc.description.abstract近年來醫療發展快速,衛生環境提升,平均壽命明顯的提升,隨著平均年齡的上升,老年退化顯然已經成為造成高齡化社會一定會面臨到的大問題。其中,阿茲海默症(Alzheimer's disease)是俗稱的老年失智症中最常見的疾病類型,阿茲海默氏症最早於1906年由德國精神病學家和病理學家愛羅斯•阿茲海默首次發現,已經發現超過一世紀之久,但到今天科學家們依舊沒有可以阻止或逆轉病程的治療,只有少數可能可以暫時改善症狀的方法。
阿茲海默症的病人將會漸漸失去他們的記憶和他們的認知能力,甚至是性格也都會產生很大的變化,有時會伴隨著憂鬱、偏執和妄想症等,其主要原因為處理訊息儲存的神經細胞凋亡。目前,全球身受阿茲海默症影響的病人約2400∼3500萬人,加上人口平均年齡上升,預計到了2050年,每85個人就會有一個人有阿茲海默症。我們必須正視這個問題,了解阿茲海默症形成的原因從根本解決這個疾病。
阿茲海默症被認為是一種由於基因的變異造成的複雜遺傳疾病。晚發性的阿茲海默症病人患病率高但病人個體間的基因變異複雜,這樣的現象造成疾病判斷的不易。根據以往的研究,APOEε-4及其等位基因,為目前為止唯一確信的阿茲海默症遺傳因子;除此之外,還有數以百計的高風險基因變異被認為與阿茲海默症有高度相關,但其關係尚不清楚。
本研究收集ADNI資料庫中病人的臨床及基因特徵,分析基因變異及簡易心智量表(MMSE量表)的變化下手,利用全基因組關聯分析(Genome-wide association study, GWAS)從約一百五十萬個單核苷酸多態性(SNP)中,找出了39個和智能退化高度相關的單核苷酸多態性,同時將提供一個有效的解決方案來選擇臨床樣本資料,進行臨床試驗和早期疾病治療的可能性。本研究並利用機器學習演算法支持向量機(Support Vector Machines)建構出預測阿茲海默症退化進程的模型,在訓練資量上,皮爾遜相關係數可達到0.5,在預測兩份獨立的資料上,皮爾遜相關係數為0.43與0.35。本論文在做全基因體關聯分析時,使用不同的篩選條件,篩選出866個與智能退化相關的單核苷酸多態性,分佈在120個基因上。
此研究提供了一個有效的解決方案來篩選基因特徵與臨床樣本資料,建構智能退化進程模型,並將所篩選出的基因清單與目前已知和阿茲海默症的相關基因相互對照,期能尋獲與進程發展較直接相關的基因指標,來增加早期治療疾病的可能性。
zh_TW
dc.description.abstractThe dramatic rise in life expectancy in the past few decades has resulted in a huge number of individuals achieving the age at which neurodegenerative disorders become common. Alzheimer's disease (AD) is one of the most common neurodegenerative disease discovered more than one century ago and also one of the most common elderly diseases in the world. Slowly but surely, AD patients will lose their memory and their cognitive abilities, and even their personalities may change dramatically. These changes are due to the progressive dysfunction and death of nerve cells that are responsible for the storage and processing of information. Currently, AD affects about 24 to 35 million people around the world. Combined with an aging population, prevalence is expected to increase to 1 in 85 people by 2050. In order to deal with the massive growth of the AD patients, it is important to find the mechanism of Alzheimer’s disease development.
Alzheimer’s disease is known as a genetically complex and heterogeneous disorder disease. The late-onset Alzheimer’s disease is modulated by genetic variants with relatively low penetrance but high prevalence. Based on previous studies, the only firmly established genetic susceptibility factor for Alzheimer’s disease is the ε-4 allele of APOE. Beyond this, hundreds of other putative risk alleles in other genes were reported. But the relationships between these published alleles and the Alzheimer’s disease still remain unclear.
Both of the clinical and genetic data we used in this study were provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI). To tackle the complex genetic variations of AD, this study aims to link not only the genetic (Genome-wide association study, GWAS) but also clinical data to the change of the 24 month follow-up cognitive scores (measured in the end of the 24-th month after initial assessment) by the machine learning algorithm, SVR (Support Vector Machine Regression, SVR). We retrieved 39 SNPs (Single Nucleotide Polymorphism, SNP) from 1.5 million SNPs that were shown to be highly correlated to the degeneration of Alzheimer’s disease. We built the predictive model using both clinical and genetic data, and the resultant Pearson correlation coefficient between the measured and the predicted scores is about 0.5 on one training data set and are 0.43 and 0.35 on two independent test data sets. With a relaxed threshold, we extracted 866 SNPs from 1.5 million SNPs in 120 genes that were shown to be highly correlated to the degeneration of Alzheimer’s disease.
The constructed model not only can help to predict cognitive trajectory and provide new approaches for early identification of AD, but also provide an efficient solution to select the samples for clinical trials for earlier disease treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:08:37Z (GMT). No. of bitstreams: 1
ntu-104-R02631013-1.pdf: 5929052 bytes, checksum: 8e5fe179c40926cf5209cd629e9a5868 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 I
ABSTRACT III
LIST OF FIGURES VIII
LIST OF TABLES X
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 3
2.1 BIOLOGICAL BACKGROUND 3
2.1.1 Clinical data 3
2.1.2 Genetic data 5
2.2 COMPUTATIONAL BACKGROUND INFORMATION 9
2.2.1 Genome-Wide Association Study 9
2.2.2 Machine learning 14
2.2.3 Feature selection and feature extraction 15
2.2.4 Support vector machine regression 16
2.2.5 Over-fitting 18
2.2.6 Evaluate the accuracy of the models 19
CHAPTER 3 MATERIALS AND METHODS 21
3.1 MATERIALS 22
3.1.1 Training data 23
3.1.2 Testing data 24
3.2 DESIGN OF CLINICAL FEATURE SET 24
3.3 CLINICAL FEATURE SELECTION 26
3.4 CONSTRUCT CLINICAL MODEL 27
3.5 DESIGN OF GENETIC FEATURE SET 28
3.6 GENETIC FEATURE SELECTION AND EXTRACTION 29
3.7 CONSTRUCT GENETIC MODEL 30
CHAPTER 4 RESULTS AND DISCUSSION 31
4.1 Clinical feature selection and modeling 31
4.2 Genetic feature selection and modeling 36
CHAPTER 5 CONCLUSIONS 46
REFERENCE 48
APPENDIX 53
866 SNPS LIST SELECTED BY GWAS 53
ML CODES 68
GWAS CODES 79
dc.language.isoen
dc.subject全基因組關聯分析(Genome-wide association studyzh_TW
dc.subjectGWAS)zh_TW
dc.subject阿茲海默症zh_TW
dc.subjectSNP)zh_TW
dc.subject單核?酸多態性(Single Nucleotide Polymorphismzh_TW
dc.subject支持向量機(Support Vector Machines)zh_TW
dc.subject機器學習zh_TW
dc.subject簡易心智量表(MMSE量表)zh_TW
dc.subjectSNPen
dc.subjectGenome-wide association studyen
dc.subjectGWASen
dc.subjectMMSEen
dc.subjectMachine Learningen
dc.subjectSupport Vector Machine Regressionen
dc.subjectSVRen
dc.subjectSingle Nucleotide Polymorphismen
dc.subjectAlzheimer’s diseaseen
dc.subjectMini Mental State Examinationen
dc.title結合臨床與個人基因特徵預測24個月後之簡易心智量表(MMSE)變化zh_TW
dc.titlePredicting 24-month follow-up Mini Mental State Examination (MMSE) scores by using clinical and genetic dataen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee歐陽彥正,陳沛隆,蘇中才
dc.subject.keyword阿茲海默症,簡易心智量表(MMSE量表),機器學習,支持向量機(Support Vector Machines),單核?酸多態性(Single Nucleotide Polymorphism, SNP),全基因組關聯分析(Genome-wide association study, GWAS),zh_TW
dc.subject.keywordAlzheimer’s disease,Mini Mental State Examination, MMSE,Machine Learning,Support Vector Machine Regression, SVR,Single Nucleotide Polymorphism, SNP,Genome-wide association study, GWAS,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
Appears in Collections:生物機電工程學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
5.79 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved