請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52073完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃慶怡(Ching-I Huang) | |
| dc.contributor.author | In Ho | en |
| dc.contributor.author | 何穎 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:06:52Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2015-08-26 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-19 | |
| dc.identifier.citation | 1. Y. J. Cheng, S. H. Yang and C. S. Hsu, Chem. Rev., 2009, 109, 5868-5923.
2. A. J. Heeger, J. Phys. Chem. B, 2001, 105, 8475-8491. 3. M. L. Chabinyc and A. Salleo, Chem. Mater., 2004, 16, 4509-4521. 4. F. C. Krebs, Solar Energy Materials and Solar Cells, 2009, 93, 394-412. 5. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, M. C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, B. M. Logdlund and W. R. Salaneck, NATURE, 1999, 397, 121-128. 6. K. M. Coakley and M. D. McGehee, Chem. Mater, 2004, 16, 4533-4542. 7. H. Ohkita and S. Ito, Polymer, 2011, 52, 4397-4417. 8. M. C. Scharber and N. S. Sariciftci, Progress in polymer science, 2013, 38, 1929-1940. 9. E. Bundgaard and F. Krebs, Solar Energy Materials and Solar Cells, 2007, 91, 954-985. 10. B. Ebenhoch, S. A. J. Thomson, K. Genevičius, G. Juška and I. D. W. Samuel, Organic Electronics, 2015, 22, 62-68. 11. Z. Hu, J. Liu, L. Simon-Bower, L. Zhai and A. J. Gesquiere, The journal of physical chemistry. B, 2013, 117, 4461-4467. 12. J. Liu, I. A. Mikhaylov, J. Zou, I. Osaka, A. E. Masunov, R. D. McCullough and L. Zhai, Polymer, 2011, 52, 2302-2309. 13. P. K. Watkins, A. B. Walker and G. L. B. Verschoor, Nano Lett., 2005, 5, 1814-1818. 14. X. Yang and J. Loos, Macromolecules, 2007, 40, 1353-1362. 15. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Advanced Materials, 2006, 18, 789-794. 16. G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte and R. Pacios, Organic Electronics, 2008, 9, 847-851. 17. A. Facchetti, Chemistry of Materials, 2011, 23, 733-758. 18. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha and M. Ree, Nature Materials, 2006, 5, 197-203. 19. T. Adachi, J. Brazard, R. J. Ono, B. Hanson, M. C. Traub, Z.-Q. Wu, Z. Li, J. C. Bolinger, V. Ganesan, C. W. Bielawski, D. A. Vanden Bout and P. F. Barbara, The Journal of Physical Chemistry Letters, 2011, 2, 1400-1404. 20. A. Zen, M. Saphiannikova, D. Neher, J. Grenzer, S. Grigorian, U. Poetsch, U. Asawapirom, S. Janietz, U. Scherf, I. Lieberwirth and G. Wegner, Macromolecules, 2006, 39, 2162-2171. 21. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Frechet and M. F. Toney, 2005, 38, 3312-3319. 22. D. H. Kim, Y. Jang, Y. D. Park and K. Cho, J. Phys. Chem. B, 2006, 110, 15763-15768. 23. Z. Bao and A. J. Lovinger, Chem. Mater., 1999, 11, 2607-2612. 24. B. M. W. Langeveld-Voss, R. A. J. Janssen and E. W. Meijer, J. Mol. Struct., 2000, 521, 285-301. 25. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, NATURE, 1999, 401, 685-688. 26. Z. Bao, A. Dodabalapur and A. J. Lovinger, Applied Physics Letters, 1996, 69, 4108. 27. A. Salleo, M. L. Chabinyc, M. S. Yang and R. A. Street, Applied Physics Letters, 2002, 81, 4383. 28. R. Joseph Kline, M. D. McGehee and M. F. Toney, Nature Materials, 2006, 5, 222-228. 29. J. A. Merlo and C. D. Frisbie, J. Phys. Chem. B, 2004, 108, 19169-19179. 30. C. D. Frisbie and J. A. Merlo, J. Polym. Sci. Part B: Polym. Phys., 2003, 41, 2674-2680. 31. D. M. DeLongchamp, B. M. Vogel, Y. Jung, M. C. Gurau, C. A. Richter, O. A. Kirillow, J. Obrzut, D. A. Fischer, S. Sambasivan, L. J. Richter and E. K. Lin, Chem. Mater., 2005, 17, 5610-5612. 32. J. F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch and H. Sirringhaus, Chem. Mater., 2004, 16, 4772-4776. 33. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Frechet and M. F. Toney, Macromolecules, 2005, 38, 3312-3319. 34. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu and J. M. J. Frechet, Adv. Mater., 2003, 15, 1519-1522. 35. Y. D. Park, D. H. Kim, Y. Jang, J. H. Cho, M. Hwang, H. S. Lee, J. A. Lim and K. Cho, Organic Electronics, 2006, 7, 514-520. 36. F. E. N. Qiao, X. Hou, Y. Lu, H. Chen, A. Liu, X. Hu and N. Siu Choon, Solar Energy Materials and Solar Cells, 2010, 94, 442-445. 37. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee and M. F. Toney, Nat Mater, 2006, 5, 328-333. 38. F. Steiner, S. Foster, A. Losquin, J. Labram, T. D. Anthopoulos, J. M. Frost and J. Nelson, Mater. Horiz., 2015, 2, 113-119. 39. K. N. Schwarz, T. W. Kee and D. M. Huang, Nanoscale, 2013, 5, 2017-2027. 40. R. F. David M. Huang, Khanh Do, and Adam J. Moule, 2009. 41. D. M. Huang, A. J. Moule and R. Faller, Fluid Phase Equilibria, 2011, 302, 21-25. 42. H. S. Marsh and A. Jayaraman, Journal of Polymer Science Part B: Polymer Physics, 2013, 51, 64-77. 43. H. S. Marsh, E. Jankowski and A. Jayaraman, Macromolecules, 2014, 47, 2736-2747. 44. E. Jankowski, H. S. Marsh and A. Jayaraman, Macromolecules, 2013, 46, 5775-5785. 45. C.-K. Lee and C.-W. Pao, The Journal of Physical Chemistry C, 2014, 118, 11224-11233. 46. C.-K. Lee, C.-W. Pao and C.-W. Chu, Energy & Environmental Science, 2011, 4, 4124. 47. J. M. Carrillo, R. Kumar, M. Goswami, B. G. Sumpter and W. M. Brown, Physical chemistry chemical physics : PCCP, 2013, 15, 17873-17882. 48. T. T. To and S. Adams, Physical chemistry chemical physics : PCCP, 2014, 16, 4653-4663. 49. J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan, D. C. Morse and S. C. Glotzer, Computer Physics Communications, 2015, 192, 97-107. 50. J. A. Anderson, C. D. Lorenz and A. Travesset, Journal of Computational Physics, 2008, 227, 5342-5359. 51. J. S. Moon, J. K. Lee, S. Cho, J. Byun and A. J. Heeger, Nano Lett., 2009, 9, 230-234. 52. N. C. Cates, R. Gymer, Z. Beiley, C. E. Miller, F. T. Michael, M. Heeney, I. McCulloch and M. D. McGehee, Nano Lett., 2009, 9, 4153-4157. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52073 | - |
| dc.description.abstract | 本研究利用粗粒化分子動力學模擬,透過先前實驗室學長的聚噻吩全原子系統的模擬得到高分子分子間與分子內的作用力參數,並結合李正光博士的[6,6]-苯基-C61-丁酸甲酯的全原子模擬,使用Mixing Rule的方式,得到所有的參數;在模擬方面,我們改變聚噻吩系列不同的侧鏈的接枝密度以及接枝長度,材料有四種接枝密度,分析接枝密度及接枝長度在不同混摻比例下,對於光電性質的影響與原因,還有形態上的差異性。分析的方式採用了包淳偉老師與李正光博士的做法並改進,將系統做切割成格子,再根據質量的大小判斷格子所代表種,進行後續的分析,簡化了分析的困難度,在接觸面積以及穿透率的部份,不考慮侧鏈,因為對於兩者是沒有影響的,但是在域的尺寸就要納入考慮,這種方式會更貼近實際情況;模擬的結果發現,隨著侧鏈接枝密度的改變,在接觸面積會隨著接枝密度的改變根據結構的改變有不同變化,當侧鏈間的空隙足夠[6,6]-苯基-C61-丁酸甲酯的穿入,與主鏈直接接觸時,接觸面積會大大的提升;在穿透率的方面,發現隨著接枝密度的下降而提升,因為接枝密度的下降表示主鏈對外的接觸面積變多,主鏈間又容易互相吸引,域的尺寸隨著接枝密度的上升而上升,因為侧鏈能夠有效增加域的尺寸。 | zh_TW |
| dc.description.abstract | The bulk heterojunction morphology of thiophene-based polymers / [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) with various blending ratio, grafting density and length of alkyl side-chains are systematically simulated by the coarse-grained molecular dynamics (CGMD) simulations. All the intramolecular and intermolecular parameters are obtained through combination with parameters of ours and paper by mixing rules. The thiophene-based polymers have three different grafting density, and we changed the blending ratio of polymer and PCBM to observe the correlation of photovoltaic properties and morphologies. We adopted Pao’s and Lee’s method to analyze photovoltaic properties in our system by cutting system box to many grids. The interfacial-to-value changed with the side-chain density and the molecular structure. The percolation ratio increased with decreasing the grafting density, resulting from contact probability between main-chain. The domain size increased wih the grafting density of side-chains increasing because of the increase of domain size by increase of side-chain density. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:06:52Z (GMT). No. of bitstreams: 1 ntu-104-R02549028-1.pdf: 9601990 bytes, checksum: 4898cc9a6223cc572fbec6064b78b367 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 前言 1 第二章 模擬方法 12 2.1模擬方法介紹 12 2.2作用力參數 15 2.3不同接枝密度高分子混摻系統成份組成細節 17 2.4進行粗粒化分子動力學模擬 18 2.5分析方法介紹 19 第三章 結果與討論 21 3.1 100%接枝密度 21 3.2 1,3-50%接枝密度 24 3.3 1,4-50%接枝密度 27 3.4 25%接枝密度 31 3.5 四種接枝密度的比較 35 第四章 結論 39 參考文獻 40 附錄一 所有材料在不同接枝長度與混摻比例下的相圖 44 附錄二 接枝長度2,四種材料與四種混摻比例的形態 45 附錄三 接枝長度4,四種材料1:1比例的形態 51 附錄四 實驗文獻比較 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 域的尺寸 | zh_TW |
| dc.subject | 接枝密度 | zh_TW |
| dc.subject | 接枝長度 | zh_TW |
| dc.subject | 穿透率 | zh_TW |
| dc.subject | 接觸面積 | zh_TW |
| dc.subject | percolation rate | en |
| dc.subject | interfacial area | en |
| dc.subject | domain size | en |
| dc.title | 從奈米尺度的形態衍變探討PT:PCBM混合異質接面太陽能電池的最佳化光電性質研究 | zh_TW |
| dc.title | Exploring the Optimal Photovoltaic Properties of PT:PCBM Bulk Heterojunction Organic Solar Cells from the Perspective of Nanomorphology Evolution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 包淳偉(Chun-Wei Pao),童世煌(Shih-Huang Tung) | |
| dc.subject.keyword | 接枝密度,接枝長度,穿透率,接觸面積,域的尺寸, | zh_TW |
| dc.subject.keyword | percolation rate,domain size,interfacial area, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 9.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
