請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52144完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠(Ru-Jong Jeng) | |
| dc.contributor.author | Yu-Ting Huang | en |
| dc.contributor.author | 黃裕婷 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:08:36Z | - |
| dc.date.available | 2018-08-21 | |
| dc.date.copyright | 2015-08-21 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-19 | |
| dc.identifier.citation | 1 P. R. E. Smalley, Energy NanoTechnology Conference, Rice University (May 3, 2003). 2 馬振基;張正華;李陵嵐;葉處平;楊平華. 有機與塑膠太陽能電池, 五南圖書出版股份有限公司, 2007. 3 A.E. Becquerel, Acad. Sci., 1839, 9. 4 D. M. F., C. S Chapin, G. L. Pearson, Journal of Applied Physics, 1954, 25, 676-677. 5 A. C. Mayer, S. R Scully, B. E. Hardin, M. W. Rowell, M. D. McGehee, . Materials Today, 2007,10, 28. 6 S. Gunes, N. Helment.; N. S. Sariciftci, Chem.Rev., 2007, 107, 1324. 7 F. C. Krebs, S. A. Gevorgyan, J. Alstrup, J. Mater. Chem., 2009, 19, 5442. 8 馮垛生. 太陽能發電原理與應用. 五南圖書出版股份有限公司, 2009. 9 郭明村. 薄膜太陽能電池發展近況. 工業材料雜誌, 2003, 203, 138. 10 A. B., G. Hagfeldt,; L. Sun, L. Kloo, H. Pettersson, Chem. Rev., 2010, 110, 6595. 11 B. O’Regan, M. Gratzel, Nature, 1991, 353, 737. 12 M. K.Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, J. Am. Chem. Soc., 2001, 123, 1613. 13 G.Yu, K. Parker, A.J.Heeger, Appl. Phys. Lett, 1994, 64, 3422. 14 http://www.nrel.gov/ncpv/images/efficiency_chart.jpg 15 L. Dou, J.You, J. Yang, C.C.Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Nat. Photon., 2012, 6, 180. 16 G. Li, R. Zhu, Y. Yang, Nat. Photon., 2012, 6, 153. 17 C. W. Tang, Appl. Phys. Lett , 1986, 48, 183. 18 K. Petritsch, J. J. Dittmer,; E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, A. B. Holmes, Sol. Energy. Mater. Sol. Cells, 2000, 61, 63. 19 L.Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H.Friend, J. D.MacKenzie, Science, 2001, 293, 1119. 20 L.Schmidt-Mende, A. Fechtenkotter, K. Mullen, R. H.Friend, J. D. MacKenzie, Physica E, 2002, 15, 263 . 21 J. Roncali, P. Frere, P. Blanchard, R.De Bettignies, M. Turbiez, S. Roquet, P. Leriche, Y.Nicolas, Thin Sol. Films, 2006, 511, 567. 22 X. Sun, Y. Zhou, W. Wu, Y. Liu, W. Tian, G. Yu, W. Qiu, S.Chen, D. Zhu, J. Phys. Chem. B , 2006,110, 7702. 23 M. T. Lloyd, A. C. Mayer, A. S.Tayi, A. M. Bowen, T. G. Kasen,; D. J. Herman, D. A. Mourey, J. E. Anthony, G. G. Malliaras, Org. Electron., 2006, 7, 243. 24 A. K. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan, and A. J. Heeger. Adv. Mater., 2013, 25, 2397. 25 V. Gupta, A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan, A. J. Heeger. SCIENTIEIC REPORTS, 2013, 3,1965 26 http://org.ntnu.no/solarcells/pages/Chap.2.php. 27 https//solarwiki.ucdavis.edu/The_Science_of_Solar/Solar_Basics/B.Basics_of _the_Sun/V._Air_Mass 28 Y. J.Cheng, S. H. Yang, C. S. Hsu, Chem.Rev. 2009, 109, 5868. 29 G. Yu, C. Zhang, A. J. Heeger. Appl. Phys. Lett, 1994, 64, 1540. 30 V. I. Arkhipov, H. Basslar, Phys. Status. Solid A., 2004, 201, 1152. 31 J. Nelson, Current Opinion in Solid State and Materials Science, 2002, 6, 87. 32 J. J. Dittmer, E. A. Marseglia, R. H. Friend. Adv. Mater., 2002, 17, 1270. 33 D. Chirvase, Z. Chiguvaer, M. Knipper, J. Parisi, V. Dyakonov, J. C. Hummelen. Synthetic Metals, 2003, 138, 299. 34 C. J. Brabec, G. Zerza,; G. Cerullo, S. D. Silvestri, S.Luzzati, J. C. Hummelen, S.Sariciftci, Chem. Phys. Lett., 2001, 340, 232. 35 Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller, K. Leo, Adv. Funct. Mater., 2011, 21, 1076. 36 E. Ahlswede, J. Hanisch, M. Powalla, Appl. Phys. Lett., 2007, 90, 163504. 37 A. K. Ghosh, T. Feng, J. Appl. Phys. Lett., 1978, 49, 5982. 38 P. Bauerle, A. Mishra, Angew. Chem. Int. Ed., 2012, 51, 2020. 39 J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl.Phys. Lett., 1996, 68, 3120. 40 G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 270, 1789. 41 F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater., 2003, 13, 85. 42 G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys., 2005, 98, 43704. 43 D. Chirvase, J. Parisi, J. C. Hummelen, V. Dyakonov,. Nanotechnology, 2004, 15, 1317. 44 J. Huang, G. Li, Y. Yang. Appl. Phys. Lett, 2005, 87, 112105. 45 V. Shortriya, J. Quyang, R. J. Tseng, G. Li, Y. Yang., Chem. Phys. Lett., 2005, 411, 138. 46 J. Roncail, Accounts of Chemical Reserch, 2009, 42, 1719. 47 Y. S. Liu, X. Wan, F. Wang, J. Y. Zhou, G. k. Long, J. G. Tian, J. B. You, Y. Yang, Y. S. Chen, Adv. Energy. Mater., 2011, 1, 771. 48 G. G. He, Z. Li, X. J. Wan, Y.S. Liu, J. Y. Zhou, G. K. Long, M. T. Zhang, Y. S. Chen*, J. Mater. Chem., 2012, 22, 9173. 49 J. Zhou, X. Wan, Y. Liu, G. Long, F. Wang, Z. Li, Y. Zuo, C. Li , and Y. Chen, Chem. Mater., 2011, 23, 4666. 50 K. H. Kim, H. Yu, H. Kang, D. J. Kang, C. H. Cho,H. H. Cho, J. H. Oh B. J. Kim, J. Mater. Chem. A, 2013, 1, 14538. 51 M. Li, B. Kan, Q. Zhang, F. Liu, X. Wan,Y. C. Wang, W. Ni, G. Long, X. Yang, H. Feng, Y. Zuo, M. Zhang, F. Huang, Y. Cao,T. P. Russell, and Y. S. Chen*, J. Am. Chem. Soc. 2015, 137, 3886 52 A. Cravino, S. Roquet, O. Ale´veふque, P. Leriche, P. Fre`re, J. Roncali., Chem. Mater., 2006, 18, 2584. 53 S. Karpe, A. Cravion, P. Frère, M. Allain, G. Mabon, J. Roncali. Adv. Funct. Mater., 2007, 17, 1163. 54 Y. Y. Jiang, D. Yu, L. H. Lu, C. Zhan, D.Wu, W. You, Z. H. Xie , S. Xiao. J. Mater. Chem. A , 2013, 1, 8270. 55 D. Deng, S. Shen, J. Zhang, C. He, Z. J. Zhang, Y. F. Li, Organic Electronics, 2012; 13, 2546. 56 Y. Z. Lin, Z.-G. Zhang, H. T. Bai, Y. F. Li, X. W. Zhan. Chem. Commun, 2012, 48, 9655. 57 J. Zhang, Y. Yang, C. He1, D. Deng, Z. Li , Y.F. Li, J. Phys. D: Appl. Phys., 2011, 44, 475101. 58 Y. Kim, C. E. Song, A. Cho , J. Kim, Y. Eom, J. Ahn , S. J. Moon, E.Lim *, Materials Chemistry and Physics, 2014, 143, 825. 59 M. R. Chen, W. F. Fu, M. M. Shi, X. L. Hu, J. Y. Pan, J. Ling, H. Y. Li ,H. Z. Chen*, J. Mater. Chem. A, 2013, 1,105. 60 L. Fu, W. F. Fu, P. Cheng, Z. X. Xie, C. C. Fan, M. M. Shi, J. Ling, J. H. Hou, X. W. Zhanc, H. Z. Chen, J. Mater. Chem. A, 2014, 2, 6589. 61 林孟橋,國立台灣大學高分子科學與工程學研究所碩士論文, 2013 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52144 | - |
| dc.description.abstract | 本研究合成含噻吩-噻吩共軛臂鏈之小分子並應用於溶液製程有機太陽能電池。利用雙噻吩(bi-thiophene, TT)為S之核心,逐步反應形成含有四個噻吩-噻吩共軛臂鏈之星狀S-(T-TT)。進一步比較以TT為中心含兩個噻吩-噻吩共軛臂鏈之線性(linear, L) 小分子材料L-(T-TT),探討多維共軛臂鏈對小分子光電物理性質之影響。並進一步與學長的小分子材料S-(F-TT)、L-(F-TT) 比較導入不同的共軛單體對於小分子的光電性質之影響。S-(F-TT) 是以TT為核心,逐步反應形成含有四個呋喃-噻吩共軛臂鏈的星狀小分子;L-(F-TT)則是以TT為核心,逐步反應形成含有兩個呋喃-噻吩共軛臂鏈的線型小分子。 四個材料從溶液至薄膜狀態,最大吸收峰的表現上有紅位移現象。而在 onset上,可由兩個方面來比較。第一部分觀察線型(L)和星狀小分子(S)的比較,可以看出L比S的 onset更加紅位移,這是因為L能在薄膜下得到較好的堆疊。第二部分觀察側鏈為噻吩-噻吩(T-TT)及呋喃-噻吩 (F-TT)在薄膜上的情形,可以看出 onset是 (F-TT)系列比 (T-TT)更加的紅位移,推測因為呋喃-噻吩側鏈的平面性來的更好,因此在薄膜時有更好的分子堆疊效果。 由低能光電子光譜( AC-2 )實驗顯示,芳香環共軛臂鏈可有效改變TT核心的旋轉角度,側鏈導入噻吩-噻吩能使平面性變差,並有效降低 HOMO 能階。由理論計算顯示,導入共軛臂鏈於中心雙噻酚間,可有效改變其雙噻酚間之夾角,進而達到星狀3D結構之效果,且多維共軛臂鏈能有效調整小分子之能階與多維方向的電子分布。另外也可得知,側鏈導入呋喃單體可以降低側鏈的平面性。 元件採用正式結構( ITO/ PEDOT:PSS/ Active Layer/ Ca (30 nm)/ Al (100 nm)),將小分子材料與PC61BM混摻 (1:1.2, w/w) 製備成太陽能電池之主動層。在100 mW AM 1.5照射下,L-(F-TT) 之轉換效率為0.84% ,開路電壓為 0.59 V,短路電流為3.1 mA/cm2,填充因子為0.46;S-(F-TT) 之轉換效率為0.93%,開路電壓為 0.52 V,短路電流為4.2 mA/cm2,填充因子為0.46;L-(T-TT) 之轉換效率為0.46 %,開路電壓為 0.61 V,短路電流為2.0 mA/cm2,填充因子為0.37;S-(T-TT) 之轉換效率為0.59 %,開路電壓為 0.54 V,短路電流為2.8 mAcm-2,填充因子為0.39。 在此研究中,可以觀察到導入共軛臂鏈可以利用其較大的立體障礙效果,有效的降低小分子結晶情形,改善元件效率。在此研究中,另一個重點,因側鏈為噻吩-噻吩時比側鏈為呋喃-噻吩時平面性較差,導致小分子無法得到較好的堆疊,因而降低短路電流和填充因子使元件效率變差。 | zh_TW |
| dc.description.abstract | Two novel small molecules with oligothienyls as conjugated arms and bithiophene (TT) as central core was synthesized for solution-processable organic solar cells (OSCs). To systematically investigate the characteristics of multi-diemensional conjugated systems, a star-shaped small molecule with four conjugated arms S-(T-TT) and a linear-shaped (L) small molecule with two conjugated arms L-(T-TT) were synthesized. To systemically investigate how inserting different conjugated bridges would affect optical and electrical properties, a system from previous work, which consists of a linear-shaped small molecule with two oligo(thienylfuran)s as conjugated arms L-(F-TT) and a star-shaped with four oligo(thienylfuran)s as conjugated arms S-(F-TT) are compared with the current work. According to the UV-vis measurements, two phenomena could be observed in the onset wavelength. The onset wavelengths of linear-shaped small molecules displayed a red-shift from solution state to film state. This red-shift is larger than that of star-shaped small molecules. This implies that linear-shaped small molecules exhibited much better molecular packing in film state. What’s more, the onset wavelengths of the molecules comprising furan-thiophene side-chains displayed more red-shift than did the molecules comprising thiophene–thiophene side-chains. This implies that furan-thiophene side-chains exhibited more co-planarity than did the thiophene–thiophene side-chains, resulting in better molecular packing in film state. According to the AC-2 measurements, the aromatic conjugated chains could effectively twist TT core. By introducing thiophene –thiophene side-chains, HOMO energy levels were decreased to a certain degree. Computational analysis provided further evidences that the additional conjugated arms of multi-dimensional conjugated systems were capable of adjusting energy levels and electronic distribution. The analysis also provided evidences that the incorporation of furan-thiophene side-chains would decrease the dihedral angle between conjugated side-chain, and make molecules more planar. Converted OSCs were respectively fabricated by spin-coating the blends of L-(F-TT), S-(F-TT), L-(T-TT), or S-(T-TT) as a donor and the fullerene derivative (PC61BM) as an acceptor. The conventional BHJ solar cell devices of L-(F-TT) achieved a PCE of 0.84% with a Voc of 0.59 V, Jsc of 3.1 mA/cm2, and FF of 0.46;the devices of S-(F-TT) achieved a PCE of 0.93% with a Voc of 0.52 V, Jsc of 4.2 mA/cm2, and FF of 0.46;the devices of L-(T-TT) achieved a PCE of 0.46% with a Voc of 0.61 V, Jsc of 2.0 mA/cm2, and FF of 0.37;the devices of S-(T-TT) achieved a PCE of 0.59% with a Voc of 0.54 V, Jsc of 2.8 mA/cm2, and FF of 0.39. The preliminary photovoltaic performances indicate that the photocurrent and power conversion efficiency were benefited greatly by inserting multi-dimensional conjugated arms and side-chains of furan bridges in small molecules. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:08:36Z (GMT). No. of bitstreams: 1 ntu-104-R02549014-1.pdf: 7621902 bytes, checksum: ee846a28cd17efa88fc27d5ac0e93668 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口委審定書 I 謝辭 II 中文摘要 III 英文摘要 V 目錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2太陽能發展歷史及太陽能電池介紹 2 1.3 太陽放射光譜圖 8 1.4 太陽能電池基本特性參數 10 1.5 有機太陽能電池工作原理 12 1.6 有機太陽能元件的發展 14 1.6.1 單層結構(single layer) 14 1.6.2 雙層結構(bilayer)異質接面(heterojuncion)結構 14 1.6.3單層異質接面結構(bulk heterojunction) 15 第二章 文獻回顧與研究動機 18 2.1 線型小分子系統 19 2.2 星狀小分子系統 24 2.3星狀小分子之側鏈平面性比較 29 2.4研究動機 31 第三章 實驗內容 33 3.1使用藥品與溶劑 33 3.2使用儀器 34 3.3實驗流程圖 37 3.4合成流程 38 3.4.1化合物 S-(T-TT) 之合成步驟 38 3.4.2化合物 L-(T-TT) 之合成步驟 39 3.4.3實驗步驟 40 第四章 結果與討論 50 4.1小分子材料基本性質 50 4.2熱性質 52 4.3型態性質 54 4.4光學性質 56 4.5低能光電子能階之量測 58 4.6理論計算 60 4.7元件光伏特性分析 67 第五章 結論 69 第六章 參考文獻 71 附錄 核磁共振光譜圖、碳核磁共振光譜圖及MASS 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | 星狀 | zh_TW |
| dc.subject | start-shaped | en |
| dc.subject | organic solar cell | en |
| dc.title | 合成有機可溶噻吩小分子於太陽能電池的應用 | zh_TW |
| dc.title | Synthesis of Star-Shaped Oligothienyls for Solution-Processed Organic Photovoltaics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李榮和(Rong-Ho Lee),蘇文?(Wen-Jiong Su),丁維和(Wei-He Ding),童世煌(Shih-Huang Tung) | |
| dc.subject.keyword | 星狀,有機太陽能電池, | zh_TW |
| dc.subject.keyword | start-shaped,organic solar cell, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 7.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
