Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏瑞泓
dc.contributor.authorPei-Chin Chiangen
dc.contributor.author江佩津zh_TW
dc.date.accessioned2021-05-15T17:53:39Z-
dc.date.available2017-09-01
dc.date.available2021-05-15T17:53:39Z-
dc.date.copyright2014-09-23
dc.date.issued2014
dc.date.submitted2014-07-31
dc.identifier.citation王一雄。2004年。農藥汙染對作物的影響。植物重要防疫檢疫病害診斷鑑定技術研習會專刊 (三) 。p. 73-96。
呂永淵。2006年。農藥貝芬替與其前驅物免賴得誘發大鼠生殖與發育毒性作用機制之研究。國立臺灣大學醫學院毒理學研究所博士論文。
李國欽、李泰林。1983。台灣常用農藥對水源污染之實況調查研究結果總報告,水污染防治所報告。
凌永健。1999年。環境荷爾蒙的化學分析。環檢雙月刊第32期。
蕭郁樺。2013年。殺菌劑與殺蟲劑的混合施用對藥劑在土壤中降解之影響。國立臺灣大學生物資源暨農學院農業化學系碩士論文。
Ashauer, R., Hintermeister, A., Potthoff, E., Escher, B.I., 2011. Acute toxicity of organic chemicals to Gammarus pulex correlates with sensitivity of Daphnia magna across most modes of action. Aquatic Toxicology 103, 38-45.
Bal, R., Naziroglu, M., Turk, G., Yilmaz, O., Kuloglu, T., Etem, E., Baydas, G., 2012. Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of developing male rats. Cell Biochemistry and Function 30, 492-499.
Becker, L., Scheringer, M., Schenker, U., Hungerbuehler, K., 2011. Assessment of the environmental persistence and long-range transport of endosulfan. Environmental Pollution 159, 1737-1743.
Belden, J.B., Gilliom, R.J., Lydy, M.J., 2007. How well can we predict the toxicity of pesticide mixtures to aquatic life? Integrated Environmental Assessment and Management 3, 364-372.
Belden, J.B., Lydy, M.J., 2000. Impact of atrazine on organophosphate insecticide toxicity. Environmental Toxicology and Chemistry 19, 2266-2274.
Berenzen, N., Lentzen-Godding, A., Probst, M., Schulz, H., Schulz, R., Liess, M., 2005. A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level. Chemosphere 58, 683-691.
Bereswill, R., Golla, B., Streloke, M., Schulz, R., 2012. Entry and toxicity of organic pesticides and copper in vineyard streams: Erosion rills jeopardise the efficiency of riparian buffer strips. Agriculture, Ecosystems & Environment 146, 81-92.
Bereswill, R., Golla, B., Streloke, M., Schulz, R., 2013. Entry and toxicity of organic pesticides and copper in.vineyard streams: Erosion rills jeopardise the efficiency of riparian buffer strips. Agriculture, Ecosystems & Environment 172, 49-50.
Binelli, A., Provini, A., 2003. DDT is still a problem in developed countries: the heavy pollution of Lake Maggiore. Chemosphere 52, 717-723.
Bjorge, C., Brunborg, G., Wiger, R., Holme, J.A., Scholz, T., Dybing, E., Soderlund, E.J., 1996. A comparative study of chemically induced DNA damage in isolated human and rat testicular cells. Reproductive Toxicology 10, 509-519.
Bliss, C.I., 1939. The toxicity of poisons applied jointly. Annals of Applied Biology 26, 585-615.
Cabras, P., Garau, V.L., Angioni, A., Farris, G.A., Budroni, M., Spanedda, L., 1995. Interactions during Fermentation between Pesticides and Enological Yeasts Producing H2S and SO2. Applied Microbiology and Biotechnology 43, 370-373.
Canton, J.H., 1976. The toxicity of benomyl, thiophanate-methyl, and BCM to four freshwater organisms. Bulletin of Environmental Contamination and Toxicology 16, 214-224.
Carter, S.D., Hein, J.F., Rehnberg, G.L., Laskey, J.W., 1984. Effect of benomyl on the reproductive development of male-rats. Journal of Toxicology and Environmental Health 13, 53-68.
Cedergreen, N., Kamper, A., Streibig, J.C., 2006. Is prochloraz a potent synergist across aquatic species? A study on bacteria, daphnia, algae and higher plants. Aquatic Toxicology 78, 243-252.
Chen, W.C., Yen, J.H., Chang, C.S., Wang, Y.S., 2009. Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil. Ecotoxicology and Environmental Safety 72, 120-127.
Chiba, M., Singh, R.P., 1986. High-performance liquid-chromatographic method for simultaneous determination of benomyl and carbendazim in aqueous-media. Journal of Agricultural and Food Chemistry 34, 108-112.
Cuppen, J.G.M., Van den Brink, P.J., Camps, E., Uil, K.F., Brock, T.C.M., 2000. Impact of the fungicide carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macroinvertebrates. Aquatic Toxicology 48, 233-250.
Drescher, K., Boedeker, W., 1995. Assessment of the combined effects of substances - the relationship between concentration addition and independent action. Biometrics 51, 716-730.
Hess, R.A., Nakai, M., 2000. Histopathology of the male reproductive system induced by the fungicide benomyl. Histology and Histopathology 15, 207-224.
Holtman, M.A., Kobayashi, D.Y., 1997. Identification of Rhodococccus erythropolis isolates capable of degrading the fungicide carbendazim. Applied Microbiology and Biotechnology 47, 578-582.
Iwasa, T., Motoyama, N., Ambrose, J.T., Roe, R.M., 2004. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection 23, 371-378.
Kapoor, U., Srivastava, M.K., Srivastava, L.P., 2011. Toxicological impact of technical imidacloprid on ovarian morphology, hormones and antioxidant enzymes in female rats. Food and Chemical Toxicology 49, 3086-3089.
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.T., 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science & Technology 36, 1202-1211.
Krueger, D.A., Dodson, S.I., 1981. Embryological induction and predation ecology in Daphnia pulex. Association for the Sciences of Limnology and Oceanography 26, 219-223.
Li, Y., Yang, H.-, Zhang, X., Yu, Y., Li, J., 2007. Characteristics of adsorption and desorption of lead on live Chlorella vulgaris. Biotechnology 6, 029.
Lim, J.H., Miller, M.G., 1997. The role of the benomyl metabolite carbendazim in benomyl-induced testicular toxicity. Toxicology and Applied Pharmacology 142, 401-410.
Loewe, S., 1953. The problem of synergism and antagonism of combined drugs. Arzneimittel Forschung 3, 285-290.
Lukancic, S., Zibrat, U., Mezek, T., Jerebic, A., Simcic, T., Brancelj, A., 2010. Effects of exposing two non-target crustacean species, Asellus aquaticus L., and Gammarus fossarum Koch., to atrazine and imidacloprid. Bulletin of Environmental Contamination and Toxicology 84, 85-90.
Lydy, M.J., Austin, K.R., 2004. Toxicity assessment of pesticide mixtures typical of the Sacramento-San Joaquin Delta using Chironomus tentans. Archives of Environmental Contamination and Toxicology 48, 49-55.
Ma, J.Y., Xu, L.G., Wang, S.F., Zheng, R.Q., Jin, S.H., Huang, S.Q., Huang, Y.J., 2002a. Toxicity of 40 herbicides to the green alga Chlorella vulgaris. Ecotoxicology and Environmental Safety 51, 128-132.
Ma, J.Y., Zheng, R.Q., Xu, L.G., Wang, S.F., 2002b. Differential sensitivity of two green algae, Scenedesmus obliqnus and Chlorella pyrenoidosa, to 12 pesticides. Ecotoxicology and Environmental Safety 52, 57-61.
Malev, O., Klobucar, R.S., Fabbretti, E., Trebse, P., 2012. Comparative toxicity of imidacloprid and its transformation product 6-chloronicotinic acid to non-target aquatic organisms: Microalgae Desmodesmus subspicatus and amphipod Gammarus fossarum. Pesticide Biochemistry and Physiology 104, 178-186.
Markelewicz, R.J., Hall, S.J., Boekelheide, K., 2004. 2,5-hexanedione and carbendazim coexposure synergistically disrupts rat spermatogenesis despite opposing molecular effects on microtubules. Toxicological Sciences 80, 92-100.
Marking, L., 1985. Toxicity of chemical mixtures. Fundamentals of Aquatic Toxicology: Methods and Applications. Hemisphere Publishing Corporation Washington DC. 1985. p 164-176, 2 fig, 3 tab, 67 ref.
Mazellier, P., Leroy, E., Legube, B., 2002. Photochemical behavior of the fungicide carbendazim in dilute aqueous solution. Journal of Photochemistry and Photobiology a-Chemistry 153, 221-227.
Nakai, M., Hess, R.A., Moore, B.J., Guttroff, R.F., Strader, L.F., Linder, R.E., 1992. Acute and long-term effects of a single dose of the fungicide carbendazim (methyl 2-benzimidazole carbamate) on the male reproductive-system in the rat. Journal of Andrology 13, 507-518.
Nakai, M., Moore, B.J., Hess, R.A., 1993. Epithelial reorganization and irregular growth following carbendazim-induced injury of the efferent ductules of the rat testis. Anatomical Record 235, 51-60.
Nauen, R., Ebbinghaus-Kintscher, U., Schmuck, R., 2001. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera : Apidae). Pest Management Science 57, 577-586.
Norgaard, K.B., Cedergreen, N., 2010. Pesticide cocktails can interact synergistically on aquatic crustaceans. Environmental Science and Pollution Research 17, 957-967.
Ralston-Hooper, K., Hardy, J., Hahn, L., Ochoa-Acuna, H., Lee, L.S., Mollenhauer, R., Sepulveda, M.S., 2009. Acute and chronic toxicity of atrazine and its metabolites deethylatrazine and deisopropylatrazine on aquatic organisms. Ecotoxicology 18, 899-905.
Rehnberg, G.L., Cooper, R.L., Goldman, J.M., Gray, L.E., Hein, J.F., McElroy, W.K., 1989. Serum and testicular testosterone and androgen binding-protein profiles following subchronic treatment with carbendazim. Toxicology and Applied Pharmacology 101, 55-61.
Ritz, C., Streibig, J.C., 2005. Bioassay analysis using R. Journal of Statistical Software 12, 1-22.
Roast, S.D., Widdows, J., Jones, M.B., 2000. Disruption of swimming in the hyperbenthic mysid Neomysis integer (Peracarida : Mysidacea) by the organophosphate pesticide chlorpyrifos. Aquatic Toxicology 47, 227-241.
Rosenberg, D.M., Resh, V.H., 1993. Introduction To Freshwater Biomonitoring And Benthic Macroinvertebrates.
Schaefer, R.B., von der Ohe, P.C., Rasmussen, J., Kefford, B.J., Beketov, M.A., Schulz, R., Liess, M., 2012. Thresholds for the Effects of Pesticides on Invertebrate Communities and Leaf Breakdown in Stream Ecosystems. Environmental Science & Technology 46, 5134-5142.
Strong, D.R., 1972. Life-history variation among populations of an amphipod (Hyalella azteca). Ecology 53, 1103-1111.
Tomizawa, M., Casida, J.E., 2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology 48, 339-364.
van Wijngaarden, R.P.A., Crum, S.J.H., Decraene, K., Hattink, J., van Kammen, A., 1998. Toxicity of Derosal (active ingredient carbendazim) to aquatic invertebrates. Chemosphere 37, 673-683.
Wendt-Rasch, L., Van den Brink, P.J., Crum, S.J.H., Woin, P., 2004. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community. Ecotoxicology and Environmental Safety 57, 383-398.
Woods, M., Kumar, A., Correll, R., 2002. Acute toxicity of mixtures of chlorpyrifos, profenofos, and endosulfan to Ceriodaphnia dubia. Bulletin of Environmental Contamination and Toxicology 68, 801-808.
Zubrod, J.P., Baudy, P., Schulz, R., Bundschuh, M., 2014. Effects of current-use fungicides and their mixtures on the feeding and survival of the key shredder Gammarus fossarum. Aquatic Toxicology 150, 133-143.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5212-
dc.description.abstract病蟲害防治的農藥在環境中具有延續性與重疊性,混合施用可同時防治病蟲害,但對於環境水體中非目標生物之毒害,尚未被廣泛研究。本研究探討混合施用農藥對於水中非目標生物水蚤 (Daphnia pulex) 、端足蟲 (Hyalella azteca) 、小球藻 (Chlorella vulgaris) 之毒性,並比較殺菌劑貝芬替 (Carbendazim) 、甲基多保淨 (Thiophanate-methyl) 與殺蟲劑益達胺 (Imidacloprid) 對於三種水中非目標生物之毒性以及不同品種間之差異。試驗皆以急毒性試驗進行,計算半致死濃度 (Lethal Concentration 50, LC50) ,並進行統計與相關性分析。在水蚤毒性試驗中,單獨暴露貝芬替的LC50為0.10 mg L-1、甲基多保淨為17.47 mg L-1、益達胺為62.17 mg L-1,混合暴露分別將益達胺無觀察危害反應劑量與最低觀察危害反應劑量和貝芬替混合,毒性不受影響,以等毒性混合貝芬替與益達胺之毒性效應為拮抗作用;等毒性混合甲基多保淨與益達胺之毒性效應為協同作用。在端足蟲毒性試驗中,單獨暴露貝芬替的LC50為0.41 mg L-1、益達胺為0.053 mg L-1、甲基多保淨為1.72 mg L-1,等毒性混合甲基多保淨與益達胺以及貝芬替與益達胺在端足蟲上的毒性效應皆為協同效應。對小球藻而言,三種農藥皆不會造成明顯生長抑制的毒性效果。結果顯示,對於貝芬替水蚤較端足蟲敏感,對於益達胺端足蟲則是較水蚤來得更加敏感,而混合後的協同效應說明了低劑量下,殺菌劑與殺蟲劑的混合仍有毒性提高的風險存在。zh_TW
dc.description.abstractThe mixed application of pesticides can control diseases continually, but the risk of mixture toxicity on aquatic non-target organisms is still not investigated. This research is aimed to investigate the toxic effect of fungicide and insecticide mixed application to daphnia (Daphnia pulex), amphipod (Hyalella azteca), and green algae (Chlorella vulgaris) and compare pesticides’ toxicity and aquatic organisms’ sensibility to pesticides. The exposing tests are using acute toxicity tests, calculating the lethal concentration 50 and undergo static and correlation analysis. In D. pulex’s toxicity tests, LC50 of cabendazim is 0.10 mg L-1, thiophanate methyl is 17.47 mg L-1, and imidacloprid is 62.17 mg L-1. In mixed exposing toxicity tests, toxicity of carbendazim with NOAEL and LOAEL imidacloprid is not affected. The joint toxic effect of equitoxic mixing carbendazim and imidacloprid is antagonistic effect, on the contrast, the joint effect of equitoxic mixing thiophanate methyl and imidacloprid is synergistic effect. In H. azteca’s toxicity tests, LC50 of cabendazim is 0.41 mg L-1, thiophanate methyl is 1.72 mg L-1, and imidacloprid is 0.053 mg L-1. The joint effect of equitoxic mixing cabendazim and imidacloprid is synergistic effect, also in equitoxic mixing thiophanate methyl and imidacloprid. In C. vulgaris’s toxicity tests, these three pesticides show no obvious growth inhibition effect. Results show that for carbendazim D. pulex is more sensitive than H. azteca, for imidacloprid H. azteca in much more than D. pulex. H. azteca is generally equally sensitive towards organic xenobiotics as D. pulex. The synergistic effect shows that combinations resulted in greater than additive toxicity are greatest concern in ecotoxicology.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:53:39Z (GMT). No. of bitstreams: 1
ntu-103-R01623027-1.pdf: 1284665 bytes, checksum: 9c7c8b03d25171359eb47c6481c760d5 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents一、前言 1
二、文獻回顧 2
(一)農藥對環境之衝擊 2
(二)農藥的混合施用 5
(三)荷爾蒙與環境荷爾蒙 9
(四)本研究用藥簡介 11
1. 殺菌劑甲基多保淨 11
2. 殺菌劑貝芬替 11
3. 殺蟲劑益達胺 12
(五)試驗材料簡介 16
三、研究目的 24
四、材料與方法 25
(一)水中安定性試驗 25
1. 材料與儀器 25
2. 儲備標準溶液與檢量線配置 26
3. 水中安定性檢測 26
4. 安定性試驗 28
(二)急毒性試驗 29
1. 水蚤 (D. pulex) 48小時急毒性試驗 29
2. 端足蟲 (H. azteca) 72小時急毒性試驗 32
3. 小球藻 (C. vulgaris Beij.) 24小時急毒性試驗 34
(三)統計分析 40
五、結果與討論 41
(一)單獨暴露之急毒性試驗結果 41
1. 水蚤 41
2. 端足蟲 42
3. 小球藻 43
4. 物種間比較 44
(二)混合暴露之急毒性試驗結果 55
1. 水蚤 55
2. 端足蟲 63
六、結論 68
七、參考文獻 69
dc.language.isozh-TW
dc.title混合施用農藥對水中非目標生物之毒性效應zh_TW
dc.titleToxic effects of pesticide mixed application on non-target aquatic organismsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王一雄,袁紹英,李國欽,劉秀美
dc.subject.keyword貝芬替,益達胺,甲基多保淨,混合毒性,水蚤,端足蟲,小球藻,zh_TW
dc.subject.keywordCarbendazim,Imidacloprid,Thiophanate methyl,Mixture toxicity,Daphnia pulex,Hyalella azteca,Chlorella vulgaris,en
dc.relation.page75
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-07-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf1.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved