Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52112
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君(I-Chun Cheng)
dc.contributor.authorChen-Hsuan Wenen
dc.contributor.author溫振軒zh_TW
dc.date.accessioned2021-06-15T16:08:11Z-
dc.date.available2018-07-01
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citation1. Deal, B.E. and A. Grove, General relationship for the thermal oxidation of silicon. Journal of Applied Physics, vol. 36(12), pp. 3770-3778, 1965.
2. Uedono, A., et al., SiO2 films deposited on Si substrates studied by monoenergetic positron beams. Journal of Applied Physics, vol. 75(1), pp. 216-222, 1994.
3. Karim, K.S., et al., Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs. IEEE Electron Device Letters, vol. 25(4), pp. 188-190, 2004.
4. Nishi, Y., et al., Characteristics of plasma-enhanced-chemical-vapor-deposition tetraethylorthosilicate oxide and thin-film-transistor application. Japanese Journal of Applied Physics, vol. 31(12S), p. 4570, 1992.
5. Tanaka, T., et al. An LCD addressed by a-Si: H TFTs with peripheral poly-Si TFT circuits. IEEE in Electron Devices Meeting, IEDM'93,1993.
6. Lee, C.-H., A. Sazonov, and A. Nathan, High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition. Applied Physics Letters, vol. 86(22), pp. 222106-222106-3, 2005.
7. Kim, S.J., et al., Composite oxygen-barrier coating on a polypropylene food container. Thin Solid Films, vol. 540, pp. 112-117, 2013.
8. Li, Y.-S., et al., Single-layer organic–inorganic-hybrid thin-film encapsulation for organic solar cells. Journal of Physics D: Applied Physics, vol. 46(43), p. 435502, 2013.
9. Cho, A.R., et al., Flexible OLED encapsulated with gas barrier film and adhesive gasket. Synthetic Metals, vol. 193, pp. 77-80, 2014..
10. Park, J.-S., et al., Thin film encapsulation for flexible AM-OLED: a review. Semiconductor Science and Technology, vol. 26(3), p. 034001, 2011.
11. Jain, K., et al., Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proceedings of the IEEE, vol. 93(8), pp. 1500-1510, 2005.
12. Kamiya, T., et al., Device applications of transparent oxide semiconductors: Excitonic blue LED and transparent flexible TFT. Journal of Electroceramics, vol. 17(2-4), pp. 267-275, 2006.
13. Xu, H., et al., A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. Journal of Materials Chemistry C, vol. 2(7), pp. 1255-1259, 2014.
14. Zhou, L., et al., All-organic active matrix flexible display. Applied Physics Letters, vol. 88(8), p. 3502, 2006.
15. Lungenschmied, C., et al., Flexible, long-lived, large-area, organic solar cells. Solar Energy Materials and Solar Cells, vol. 91(5), pp. 379-384, 2007.
16. Sugimoto, A., et al., Flexible OLED displays using plastic substrates. Selected Topics in Quantum Electronics, IEEE Journal, vol. 10(1), pp. 107-114, 2004.
17. Colombi, P., et al., Dielectric Layers for MEMS Deposited at Room Temperature by HMDSO-PECVD, in Sensors and Microsystems. Springer. pp. 273-276, 2014.
18. Seo, H.J., et al., Organic and organic–inorganic hybrid polymer thin films deposited by PECVD using TEOS and cyclohexene for ULSI interlayer-dielectric application. Applied Surface Science, 2015.
19. Lim, W., et al., Interface dependent electrical properties of amorphous InGaZnO 4 thin film transistors. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 27(1), pp. 126-129, 2009.
20. Putkonen, M., et al., Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors. Thin Solid Films, vol. 558, pp. 93-98, 2014.
21. Fang, G.-Y., et al., Self-catalysis by aminosilanes and strong surface oxidation by O2 plasma in plasma-enhanced atomic layer deposition of high-quality SiO2. Chemical Communications, vol. 51(7), pp. 1341-1344, 2015.
22. Mallikarjunan, A., et al., Designing high performance precursors for atomic layer deposition of silicon oxide. Journal of Vacuum Science & Technology A, vol. 33(1), p. 01A137, 2015.
23. Schwamb, P., T.C. Reusch, and C.J. Brabec. Flexible top-emitting OLEDs for lighting: bending limits. in SPIE Organic Photonics+ Electronics. International Society for Optics and Photonics, 2013.
24. Liew, Y.-F., et al., Investigation of the sites of dark spots in organic light-emitting devices. Applied Physics Letters, vol. 77(17), pp. 2650-2652, 2000.
25. Lee, J.H., et al., Longevity enhancement of organic thin-film transistors by using a facile laminating passivation method. Synthetic Metals, vol. 143(1), pp. 21-23, 2004.
26. Borvon, G., et al., Analysis of low-k organosilicon and low-density silica films deposited in HMDSO plasmas. Plasmas and Polymers, vol. 7(4), pp. 341-352, 2002.
27. Gautier, G., et al. Polysilicon CMOS TFTs inverters with a gate silicon oxide deposited using PECVD with hexamethyldisiloxane (HMDSO). in Thin Film Transistor Technologies. The Electrochemical Society, 2003.
28. Han, L., et al., Properties of a permeation barrier material deposited from hexamethyl disiloxane and oxygen. Journal of The Electrochemical Society, vol. 156(2), pp. H106-H114, 2009.
29. Han, L., et al., Amorphous silicon thin-film transistors with field-effect mobilities of 2 cm 2/V s for electrons and 0.1 cm 2/V s for holes. Applied Physics Letters, vol. 94(16), pp. 162105-162105-3, 2009.
30. Han, L., P. Mandlik, and S. Wagner, A new gate dielectric for highly stable amorphous-silicon thin-film transistors with electron field-effect mobility. IEEE Electron Device Letters, vol. 30(5), pp. 502-504, 2009.
31. Han, L., et al., Ultraflexible amorphous silicon transistors made with a resilient insulator. Applied Physics Letters, vol. 96(4), p. 042111, 2010.
32. Fan, C.-L., et al., Low-temperature-processed (< 100° C) organic thin-film transistor using hollow-cathode CVD SiO2 as the gate insulator. Semiconductor Science and Technology, vol. 25(7), p. 075006, 2010.
33. Cho, S.-J., et al., Study of the characteristics of organic thin film transistors with plasma-polymer gate dielectrics. Japanese Journal of Applied Physics, vol. 50(1S2), p. 01BC03, 2011.
34. Chang, K.-M., W.-C. Yang, and C.-P. Tsai, Electrical characteristics of low temperature polysilicon TFT with a novel TEOS/oxynitride stack gate dielectric. IEEE Electron Device Letters, vol. 24(8), pp. 512-514, 2003.
35. Chang, K.-M., W.-C. Yang, and B.-F. Hung, Low-temperature poly-si thin-film transistor with a N2O-plasma ONO Multilayer gate dielectric. Electrochemical and Solid-State Letters, vol. 7(7), pp. G148-G150, 2004.
36. Moon, M.R., et al., Effects of surface treatments using PECVD-grown hexamethyldisiloxane on the performance of organic thin-film transistor. Thin Solid Films, vol. 517(14), pp. 4161-4164, 2009.
37. Cha, S.H., et al., Electrically stable low voltage ZnO transistors with organic/inorganic nanohybrid dielectrics. Applied Physics Letters, vol. 92(2), p. 023506, 2008.
38. Viana, C., N. Morimoto, and O. Bonnaud, Annealing effects in the PECVD SiO2 thin films deposited using TEOS, Ar and O2 mixture. Microelectronics Reliability, vol. 40(4), pp. 613-616, 2000.
39. Tsai, C.H., et al., O2/HMDSO‐plasma‐deposited organic–inorganic hybrid film for gate dielectric of MgZnO thin‐film transistor. Plasma Processes and Polymers, vol. 11(1), pp. 89-95, 2014.
40. Lilienfeld, J., Method and apparatus for controlling electric currents, US Patent, 1930.
41. Weimer, P.K., The TFT a new thin-film transistor. Proceedings of the IRE, vol. 50(6), pp. 1462-1469, 1962.
42. Bozzoni, E. and U. Mengali, Comparison between the oscillating limiter and the first-order phase-locked loop. Proceedings of the IEEE, vol. 56(11), pp. 2094-2094, 1968.
43. Le Comber, P., W. Spear, and A. Ghaith, Amorphous-silicon field-effect device and possible application. Electronics Letters, vol. 15(6), pp. 179-181, 1979.
44. Snell, A., et al., Application of amorphous silicon field effect transistors in addressable liquid crystal display panels. Applied Physics, vol. 24(4), pp. 357-362, 1981.
45. Kawamoto, H., The history of liquid-crystal displays. Proceedings of the IEEE, vol. 90(4), pp. 460-500, 2002.
46. Sheraw, C., et al., Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Applied Physics Letters, vol. 80(6), p. 1088, 2002.
47. Hung, B., et al., High-performance poly-silicon TFTs incorporating LaAlO3 as the gate dielectric. Electron Device Letters, IEEE,vol. 26(6), pp. 384-386, 2005.
48. Kattamis, A.Z., et al., High mobility nanocrystalline silicon transistors on clear plastic substrates. IEEE Electron Device Letters, vol. 27(1), pp. 49-51, 2006.
49. Cross, R., et al., A comparison of the performance and stability of ZnO-TFTs with silicon dioxide and nitride as gate insulators. IEEE Electron Devices Transactions, vol. 55(5), pp. 1109-1115, 2008.
50. Chu, M.-C., et al., Oxygen plasma functioning of charge carrier density in zinc oxide thin-film transistors. Applied Physics Express, vol. 6(7), p. 076501, 2013.
51. Masuda, S., et al., Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. Journal of Applied Physics, vol. 93(3), pp. 1624-1630, 2003.
52. Carcia, P., et al., Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, vol. 82(7), pp. 1117-1119, 2003.
53. Fortunato, E.M., et al., Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters, vol. 85(13), pp. 2541-2543, 2004.
54. Tsai, Y.-S. and J.-Z. Chen, Positive gate-bias temperature stability of rf-sputtered active-layer thin-film transistors. IEEE Electron Devices Transactions, vol. 59(1), pp. 151-158, 2012.
55. Jackson, W., R. Hoffman, and G. Herman, High-performance flexible zinc tin oxide field-effect transistors. Applied Physics Letters, vol. 87(19), p. 193503, 2005.
56. Chang, Y.-J., et al., High-performance, spin-coated zinc tin oxide thin-film transistors. Electrochemical and Solid-State Letters, vol. 10(5), pp. H135-H138, 2007.
57. Nomura, K., et al., Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Japanese Journal of Applied Physics, vol. 45(5S), p. 4303, 2006.
58. Nomura, K., et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, vol. 432(7016), pp. 488-492, 2004.
59. Chen, R., et al., Self-aligned indium–gallium–zinc oxide thin-film transistors with SiNx/SiO2/SiNx/SiO2 passivation layers. Thin Solid Films, vol. 564, pp. 397-400, 2014.
60. Nomura, K., et al., Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, vol. 300(5623), pp. 1269-1272, 2003.
61. Kim, J.-M., et al., Atomic layer deposition ZnO: N flexible thin film transistors and the effects of bending on device properties. Applied Physics Letters, vol. 98(14), p. 142113, 2011.
62. Li, H. and T. Jackson, Oxide semiconductor thin film transistors on thin solution-cast flexible substrates. 2015.
63. Hoffman, R., B.J. Norris, and J. Wager, ZnO-based transparent thin-film transistors. Applied Physics Letters, vol. 82(5), pp. 733-735, 2003.
64. Norris, B., et al., Spin-coated zinc oxide transparent transistors. Journal of physics. D, Applied Physics, vol. 36(20), pp. L105-L107, 2003.
65. Hoffman, R., ZnO-channel thin-film transistors: Channel mobility. Journal of Applied Physics, vol. 95(10), pp. 5813-5819, 2004.
66. Nishii, J., et al., High-mobility field-effect transistors based on single-crystalline ZnO channels. Japanese Journal of Applied Physics, vol. 44(9L), p. L1193, 2005.
67. Zhu, J., et al., ZnO TFT devices built on glass substrates. Journal of Electronic Materials, vol. 37(9), pp. 1237-1240, 2008.
68. Kwon, S., et al., Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures. Semiconductor Science and Technology, vol. 24(3), p. 035015, 2009.
69. 武東星, et al., 軟性基材阻氣性鍍膜製程與透過率量測技術. 科儀新知, vol. (171), pp. 58-64, 2009.
70. 陳良吉, OLED 封裝技術介紹. 化工, vol. 51(2), pp. 66-76, 2004.
71. Kaltenpoth, G., et al., The effect of PECVD SiNx moisture barrier layers on the degradation of a flip chip underfill material. Soldering & Surface Mount Technology, vol. 13(3), pp. 12-15, 2001.
72. Huang, W., et al., Low temperature PECVD SiNx films applied in OLED packaging. Materials Science and Engineering: B, vol. 98(3), pp. 248-254, 2003.
73. Zhang, S., W. Xue, and Z. Yu, Moisture barrier evaluation of SiOx/SiNx stacks on polyimide substrates using electrical calcium test. Thin Solid Films, vol. 580, pp. 101-105, 2015.
74. da Silva Sobrinho, A., et al., Characterization of defects in PECVD-SiO2 coatings on PET by confocal microscopy. Plasmas and Polymers, vol. 3(4), pp. 231-247, 1998.
75. da Silva Sobrinho, A., et al., Defect-permeation correlation for ultrathin transparent barrier coatings on polymers. Journal of Vacuum Science & Technology A, vol. 18(1), pp. 149-157, 2000.
76. Teshima, K., et al., Gas barrier properties of silicon oxide films prepared by plasma-enhanced CVD using tetramethoxysilane. Vacuum, vol. 66(3), pp. 353-357, 2002.
77. Iwamori, S., Y. Gotoh, and K. Moorthi, Silicon oxide gas barrier films deposited by reactive sputtering. Surface and Coatings Technology, vol. 166(1), pp. 24-30, 2003.
78. Wuu, D., et al., Water and oxygen permeation of silicon nitride films prepared by plasma-enhanced chemical vapor deposition. Surface and Coatings Technology, vol. 198(1), pp. 114-117, 2005.
79. Bieder, A., A. Gruniger, and R. von Rohr, Deposition of SiOx diffusion barriers on flexible packaging materials by PECVD. Surface and Coatings Technology, vol. 200(1), pp. 928-931, 2005.
80. Gr&uuml;niger, A., et al., Influence of film structure and composition on diffusion barrier performance of SiOx thin films deposited by PECVD. Surface and Coatings Technology, vol. 200(14), pp. 4564-4571, 2006.
81. Iwamori, S., Y. Gotoh, and K. Moorthi, Characterization of silicon oxynitride gas barrier films. Vacuum, vol. 68(2), pp. 113-117, 2002.
82. Huang, R., et al., Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices. Applied Physics Letters, vol. 92(18), p. 181106, 2008.
83. Dameron, A.A., et al., Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. The Journal of Physical Chemistry C, vol. 112(12), pp. 4573-4580, 2008.
84. Wu, T.M. and C.W. Wu, Surface characterization and properties of plasma‐modified cyclic olefin copolymer/layered silicate nanocomposites. Journal of Polymer Science Part B: Polymer Physics, vol. 43(19), pp. 2745-2753, 2005.
85. Moro, L.L., et al. Process and design of a multilayer thin film encapsulation of passive matrix OLED displays. in Optical Science and Technology, SPIE's 48th Annual Meeting. International Society for Optics and Photonics, 2004.
86. Kim, N., et al., A hybrid encapsulation method for organic electronics. Applied Physics Letters, vol. 94(16), pp. 163308-163308-3, 2009.
87. Choi, B.H. and J.H. Lee, Long-term stable water vapor permeation barrier properties of SiN/SiCN/SiN nanolaminated multilayers grown by plasma-enhanced chemical vapor deposition at extremely low pressures. Applied Physics Letters, vol. 105(5), p. 053302, 2014.
88. Lee, S., et al., Permeation barrier properties of an Al2O3/ZrO2 multilayer deposited by remote plasma atomic layer deposition. Current Applied Physics, vol. 14(4), pp. 552-557, 2014.
89. Park, C.Y., et al., Growth behavior and improved water–vapor-permeation-barrier properties of 10-nm-thick single Al2O3 layer grown via cyclic chemical vapor deposition on organic light-emitting diodes. Organic Electronics, vol. 15(8), pp. 1717-1723, 2014.
90. http://www.nemstek.com.tw/ch/what.htm.
91. 蔡志鴻, 以六甲基二矽氧烷與氧氣輝光放電製備之閘極絕緣層於氧化鎂鋅薄膜電晶體之應用. 國立台灣大學光電工程學研究所碩士論文, 2013.
92. http://www.dualsignal.com.tw/3865123376264633397630332e-beam-evaporator.html.
93. http://www.dualsignal.com.tw/30913255112866623556magnetron-sputtering.html.
94. 張家豪, et al., 電漿源原理與應用之介紹. 物理雙月刊, vol. 28(2), pp. 440-451, 2006.
95. 羅吉宗, 薄膜科技與應用. 全華圖書, 2009.
96. 吉田貞史, 薄膜工程學. 全華科技圖書股份有限公司, 2006.
97. Wang, J., et al., Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon, vol. 42(14), pp. 2867-2872, 2004.
98. Abdallah, A., et al., The adhesion of SiNx thin layers on silica–acrylate coated polymer substrates. Surface and Coatings Technology, vol. 204(1), pp. 78-84, 2009.
99. Aizawa, H., et al., Synthesis and characterization of plasma-polymerized tert-butylacrylate films. Thin Solid Films, vol. 515(9), pp. 4141-4147, 2007.
100. Aumaille, K., et al., A comparative study of oxygen/organosilicon plasmas and thin SiOxCyHz films deposited in a helicon reactor. Thin Solid Films, vol. 359(2), pp. 188-196, 2000.
101. Petit‐Etienne, C., et al., Deposition of SiOx‐like thin films from a mixture of HMDSO and oxygen by low pressure and DBD discharges to improve the corrosion behaviour of steel. Plasma Processes and Polymers, vol. 4(S1), pp. S562-S567, 2007.
102. Zaj&iacute;čkov&aacute;, L., et al., Comparative study of films deposited from HMDSO/O2 in continuous wave and pulsed rf discharges. Plasma Processes and Polymers, vol. 4(S1), pp. S287-S293, 2007.
103. Trunec, D., et al., Deposition of thin organosilicon polymer films in atmospheric pressure glow discharge. Journal of Physics D: Applied Physics, vol. 37(15), p. 2112, 2004.
104. Wavhal, D.S., et al., Investigation of gas phase species and deposition of SiO2 films from HMDSO/O2 plasmas. Plasma Processes and Polymers, vol. 3(3), pp. 276-287, 2006.
105. O'Neill, M.L., et al., Impact of aminosilane precursor structure on silicon oxides by atomic layer deposition. Interface-Electrochemical Society, vol. 20(4), p. 33, 2011.
106. www.aloha.airliquide.com.
107. Powell, M.J., The physics of amorphous-silicon thin-film transistors. IEEE Electron Devices Transactions, vol. 36(12), pp. 2753-2763, 1989.
108. Hong, D., et al., Electrical modeling of thin-film transistors. Critical Reviews in Solid State and Materials Sciences, vol. 33(2), p. 101-132, 2008.
109. Fortunato, E., P. Barquinha, and R. Martins, Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances. Advanced Materials, vol. 24(22), pp. 2945-2986, 2012.
110. Kamiya, T., K. Nomura, and H. Hosono, Present status of amorphous In–Ga–Zn–O thin-film transistors. Science and Technology of Advanced Materials, vol. 11(4), p. 044305, 2010.
111. http://highscope.ch.ntu.edu.tw/wordpress/?p=62523.
112. http://chemwiki.ucdavis.edu/u_Materials/Optics/Dielectric_Polarization.
113. Waser, R., Electroceramics. Materials, properties, applications. By A Moulson and J. M. Herbert, Chapman & Hall, London 1990, 464 pp., hardcover, E 49, ISBN 0-412-29490-7. Advanced Materials, vol. 4(10), pp. 698-699, 1992.
114. 林振華, 電子材料. 全華, 2001.
115. http://emuch.net/html/201404/7255431.html.
116. http://hyperphysics.phy-astr.gsu.edu/hbase/electric/dielec.html.
117. http://www.twwiki.com/wiki/%E9%9B%A2%E5%AD%90%E6%A5%B5%E5%8C%96.
118. http://www.winnerscience.com/tag/define-electronic-polarization/.
119. Garc&iacute;a, H., et al., Influence of growth and annealing temperatures on the electrical properties of Nb2O5-based MIM capacitors. Semiconductor Science and Technology, vol. 28(5), p. 055005, 2013.
120. Dieter, K.S., Semiconductor material and device characterization. John Wiley & Sons, New York, 1998.
121. Hu, Y., et al., Measurement of water vapor transmission rate in highly permeable films. Journal of Applied Polymer Science, vol. 81(7), pp. 1624-1633, 2001.
122. http://www.mmmpc.com.tw/yuehyin/MagSummary.aspx?ID=552&MID=10332.
123. McCullough, E.A., M. Kwon, and H. Shim, A comparison of standard methods for measuring water vapour permeability of fabrics. Measurement Science and Technology, vol. 14(8), p. 1402, 2003.
124. http://highscope.ch.ntu.edu.tw/wordpress/?p=2626.
125. 王應瓊, 儀器分析.中央圖書出版社, 1979.
126. 史世華, 基質輔助雷射脫附游離-飛行時間質譜技術及其應用. 科學新知,: pp. 70-80, 1999.
127. http://en.wikipedia.org/wiki/Mass_spectrometry.
128. 李昀軒, 以六甲基二矽氧烷與氧氣輝光放電製備之SiOxCyHz薄膜阻水阻氧特性研究. 國立台灣大學光電工程學究所碩士論文, 2012.
129. Paetzold, R., et al., Permeation rate measurements by electrical analysis of calcium corrosion. Review of Scientific Instruments, vol. 74(12), pp. 5147-5150, 2003.
130. Choi, J.H., et al., Evaluation of gas permeation barrier properties using electrical measurements of calcium degradation. Review of Scientific Instruments, vol. 78(6), p. 064701, 2007.
131. Goujon, M., T. Belmonte, and G. Henrion, OES and FTIR diagnostics of HMDSO/O2 gas mixtures for SiOx deposition assisted by RF plasma. Surface and Coatings Technology, vol. 188, pp. 756-761, 2004.
132. Huan, W., Y. Lizhen, and C. Qiang, Investigation of microwave surface-wave plasma deposited SiOx coatings on polymeric substrates. Plasma Science and Technology, vol. 16(1), p. 37, 2014.
133. Lei, Q., Z. Chunmei, and C. Qiang, Properties of plasma enhanced chemical vapor deposition barrier coatings and encapsulated polymer solar cells. plasma science and technology, vol. 16(1), p. 45, 2014.
134. Liao, L.-F., et al., FTIR study of adsorption and photoassisted oxygen isotopic exchange of carbon monoxide, carbon dioxide, carbonate, and formate on TiO2. The Journal of Physical Chemistry B, vol. 106(43), pp. 11240-11245, 2002.
135. Mino, L., G. Spoto, and A.M. Ferrari, CO2 capture by TiO2 anatase surfaces: a combined DFT and FTIR study. The Journal of Physical Chemistry C, vol. 118(43), pp. 25016-25026, 2014..
136. Oh, S.Y., et al., FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, vol. 340(3), pp. 417-428, 2005.
137. Theil, J., J. Brace, and R. Knoll, Carbon content of silicon oxide films deposited by room temperature plasma enhanced chemical vapor deposition of hexamethyldisiloxane and oxygen. Journal of Vacuum Science & Technology A, vol. 12(4), pp. 1365-1370, 1994.
138. Alam, A., M. Howlader, and M. Deen, The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass. Journal of Micromechanics and Microengineering, vol. 24(3), p. 035010, 2014.
139. Drelich, J., et al., Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic/hydrophilic strips. Langmuir, vol. 12(7), pp. 1913-1922, 1996.
140. Hozumi, A. and O. Takai, Preparation of ultra water-repellent films by microwave plasma-enhanced CVD. Thin Solid Films, vol. 303(1), pp. 222-225, 1997.
141. Klauk, H., et al., High-mobility polymer gate dielectric pentacene thin film transistors. Journal of Applied Physics, vol. 92(9), pp. 5259-5263, 2002.
142. Zhu, D. and W.J. van Ooij, Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl] tetrasulfide and bis-[trimethoxysilylpropyl] amine. Electrochimica Acta, vol. 49(7), pp. 1113-1125, 2004.
143. Good, R.J. and L. Girifalco, A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. The Journal of Physical Chemistry, vol. 64(5), pp. 561-565, 1960.
144. 汪建民, 材料分析 (Materials Analysis). 中國材料科學學會, pp. 122-124, 2006.
145. http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html.
146. 羅聖全, 電子顯微鏡介紹-SEM, 2004.
147. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical Review Letters, vol. 56(9), p. 930, 1986.
148. http://www.farmfak.uu.se/farm/farmfyskem/instrumentation/afm.html.
149. Fischer-Cripps, A.C. and I. Mustafaev, Introduction to contact mechanics. Springer, 2000.
150. Johnson, K.L. and K.L. Johnson, Contact mechanics. Cambridge university press, 1987.
151. Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, vol. 7(06), pp. 1564-1583, 1992.
152. Chen, J.-S. and J.-G. Duh, Indentation behavior and Young's modulus evaluation in electroless Ni modified CrN coating on mild steel. Surface and Coatings Technology, vol. 139(1), pp. 6-13, 2001.
153. 呂孟謙, 六甲基二矽氮烷與氧氣製備之封裝膜阻水阻氧特性研究. 國立台灣大學光電工程學研究所碩士論文, 2011.
154. 國家實驗研究院儀器科技研究中心. 橢圓偏光儀之原理與應用, 2007.
155. http://pubs.rsc.org/en/content/articlehtml/2015/an/c4an01853b.
156. 張浩銘, 噴射大氣電漿快速製程應用於染料敏化太陽能電池. 國立台灣大學應用力學研究所, 2013.
157. Morita, M., et al., Growth of native oxide on a silicon surface. Journal of Applied Physics, vol. 68(3), pp. 1272-1281, 1990.
158. Mota, R.P., et al., HMDSO plasma polymerization and thin film optical properties. Thin Solid Films, vol. 270(1), pp. 109-113, 1995.
159. Saloum, S., M. Naddaf, and B. Alkhaled, Properties of thin films deposited from HMDSO/O2 induced remote plasma: Effect of oxygen fraction. Vacuum, vol. 82(8), pp. 742-747, 2008.
160. Bourgeat-Lami, E. and J. Lang, Encapsulation of inorganic particles by dispersion polymerization in polar media: 1. Silica nanoparticles encapsulated by polystyrene. Journal of Colloid and Interface Science, vol. 197(2), pp. 293-308, 1998.
161. Chiorcea-Paquim, A.-M., et al., AFM nanometer surface morphological study of in situ electropolymerized neutral red redox mediator oxysilane sol–gel encapsulated glucose oxidase electrochemical biosensors. Biosensors and Bioelectronics, vol. 24(2), pp. 297-305, 2008.
162. Ramachandran, S., et al., Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. Langmuir, vol. 22(19), pp. 8156-8162, 2006.
163. 蔡善合, 氮化鉻鋁/氮化矽奈米多層薄膜之微結構特性、機械性質與抗腐蝕行為. 國立清華大學材料工程學系碩士論文, pp. 35-42, 2009.
164. Kim, M.T., Influence of substrates on the elastic reaction of films for the microindentation tests. Thin Solid Films, vol. 283(1), pp. 12-16, 1996.
165. Khan, A., J. Philip, and P. Hess, Young’s modulus of silicon nitride used in scanning force microscope cantilevers. Journal of Applied Physics, vol. 95(4), pp. 1667-1672, 2004.
166. Morgen, M., et al., Low dielectric constant materials for ULSI interconnects. Annual Review of Materials Science, vol. 30(1), pp. 645-680, 2000.
167. Courtot-Descharles, A., et al., Density functional theory applied to the calculation of dielectric constant of low-k materials. Microelectronics Reliability, vol. 39(2), pp. 279-284, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52112-
dc.description.abstract本研究針對雙二乙基醯胺矽烷(以氬氣作為載流氣體)與氧氣於電漿輔助化學氣相沉積系統中沉積之有機無機混成薄膜進行了薄膜製程條件及材料性質的研究,同時將其應用在氧化鋅薄膜電晶體之閘極介電層,並分析薄膜電晶體之特性。此外,也針對薄膜阻水阻氧特性進行研究,以應用於薄膜封裝。
實驗上首先利用傅立葉轉換紅外線光譜儀來檢視薄膜成分隨製程參數的變化,同時藉由水接觸角量測來佐證紅外線光譜儀的結果。在傅立葉轉換紅外線光譜中發現,隨著基板溫度的提升,薄膜中的無機Si-O-Si鍵結量也會隨之提升,使薄膜趨向於無機之二氧化矽;而O2/Ar流量比例的提高,也同樣地會增加材料中Si-O-Si的鍵結量,所得到的結果與水接觸角之分析相符合。接著我們利用奈米壓痕儀量測薄膜之楊氏係數與硬度,當無機鍵結逐漸增多,薄膜之楊氏係數及硬度逐漸的增大,符合無機薄膜較脆硬的特性。為瞭解薄膜的電性,文中利用平面電容結構來分析不同薄膜成分下的漏電流密度與相對介電常數。隨著基板製程溫度的提升或是製程的O2/Ar流量比例的增加,皆使漏電流密度降低,介電常數也隨之下降,最後趨近於無機二氧化矽的相對介電常數值3.9。
接著將所製備之有機無機混成薄膜作為氧化鋅薄膜電晶體之閘極介電層,偏向無機的介電薄膜較為緻密,使電晶體擁有較低的閘極漏電流,以及較低的關電流值;而使用偏向有機之閘極介電層的電晶體,介電層與通道層之間表面性質較佳,因此有較小的次臨界擺幅。最佳的介電層製程參數為基板製程溫度135℃,O2/Ar=50以及電漿功率55 W。當電晶體的介電層厚度為400 nm,電晶體W/L=320
zh_TW
dc.description.abstractIn this thesis, we investigate the properties of organic-inorganic hybrid films deposited from a mixture of oxygen and newly-emerging organosilicon precursor, bis(diethylamino)silane, using Ar as the carrier gas by plasma enhanced chemical vapor deposition (PECVD). These organic-inorganic hybrid materials are then used as the gate dielectrics for ZnO thin-film transistors (TFTs) and applied as a permeation barriers in the thin-film encapsulation applicaiton.
The results from Fourier transform infrared spectroscopy and contact angle measurement reveal that the films are more inorganic-like (SiO2-like) when either the substrate temperature or the O2/Ar flow rate ratio increases. More inorganic-like films have lower leakage current and their relative dielectric constants approach 3.9 as SiO2. Nanoindentation is used to analyze the Young’s modulus and hardness of the hybrid thin film. As the film becomes more inorganic-like, it’s Young’s modulus and hardness increase.
The hybrid material is then used as the gate dielectrics for ZnO TFTs. An on/off current ratio of 〖10〗^7, threshold voltage of 9.6 V, subthreshold swing of 1.6 Vdec-1, gate leakage current of 2.07×〖10〗^(-10) A, and field-effect carrier mobility of 70 cm2V-1s-1 are achieved for the TFT using the gate dielectric deposited at a substrate temperature of 135℃, O2/Ar flow rate ratio of 50, and process power of 55 W. In comparison with pure SiO2 in TFT applications, the appealing feature of the organic-inorganic hybrid material is its adjustable composition. The organic component seems to offer better interface between the gate dielectric and ZnO channel, resulting in a lower subthreshold swing, while the inorganic component possesses lower gate leakage current. In the application of thin-film encapsulation, inorganic compounds serve as permeation barrier while organic compounds offer mechanical flexibility and reduce the physical defect formation. With the optimized process condition, same as that for gate dielectrics, a water vapor transmission rate of 7×〖10〗^(-6)g/m2-day and an optical transparency higher than 90% in visible region are obtained in a 1.5
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:08:11Z (GMT). No. of bitstreams: 1
ntu-104-R02941009-1.pdf: 4362709 bytes, checksum: 941846e2f64a99323c6b01210a7a0469 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 X
表目錄 XVI
第一章 緒論 1
1.1 氧化矽絕緣層簡介 1
1.1.1 薄膜電晶體 1
1.1.2 封裝 3
1.2 研究動機 4
1.3 章節介紹 6
第二章 文獻回顧與理論基礎 7
2.1 有機無機混成絕緣層文獻回顧 7
2.2 薄膜電晶體發展背景 11
2.2.1 氧化鋅薄膜電晶體文獻回顧 12
2.3 封裝方式簡介 16
2.3.1 封裝蓋技術 17
2.3.2 薄膜封裝技術 17
2.3.3 薄膜封裝技術文獻回顧 18
2.4 薄膜成長儀器與原理 24
2.4.1 電子束蒸鍍 24
2.4.2 濺鍍沉積 25
2.4.3 電漿輔助化學氣相沉積 26
2.4.3-1 電漿介紹 26
2.4.3-2 電漿輔助化學氣相沉積原理 27
2.4.3-3 前驅氣體介紹 29
2.5 薄膜電晶體概論 30
2.5.1 元件結構介紹 30
2.5.2 操作原理 31
2.5.3 薄膜電晶體重要參數 34
2.5.4 閘極絕緣層電性介紹 37
2.5.4-1 介電效應 37
2.5.4-2 漏電流密度 42
2.5.4-3 介面陷阱密度(interface trapped density, Dit) 43
2.6 封裝層水氣穿透率測試方法 45
2.6.1 Weight loss 量測法 45
2.6.2 MOCON 量測法 45
2.6.3 質譜(Mass Spectrometry)量測法 46
2.6.4 鈣測試法 47
第三章 研究方法 52
3.1 有機無機混成薄膜製備 52
3.1.1 基板清洗 52
3.1.2 鍍膜機台介紹 53
3.2 介電層薄膜及電晶體製作 54
3.2.1 介電薄膜製作方法 54
3.2.2 MIM/MISM製作方法 55
3.2.3 薄膜電晶體製作 57
3.2.3-1 微影製程技術 57
3.2.3-2 薄膜電晶體製作方法 60
3.3 封裝鈣測試結構介紹 63
3.3.1 封裝試片製作方法 63
3.3.2 封裝膜阻水氧量測方法 65
3.4 薄膜性質分析儀器與原理 66
3.4.1 傅立葉轉紅外線光譜儀 (Fourier Transform Infrared Spectroscopy, FTIR) 66
3.4.2 水接觸角 (Contact Angle) 66
3.4.3 紫外線/可見光穿透光譜儀 (UV/Vis Spectrophotometer) 67
3.4.4 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 68
3.4.5 原子力顯微鏡 (Atomic Force Microscope, AFM) 69
3.4.6 奈米壓痕儀 (Nanoindentor) 70
3.4.7 橢圓偏光儀 (Imaging Ellipsometer) 74
3.4.8 X光子能譜儀 75
第四章 結果與討論 76
4.1 薄膜成分與表面性質分析 76
4.1.1 傅立葉轉紅外線光譜儀 76
4.1.2 水接觸角 79
4.1.3 X光子能譜儀分析 82
4.2 光學性質分析 85
4.2.1 穿透率 85
4.2.2 折射係數 87
4.3 表面型態分析 90
4.3.1 掃描式電子顯微鏡 90
4.3.2 原子力顯微鏡 92
4.4 材料機械性質分析 95
4.4.1 硬度 95
4.4.2 楊氏係數 98
4.5 薄膜介電性質與電性分析 101
4.5.1 介電常數 101
4.5.2 漏電流密度 104
4.5.3 薄膜電晶體電性分析 108
4.6 封裝特性分析 117
第五章 結論與未來展望 123
參考文獻 124
dc.language.isozh-TW
dc.subject閘極介電層zh_TW
dc.subject氧化鋅薄膜電晶體zh_TW
dc.subject薄膜封裝zh_TW
dc.subject雙二乙基醯胺矽烷zh_TW
dc.subjectZnO TFT、Bis(diethylamino)silaneen
dc.subjectGate dielectricen
dc.subjectThin-film encapsulationen
dc.title以雙(二乙基醯胺)矽烷輝光放電製備之有機無機混成介電薄膜性質之研究及其於氧化鋅薄膜電晶體之應用zh_TW
dc.titleThe Study of Organic-Inorganic-Hybrid Thin Film Deposited from Bis(diethylamino)silane by Glow Discharge and Its Application in ZnO Thin-Film Transistorsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建彰(Jian-Zhang Chen),吳志毅(Chih-I Wu),蔡豐羽(Feng-Yu Tsai)
dc.subject.keyword氧化鋅薄膜電晶體,雙二乙基醯胺矽烷,閘極介電層,薄膜封裝,zh_TW
dc.subject.keywordZnO TFT、Bis(diethylamino)silane,Gate dielectric,Thin-film encapsulation,en
dc.relation.page135
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved