Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52107
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾嘉綾
dc.contributor.authorWei-Bin Changen
dc.contributor.author張為斌zh_TW
dc.date.accessioned2021-06-15T14:09:05Z-
dc.date.available2020-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citation1. 陳隆澤。1990。水稻品種(系)對稻熱病之抵抗性反應。中華農業研究,39(4):303-314。
2. 陳隆澤、陳一心、程永雄。2004。1990至2002年臺灣水稻品種(系)抗稻熱病檢定。中華農業研究,53(4):269-283。
3. 陳瑞祥。2009。分子標誌在稻熱病菌族群遺傳研究之應用與展望。台灣水稻保護成果及新展望研討會專刊,149-160。
4. 陳繹年、陳純葳、林宗俊。2013。台灣地區水稻稻熱病菌生理型之研究(2011)。40-56。台中市:農業試驗所。
5. 蔡武雄。2007。稻熱病。223。植物保護圖鑑系列 8-水稻保護 (上冊) 林慶元、洪士程、徐保雄、施錫彬、陳治官、黃益田、劉清和、劉達修、蔣永正、蔣慕琰、鄭清煥、羅幹成。臺北市:行政院農業委員會動植物防疫檢疫局。。
6. 簡錦忠。1974。稻熱病病原菌生理型之研究 (1970-1972)。中華農業研究,23(1):16-37。
7. 簡錦忠。1990。稻熱病生理型之研究。63-74。稻作病蟲害發生預測專輯-稻熱病。杜金池、蔡財旺、蔡武雄、簡錦忠、張義璋。臺中市:臺灣省農業試驗所中華植物保護學會。
8. 簡錦忠、謝麗娟、張義璋。1989。水稻臺農七十號對稻熱病抗性之罹病化研究。中華農業研究,38(1):72-79。
9. 譚賢杰、吳子愷、程偉東、王天宇, and 黎裕。2011。關聯分析及其在植物遺傳學研究中的應用。植物學報,46(1):108-118。
10. Ashikawa, I., N. Hayashi, H. Yamane, H. Kanamori, J. Wu, T. Matsumoto, K. Ono, and M. Yano. 2008. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer pikm-specific rice blast resistance. Genetics 180:2267 - 2276.
11. Atkins, J. G., A. L. Robert, C. R. Adair, K. Goto, T. Kozaka, R. Yanagida, M. Yamada, and Matsumot.S. 1967. An international set of rice varieties for differentiating races of Piricularia oryzae. Phytopathology 57(3):297-310.
12. Baird, N. A., P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver, Z. A. Lewis, E. U. Selker, W. A. Cresko, and E. A. Johnson. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376.
13. Ballini, E., J.-B. Morel, G. Droc, A. Price, B. Courtois, J.-L. Notteghem, and D. Tharreau. 2008. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Molecular Plant-Microbe Interactions 21(7):859-868.
14. Bonnecarrere, V., G. Quero, E. Monteverde, J. Rosas, F. P. de Vida, M. Cruz, E. Corredor, S. Garaycochea, J. Monza, and O. Borsani. 2015. Candidate gene markers associated with cold tolerance in vegetative stage of rice (Oryza sativa L.). Euphytica 203(2):385-398.
15. Bradbury, P. J., Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss, and E. S. Buckler. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633-2635.
16. Broman, K. W., H. Wu, S. Sen, and G. A. Churchill. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19(7):889-90.
17. Bryan, G., K. Wu, L. Farrall, Y. Jia, H. Hershey, S. McAdams, K. Faulk, G. Donaldson, R. Tarchini, and B. Valent. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033 - 2046.
18. Chang, S., C. S. Thurber, P. J. Brown, G. L. Hartman, K. N. Lambert, and L. L. Domier. 2014. Comparative mapping of the wild perennial glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus glycine. Plos One 9(6).
19. Chen, S., J. Su, J. Han, W. Wang, C. Wang, J. Yang, L. Zeng, X. Wang, X. Zhu, and C. Yang. 2014. Resistance spectrum assay and fine mapping of the blast resistance gene from a rice experimental line, IRBLta2-Re. Euphytica 195(2):209-216.
20. Chen, X., J. Shang, D. Chen, C. Lei, Y. Zou, W. Zhai, G. Liu, J. Xu, Z. Ling, G. Cao, B. Ma, Y. Wang, X. Zhao, S. Li, and L. Zhu. 2006. A B-lectin receptor kinase gene conferring rice blast resistance. The Plant Journal 46(5):794-804.
21. Chen, Z., B. Wang, X. Dong, H. Liu, L. Ren, J. Chen, A. Hauck, W. Song, and J. Lai. 2014. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics 15(1):433.
22. Chuma, I., C. Isobe, Y. Hotta, K. Ibaragi, N. Futamata, M. Kusaba, K. Yoshida, R. Terauchi, Y. Fujita, H. Nakayashiki, B. Valent, and Y. Tosa. 2011. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7(7):e1002147.
23. Das, A., D. Soubam, P. Singh, S. Thakur, N. Singh, and T. Sharma. 2012. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Functional & Integrative Genomics 12(2):215-228.
24. Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler, and S. E. Mitchell. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379.
25. Fukuoka, S., N. Saka, H. Koga, K. Ono, T. Shimizu, K. Ebana, N. Hayashi, A. Takahashi, H. Hirochika, K. Okuno, and M. Yano. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325(5943):998-1001.
26. George, M. L. C., R. J. Nelson, R. S. Zeigler, and H. Leung. 1998. Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology 88(3):223-229.
27. Glaubitz, J. C., T. M. Casstevens, F. Lu, J. Harriman, R. J. Elshire, Q. Sun, and E. S. Buckler. 2014. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9(2):e90346.
28. Hayashi, K., N. Yasuda, Y. Fujita, S. Koizumi, and H. Yoshida. 2010. Identification of the blast resistance gene Pit in rice cultivars using functional markers. TAG Theoretical and Applied Genetics 121(7):1357-1367.
29. Hayashi, N., H. Inoue, T. Kato, T. Funao, M. Shirota, T. Shimizu, H. Kanamori, H. Yamane, Y. Hayano-Saito, T. Matsumoto, M. Yano, and H. Takatsuji. 2010. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal 64(3):498-510.
30. Huang, H.-J., C.-S. Tseng, M.-H. Lai, J.-S. Hsieh, and S.-F. Lin. 2004. Identification and mapping of the QTL controlling resistance to blast (Magnaporthe grisea) disease in rice. Journal of Genetics and Molecular Biology 15(2):96-107.
31. Inukai, T., R. J. Nelson, R. S. Zeigler, S. Sarkarung, D. J. Mackill, J. M. Bonman, I. Takamure, and T. Kinoshita. 1994. Allelism of blast resistance genes in near-isogenic lines of rice. Phytopathology 84(11):1278-1283.
32. IRRI. Disease- and pest-resistant rice. http://irri.org/our-science/better-varieties/disease-and-pest-resistant-rice#Rice.
33. Jia, Y., and G. Liu. 2011. Mapping quantitative trait loci for resistance to rice blast. Phytopathology 101(2):176-181.
34. Jia, Y., Z. Wang, and P. Singh. 2002. Development of dominant rice blast Pi-ta resistance gene markers. Crop Science 42:2145-2149.
35. Jia, Y., Z. Wang, R. G. Fjellstrom, K. A. Moldenhauer, M. A. Azam, J. Correll, F. N. Lee, Y. Xia, and J. N. Rutger. 2004. Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the United States. Phytopathology 94(3):296-301.
36. Kao, C. H., Z. B. Zeng, and R. D. Teasdale. 1999. Multiple interval mapping for quantitative trait loci. Genetics 152(3):1203-16.
37. Kiyosawa, S. 1984. Establishment of differential varieties for pathogenicity test of rice blast fungus. Rice Genetics Newsletter 1:95-97.
38. Kumar, P., S. Pathania, P. Katoch, T. R. Sharma, P. Plaha, and R. Rathour. 2010. Genetic and physical mapping of blast resistance gene Pi-42(t) on the short arm of rice chromosome 12. Molecular Breeding 25(2):217-228.
39. Lambel, S., B. Lanini, E. Vivoda, J. Fauve, W. Patrick Wechter, K. R. Harris-Shultz, L. Massey, and A. Levi. 2014. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery. Theoretical and Applied Genetics 127(10):2105-15.
40. Lee, S.-K., M.-Y. Song, Y.-S. Seo, H.-K. Kim, S. Ko, P.-J. Cao, J.-P. Suh, G. Yi, J.-H. Roh, S. Lee, G. An, T.-R. Hahn, G.-L. Wang, P. Ronald, and J.-S. Jeon. 2009. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil–nucleotide-binding–leucine-rich repeat genes. Genetics 181(4):1627-1638.
41. Lei, C., K. Hao, Y. Yang, J. Ma, S. Wang, J. Wang, Z. Cheng, S. Zhao, X. Zhang, X. Guo, C. Wang, and J. Wan. 2013. Identification and fine mapping of two blast resistance genes in rice cultivar 93-11. The Crop Journal 1(1):2-14.
42. Li, W., C. Lei, Z. Cheng, Y. Jia, D. Huang, J. Wang, J. Wang, X. Zhang, N. Su, X. Guo, H. Zhai, and J. Wan. 2008. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Molecular Breeding 22(1):141-149.
43. Lin, F., S. Chen, Z. Que, L. Wang, X. Liu, and Q. Pan. 2007. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871 - 1880.
44. Ling, K. C., and S. H. Ou. 1969. Standardization of the international race numbers of Pyricularia oryzae. Phytopathology 59:339-342.
45. Liu, J., X. Wang, T. Mitchell, Y. Hu, X. Liu, L. Dai, and G.-L. Wang. 2010. Recent progress and understanding of the molecular mechanisms of the rice–Magnaporthe oryzae interaction. Molecular Plant Pathology 11(3):419-427.
46. Liu, X., F. Lin, L. Wang, and Q. Pan. 2007. The in silico map-based cloning of Pi36, a rice coiled-coil–nucleotide-binding site–leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176(4):2541-2549.
47. Liu, X., Q. Yang, F. Lin, L. Hua, C. Wang, L. Wang, and Q. Pan. 2007. Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Molecular Genetics and Genomics 278(4):403-10.
48. Lu, F., A. E. Lipka, J. Glaubitz, R. Elshire, J. H. Cherney, M. D. Casler, E. S. Buckler, and D. E. Costich. 2013. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9(1):e1003215.
49. Mascher, M., S. Wu, P. St Amand, N. Stein, and J. Poland. 2013. Application of Genotyping-by-Sequencing on Semiconductor Sequencing Platforms: A Comparison of Genetic and Reference-Based Marker Ordering in Barley. Plos One 8(10).
50. Miah, G., M. Y. Rafii, M. R. Ismail, A. B. Puteh, H. A. Rahim, R. Asfaliza, and M. A. Latif. 2013. Blast resistance in rice: a review of conventional breeding to molecular approaches. Molecular Biology Reports 40(3):2369-2388.
51. Monosi, B., R. J. Wisser, L. Pennill, and S. H. Hulbert. 2004. Full-genome analysis of resistance gene homologues in rice. Theoretical and Applied Genetics 109(7):1434-1447.
52. Moumouni, K. H., B. A. Kountche, M. Jean, C. T. Hash, Y. Vigouroux, B. I. G. Haussmann, and F. Belzile. 2015. Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Molecular Breeding 35(1).
53. Mun, J. H., H. Chung, W. H. Chung, M. Oh, Y. M. Jeong, N. Kim, B. O. Ahn, B. S. Park, S. Park, K. B. Lim, Y. J. Hwang, and H. J. Yu. 2015. Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. Theoretical and Applied Genetics 128(2):259-272.
54. Okuyama, Y., H. Kanzaki, A. Abe, K. Yoshida, M. Tamiru, H. Saitoh, T. Fujibe, H. Matsumura, M. Shenton, D. C. Galam, J. Undan, A. Ito, T. Sone, and R. Terauchi. 2011. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. The Plant Journal 66(3):467-479.
55. Pootakham, W., N. Jomchai, P. Ruang-Areerate, J. R. Shearman, C. Sonthirod, D. Sangsrakru, S. Tragoonrung, and S. Tangphatsornruang. 2015. Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105(5-6):288-295.
56. Qu, S., G. Liu, B. Zhou, M. Bellizzi, L. Zeng, L. Dai, B. Han, and G. Wang. 2006. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901 - 1914.
57. Sallaud, C., M. Lorieux, E. Roumen, D. Tharreau, R. Berruyer, P. Svestasrani, O. Garsmeur, A. Ghesquiere, and J. L. Notteghem. 2003. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theoretical and Applied Genetics 106(5):794-803.
58. Shang, J., Y. Tao, X. Chen, Y. Zou, C. Lei, J. Wang, X. Li, X. Zhao, M. Zhang, Z. Lu, J. Xu, Z. Cheng, J. Wan, and L. Zhu. 2009. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182(4):1303-1311.
59. Sharma, T., M. Madhav, B. Singh, P. Shanker, T. Jana, V. Dalal, A. Pandit, A. Singh, K. Gaikwad, H. Upreti, and N. Singh. 2005. High-resolution mapping, cloning and molecular characterization of the Pi-k gene of rice, which confers resistance to Magnaporthe grisea. Molecular Genetics and Genomics 274(6):569-578.
60. Sharma, T. R., A. K. Rai, S. K. Gupta, and N. K. Singh. 2010. Broad-spectrum blast resistance gene Pi-kh cloned from rice line Tetep designated as Pi54. Journal of Plant Biochemistry and Biotechnology 19(1):87-89.
61. Sharma, T. R., A. K. Rai, S. K. Gupta, J. Vijayan, B. N. Devanna, and S. Ray. 2012. Rice blast management through host-plant resistance: retrospect and prospects. Agricultural Research 1(1):37-52.
62. Spindel, J., M. Wright, C. Chen, J. Cobb, J. Gage, S. Harrington, M. Lorieux, N. Ahmadi, and S. McCouch. 2013. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theoretical and Applied Genetics 126(11):2699-2716.
63. Sun, D.-Z., J. Ling, Y.-X. Zhang, X.-N. Cheng, H.-Q. Zhai, and J.-M. Wan. 2007. Analysis of quantitative trait loci for resistance to stripe disease in rice. Zhongguo Shuidao Kexue 21(1):95-98.
64. Suparyono, J. L. A. Catindig, and I. P. Oña. Rice blast. Rice Knowledge Bank. IRRI.
65. Swarts, K., H. Li, J. A. Romero Navarro, D. An, M. C. Romay, S. Hearne, C. Acharya, J. C. Glaubitz, S. Mitchell, R. J. Elshire, E. S. Buckler, and P. J. Bradbury. 2014. Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. The Plant Genome 7(3).
66. Takahashi, A., N. Hayashi, A. Miyao, and H. Hirochika. 2010. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biology 10(1):175.
67. Telebanco-Yanoria, M. J., Y. Koide, Y. Fukuta, T. Imbe, H. Kato, H. Tsunematsu, and N. Kobayashi. 2010. Development of near-isogenic lines of Japonica-type rice variety Lijiangxintuanheigu as differentials for blast resistance. Breeding Science 60(5):629-638.
68. Tsunematsu, H., M. J. T. Yanoria, L. A. Ebron, N. Hayashi, I. Ando, H. Kato, T. Imbe, and G. S. Khush. 2000. Development of monogenic lines of rice for blast resistance Breeding Science 50(3):229-234.
69. Wang, Z., M. Yano, U. Yamanouchi, M. Iwamoto, L. Monna, H. Hayasaka, Y. Katayose, and T. Sasaki. 1999. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal 19(1):55 - 64.
70. Winnepenninckx, B., T. Backeljau, and R. De Wachter. 1993. Extraction of high molecular weight DNA from molluscs. Trends in Genetics 9(12):407.
71. Xiao, W., Q. Yang, H. Wang, T. Guo, Y. Liu, X. Zhu, and Z. Chen. 2011. Identification and fine mapping of a resistance gene to Magnaporthe oryzae in a space-induced rice mutant. Molecular Breeding 28(3):303-312.
72. Yamada, M., S. Kiyosawa, T.Yamaguchi, T.Hirano, T. Kobayashi, K. Kashibuchi, and S. Watanabe. 1976. Proposal of a new method for differentiating races of Pyricularia oryzae Cavara in Japan. Annals of the Phytopathological Society of Japan 42:216-219.
73. Ying, J. Z., J. X. Shan, J. P. Gao, M. Z. Zhu, M. Shi, and H. X. Lin. 2012. Identification of quantitative trait loci for lipid metabolism in rice seeds. Molecular Plant 5(4):865-875.
74. Yuan, B., C. Zhai, W. Wang, X. Zeng, X. Xu, H. Hu, F. Lin, L. Wang, and Q. Pan. 2011. The Pik - p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. TAG Theoretical and Applied Genetics 122(5):1017-1028.
75. Zenbayashi-Sawata, K., T. Ashizawa, and S. Koizumi. 2005. Pi34-AVRPi34 : a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea. Journal of General Plant Pathology 71(6):395-401.
76. Zhai, C., F. Lin, Z. Dong, X. He, B. Yuan, X. Zeng, L. Wang, and Q. Pan. 2011. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytologist 189(1):321-334.
77. Zhao, K., C. W. Tung, G. C. Eizenga, M. H. Wright, M. L. Ali, A. H. Price, G. J. Norton, M. R. Islam, A. Reynolds, J. Mezey, A. M. McClung, C. D. Bustamante, and S. R. McCouch. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications 2:467.
78. Zhou, B., S. Qu, G. Liu, M. Dolan, H. Sakai, G. Lu, M. Bellizzi, and G. Wang. 2006. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions Journal 19:1216 - 1228.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52107-
dc.description.abstract由Magnaporthe oryzae所引起的稻熱病,是全球稻米生產之重要威脅,目前主要以種植抗病品種,搭配合理化施肥及化學防治進行管理。臺灣雖然陸續有抗稻熱病品種的育成,但由於其所帶抗病基因/基因座不明,加上田間稻熱病菌的生理小種組成複雜且變異頻繁,抗病品種往往在大面積推廣種植數年後即失去抗性。本研究以數量性狀基因座 (quantitative trait loci, QTL) 定位法,針對具有優良抗稻熱病特性之新育成品種「臺農84號」 (Tainung 84, TNG84) 及近年臺灣栽培最廣之感病品種「臺南11號」 (Tainan 11, TN11) 之雜交後代,尋找調控抗性之基因座。本研究使用分離自臺灣田間、分屬不同Pot2分群、不同生理小種之三株稻熱病菌菌株D41-2、12CY-MS1-2及12IL-TT4-1進行F2及F2:3水稻族群稻熱病接種實驗,並運用genotyping by sequencing (GBS) 技術針對122株F2子代進行基因型鑑定,獲得7,742個單一核苷酸多型性 (single-nucleotide polymorphism, SNPs) 位點。結果顯示,TNG84對前述三株菌株的抗病因子,為一個位於第12條染色體約52 cM位置 (physical map position: 9,547,082-15,160,145 bp on IRGSP 1.0 map) 之主效QTL,其 logarithm of odds (LOD) score為20.553-31.687,R2為54.3-69.8%。進一步利用D41-2接種來自16個F2:3之665株F2:4個體,並設計5個切割擴增多型性序列 (cleaved amplified polymorphic sequences, CAPS) 分子標誌確認植株基因型,將QTL限縮至10,012,254-13,020,487 bp區間內。根據該區間內候選基因之序列多型性及不同菌株接種結果,判斷TNG84之抗性可能同時來自已被選殖之Pita基因及鄰近抗病基因。zh_TW
dc.description.abstractRice blast, caused by Magnaporthe oryzae, is a serious constraint to rice production. The use of resistance varieties, in combination with proper fertilizer management and pesticide application, is a widely adopted strategy for effective control of this disease. Through years, breeders in Taiwan have developed several cultivars possessing high level of blast resistance. However, mechanisms underlying the resistance remain unknown. Besides, the resistance can often be overcome after a few years of widespread cultivation. This is mainly due to the complex genetic diversity of M. oryzae populations and their high mutation rates at avirulence loci. This study aimed to uncover the resistance/susceptibility genetics of “Tainung 84” (TNG84, a resistant cultivar released in 2010) and “Tainan 11” (TN11, a most widely cultivated rice varirty in Taiwan, moderately susceptible to blast) using quantitative trait loci (QTL) mapping approach. Three field isolates of M. oryzae belonging to different Pot2 groups and physiological races, D41-2, 12CY-MS1-2, and 12IL-TT4-1, were used to inoculate the F2 and F2:3 progeny from “TN11 x TNG84”. A total of 7,742 single-nucleotide polymorphism (SNPs) were identified for 122 F2 individuals by using genotyping by sequencing (GBS) analysis. Composite interval mapping revealed that TNG84 harbors a major-effect QTL conferring resistance to all the three isolates. The QTL was located at ~52 cM on chromosome 12 (physical map position: 9,547,082-15,160,145 bp on IRGSP 1.0 map, logarithm of odds score: 20.553-31.687, R2 = 54.3-69.8%). A population consisting of 665 F2:4 individuals from 16 F2:3 families was phenotyped by inoculation with D41-2 and genotyped by five newly-developed cleaved amplified polymorphic sequences (CAPS) markers. Trait-marker association delineated the major QTL to a region between 10,012,254-13,020,487 bp. Sequence variations of several candidate genes in the region, together with the reaction patterns of different M. oryzae isolates, suggested that the superior resistance of TNG84 is likely conferred by the previously-cloned Pita gene and another gene (s) in the neighboring region.en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:09:05Z (GMT). No. of bitstreams: 1
ntu-104-R98633010-1.pdf: 4289297 bytes, checksum: 83db574ee4fdbaa8bfe0df3a51a25920 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
縮寫對照表 viii
壹、前言 9
貳、前人研究 12
2.1 稻熱病菌生理小種 12
2.2 水稻對稻熱病之抗性遺傳 15
2.3 數量性狀基因座 (quantitative trait loci, QTL) 分析 17
2.4 高通量基因型檢定方法 20
參、材料與方法 23
3.1 水稻親本及遺傳定位族群 23
3.2 表現型鑑定 24
3.2.1 稻熱病菌來源、培養方法、保存 24
3.2.2 水稻幼苗栽培 26
3.2.3 稻熱病接種試驗 26
3.2.4 稻熱病罹病程度調查 28
3.2.5 族群分離率卡方檢定分析 29
3.3 基因型分析 30
3.3.1 水稻基因體DNA之萃取 30
3.3.2 NGS (next-generation sequencing) 資料與分析 31
3.3.3 基因圖譜SNP分析 31
3.3.4 F2族群之基因型分析 32
3.3.5 GBS資料分析 34
3.3.6 QTL資料與分析 35
3.3.7 候選片段基因型分析 36
3.3.8 切割擴增多型性序列分子標誌 (cleaved amplified polymorphic sequences markers, CAPS markers) 設計 36
3.3.9 F2:4族群之分析 38
肆、結果 39
4.1 稻熱病菌分子分群、病原型分析 39
4.2 稻熱病菌F2接種試驗 39
4.3 稻熱病菌F2:3接種試驗 40
4.4 NGS資料分析結果 41
4.5 GBS資料分析結果 42
4.6 臺南11號與臺農84號F2雜交族群連鎖圖譜 44
4.7 臺農84號抗稻熱病基因座定位 44
4.8 F2:4族群分析結果 45
4.9 候選片段候選基因分析 47
伍、討論 49
陸、圖表 60
柒、參考文獻 109
捌、附錄 117
dc.language.isozh-TW
dc.title臺農84號抗稻熱病基因座之分析定位zh_TW
dc.titleIdentification of quantitative trait loci for blast resistance in Taiwan rice variety Tainung 84en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈偉強,董致韡,吳志文
dc.subject.keyword數量性狀基因座定位,生理小種,判別品種,抗病遺傳,zh_TW
dc.subject.keywordQTL mapping,Magnaporthe oryzae,physiological races,differential lines,resistance genetics,en
dc.relation.page126
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved