請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52070
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳章甫(Chang-Fu Wu) | |
dc.contributor.author | Nathan Chen | en |
dc.contributor.author | 陳博文 | zh_TW |
dc.date.accessioned | 2021-06-15T14:06:41Z | - |
dc.date.available | 2020-09-14 | |
dc.date.copyright | 2015-09-14 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | Alastuey, A., Querol, X., Plana, F., Viana, M., Ruiz, C. R., Campa, A. S. d. l., . . . Santos, S. G. d. (2006). Identification and chemical characterization of industrial particulate matter sources in southwest Spain. Journal of the Air & Waste Management Association, 56(7), 993-1006.
Amato, F., & Hopke, P. K. (2012). Source apportionment of the ambient PM< sub> 2.5</sub> across St. Louis using constrained positive matrix factorization. Atmospheric Environment, 46, 329-337. Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., . . . Hopke, P. (2009a). Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmospheric Environment, 43(17), 2770-2780. Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., & Moreno, T. (2009b). Spatial and chemical patterns of PM< sub> 10</sub> in road dust deposited in urban environment. Atmospheric Environment, 43(9), 1650-1659. Brinkman, G., Vance, G., Hannigan, M. P., & Milford, J. B. (2006). Use of synthetic data to evaluate positive matrix factorization as a source apportionment tool for PM2. 5 exposure data. Environmental science & technology, 40(6), 1892-1901. Chan, Y.-C., Hawas, O., Hawker, D., Vowles, P., Cohen, D. D., Stelcer, E., . . . Christensen, E. (2011). Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants. Atmospheric Environment, 45(2), 439-449. Chow, J. C., Watson, J. G., Houck, J. E., Pritchett, L. C., Fred Rogers, C., Frazier, C. A., . . . Ball, B. M. (1994). A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions. Atmospheric Environment, 28(21), 3463-3481. Christensen, W. F., & Gunst, R. F. (2004). Measurement error models in chemical mass balance analysis of air quality data. Atmospheric Environment, 38(5), 733-744. Christensen, W. F., Schauer, J. J., & Lingwall, J. W. (2006). Iterated confirmatory factor analysis for pollution source apportionment. Environmetrics, 17(6), 663-681. Cooper, J. A., & Watson Jr, J. G. (1980). Receptor oriented methods of air particulate source apportionment. Journal of the Air Pollution Control Association, 30(10), 1116-1125. Derwent, R., Davies, T., Delaney, M., Dollard, G., Field, R., Dumitrean, P., . . . Pepler, S. (2000). Analysis and interpretation of the continuous hourly monitoring data for 26 C 2–C 8 hydrocarbons at 12 United Kingdom sites during 1996. Atmospheric Environment, 34(2), 297-312. Gugamsetty, B., Wei, H., Liu, C.-N., Awasthi, A., Hsu, S.-C., Tsai, C.-J., . . . Chen, C.-F. (2012). Source characterization and apportionment of PM10, PM2. 5 and PM0. 1 by using positive matrix factorization. Aerosol Air Qual. Res, 12, 476-491. Guo, H., Cheng, H., Ling, Z., Louie, P., & Ayoko, G. (2011). Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? Journal of hazardous materials, 188(1), 116-124. Heal, M. R., Kumar, P., & Harrison, R. M. (2012). Particles, air quality, policy and health. Chemical Society Reviews, 41(19), 6606-6630. Held, T., Ying, Q., Kleeman, M. J., Schauer, J. J., & Fraser, M. P. (2005). A comparison of the UCD/CIT air quality model and the CMB source–receptor model for primary airborne particulate matter. Atmospheric Environment, 39(12), 2281-2297. Ho, C.-C., Chan, C.-C., Cho, C.-W., Lin, H.-I., Lee, J.-H., & Wu, C.-F. (2015). Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmospheric Environment, 104, 256-263. Hopke, P. K. (2008). The use of source apportionment for air quality management and health assessments. Journal of Toxicology and Environmental Health, Part A, 71(9-10), 555-563. Hopke, P. K., Ito, K., Mar, T., Christensen, W. F., Eatough, D. J., Henry, R. C., . . . Larson, T. V. (2005). PM source apportionment and health effects: 1. Intercomparison of source apportionment results. Journal of Exposure Science and Environmental Epidemiology, 16(3), 275-286. Huang, C.-H., Chen, K.-S., & Wang, H.-K. (2012). Measurements and PCA/APCS Analyses of Volatile Organic Compounds in Kaohsiung Municipal Sewer Systems, Southern Taiwan. Aerosol and Air Quality Research, 12(6), 1315-1326. Huang, C.-S. (2015). Source Apportionment of Multiple Time Resolution Data at an Air Quality Monitoring Station in Taipei and Utilizing Bootstrap Analysis for Uncertainty Estimation. (Master), National Taiwan University, Taipei, Taiwan. Hwa, M.-Y., Hsieh, C.-C., Wu, T.-C., & Chang, L.-F. W. (2002). Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area. Atmospheric Environment, 36(12), 1993-2002. Kim, E., Hopke, P. K., Pinto, J. P., & Wilson, W. E. (2005). Spatial variability of fine particle mass, components, and source contributions during the regional air pollution study in St. Louis. Environmental science & technology, 39(11), 4172-4179. Kuang, B., Lin, P., Huang, X., & Yu, J. (2015). Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM 2.5 major components and source markers. Atmospheric Chemistry and Physics, 15(4), 1995-2008. Kulkarni, P., Chellam, S., & Fraser, M. P. (2007). Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2. 5. Environmental science & technology, 41(19), 6748-6754. Lall, R., Ito, K., & Thurston, G. D. (2010). Distributed lag analyses of daily hospital admissions and source-apportioned fine particle air pollution. Environmental health perspectives, 119(4), 455-460. Lee, P. K., Brook, J. R., Dabek-Zlotorzynska, E., & Mabury, S. A. (2003). Identification of the major sources contributing to PM2. 5 observed in Toronto. Environmental science & technology, 37(21), 4831-4840. Liao, H.-T., Chou, C. C.-K., Chow, J. C., Watson, J. G., Hopke, P. K., & Wu, C.-F. (2015). Source and risk apportionment of selected VOCs and PM 2.5 species using partially constrained receptor models with multiple time resolution data. Environmental Pollution, 205, 121-130. Liao, H.-T., Kuo, C.-P., Hopke, P. K., & Wu, C.-F. (2013). Evaluation of a modified receptor model for solving multiple time resolution equations: a simulation study. Aerosol Air Qual Res, 13, 1253-1262. Lingwall, J. W., & Christensen, W. F. (2007). Pollution source apportionment using< i> a priori</i> information and positive matrix factorization. Chemometrics and intelligent laboratory systems, 87(2), 281-294. Marmur, A., Unal, A., Mulholland, J. A., & Russell, A. G. (2005). Optimization-based source apportionment of PM2. 5 incorporating gas-to-particle ratios. Environmental science & technology, 39(9), 3245-3254. Norris, G., & Duvall, R. (2014). EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide (EPA/600/R-14/108 ). Washington, DC: U.S. Environmental Protection Agency Office of Research and Development. Norris, G., Vedantham, R., Wade, K., Zahn, P., Brown, S., Paatero, P., . . . Martin, L. (2009). Guidance document for PMF applications with the Multilinear Engine. US Environmental Protection agency, Washington DC, available at: cfpub. epa. gov/si/si_public_file_download. cfm. Sasaki, K., & Sakamoto, K. (2005). Vertical differences in the composition of PM 10 and PM 2.5 in the urban atmosphere of Osaka, Japan. Atmospheric Environment, 39(38), 7240-7250. Seagrave, J., McDonald, J. D., Bedrick, E., Edgerton, E. S., Gigliotti, A. P., Jansen, J. J., . . . Zheng, M. (2006). Lung toxicity of ambient particulate matter from southeastern US sites with different contributing sources: relationships between composition and effects. Environmental health perspectives, 1387-1393. Selvaraju, N., Pushpavanam, S., & Anu, N. (2013). A holistic approach combining factor analysis, positive matrix factorization, and chemical mass balance applied to receptor modeling. Environmental monitoring and assessment, 185(12), 10115-10129. Song, Y., Dai, W., Shao, M., Liu, Y., Lu, S., Kuster, W., & Goldan, P. (2008). Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China. Environmental Pollution, 156(1), 174-183. Stanek, L. W., Brown, J. S., Stanek, J., Gift, J., & Costa, D. L. (2010). Air pollution toxicology–a brief review of the role of the science in shaping the current understanding of air pollution health risks. Toxicological Sciences, kfq367. Stanek, L. W., Sacks, J. D., Dutton, S. J., & Dubois, J.-J. B. (2011). Attributing health effects to apportioned components and sources of particulate matter: an evaluation of collective results. Atmospheric Environment, 45(32), 5655-5663. Sturtz, T. M., Adar, S. D., Gould, T., & Larson, T. V. (2014). Constrained source apportionment of coarse particulate matter and selected trace elements in three cities from the Multi-Ethnic Study of Atherosclerosis. Atmospheric Environment, 84, 65-77. Sun, Y.-L., Zhang, Q., Schwab, J., Demerjian, K., Chen, W.-N., Bae, M.-S., . . . Rattigan, O. (2011). Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer. Atmospheric Chemistry and Physics, 11(4), 1581-1602. Sun, Y., Wang, Z., Fu, P., Yang, T., Jiang, Q., Dong, H., . . . Jia, J. (2013). Aerosol composition, sources and processes during wintertime in Beijing, China. Atmospheric Chemistry and Physics, 13(9), 4577-4592. USEPA. (1999). The Benefits and Costs of the Clean Air Act from 1990 to 2020. Paper presented at the Report, EPA-410-R-99-001, Final Report to US Congress. Viana, M., Kuhlbusch, T., Querol, X., Alastuey, A., Harrison, R., Hopke, P., . . . Prevot, A. (2008). Source apportionment of particulate matter in Europe: a review of methods and results. Journal of Aerosol Science, 39(10), 827-849. Wang, W., Chen, K., Chen, S.-J., Lin, C.-C., Tsai, J.-H., Lai, C., & Wang, S. (2008). Characteristics and receptor modeling of atmospheric PM2. 5 at urban and rural sites in Pingtung, Taiwan. Aerosol Air Qual. Res, 8, 112-129. Wichmann, F. A., Müller, A., Busi, L. E., Cianni, N., Massolo, L., Schlink, U., . . . Sly, P. D. (2009). Increased asthma and respiratory symptoms in children exposed to petrochemical pollution. Journal of Allergy and Clinical Immunology, 123(3), 632-638. Wu, C.-F., Lin, H.-I., Ho, C.-C., Yang, T.-H., Chen, C.-C., & Chan, C.-C. (2014). Modeling horizontal and vertical variation in intraurban exposure to PM 2.5 concentrations and compositions. Environmental research, 133, 96-102. Yuan, Z., Lau, A. K. H., Shao, M., Louie, P. K., Liu, S. C., & Zhu, T. (2009). Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. Journal of Geophysical Research: Atmospheres (1984–2012), 114(D2). Zheng, M., Cass, G. R., Schauer, J. J., & Edgerton, E. S. (2002). Source apportionment of PM2. 5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environmental science & technology, 36(11), 2361-2371. Zhou, L., Hopke, P. K., Paatero, P., Ondov, J. M., Pancras, J. P., Pekney, N. J., & Davidson, C. I. (2004). Advanced factor analysis for multiple time resolution aerosol composition data. Atmospheric Environment, 38(29), 4909-4920. 何文淵. (1999). 汽油車引擎廢氣揮發性有機物成分及光化反應潛勢. 國立成功大學環境工程研究所碩士論文”, 台南. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52070 | - |
dc.description.abstract | 精準的辨認並且評量細懸浮微粒(Fine particulate matter和揮發性有機物(volatile organic compounds)這些危害物的汙染源,是非常重要的。化學平衡法(Chemical mass balance)、絕對主成分分析(absolute principal component scores)和正矩陣因素分析(positive matrix factorization)是已知,並且被提出可以解決上述問題的方法。這三種方法,被稱作受體模式。
化學平衡法、絕對主成分分析和正矩陣因素分析有各自的使用時機。然而,在資料組的時間不統一,而且掌握的先驗資訊不完整的情況下,並沒有一個合適的受體模型,可以精準的分析汙染源。因此,本研究的目的,就是驗證結合多重時間解析度正矩陣因素分析以及限縮正矩陣因素分析的模式,分析汙染源的精準程度。 本研究經由數值模擬、模式執行、模式成效評估與實地資料應用為主。數值模擬中的以自然對數常態分佈生成小時值,以美國環保署的資料庫(US EPA SPECIATE dataset)為生產來源。模型執行使用多線性引擎(Multilinear Engine)軟體來執行新舊兩個模型。資料分析以平均絕對值誤差為成效評估標準(average absolute error)。實地資料則採自台北萬華測站。 單純多重時間解析度受體模式與整合模式的AAEf依序為0.18與0.13;AAEg依序為0.11與0.10;決定係數依序為0.68與0.78。實地採樣的資料若使用單純多重時間解析度受體模式,可以被解析出六個汙染源,分別是汽車排放一、區域傳播、工業塗料、汽車排放二、天然氣以及二次硫化物。實地採樣的資料若使用整合受體模式,則可以被解析出七個汙染源,分別是汽車排放一、區域傳播、工業塗料、汽車排放二、天然氣、二次硫化物以及揚塵。這個結果與數值模擬的結果相符合。整體而言,不論是汙染源隨時間貢獻量的預測,還是汙染源化學組成的預測成效,整合模式皆優於單純多重時間受體模式。 | zh_TW |
dc.description.abstract | Fine particulate matter (PM2.5) and volatile organic compounds (VOCs) have been well known to relate to adverse health effects. Thus, to precisely identify and to evaluate the sources of both PM2.5 and VOCs are important.
Chemical mass balance (CMB), absolute principal component scores (APCS), and positive matrix factorization (PMF), have been used to attend the above purposes. These three models can be defined as receptor models. CMB, APCS and PMF have been used in different situations. However, they usually do not work for the situation that the data has multiple time resolution and the factor profile or the source contribution is incomplete. Thus, an evaluation of the performance of a combination of the constrained PMF model and a multiple-time-resolution PMF model was conducted in this study. A synthetic data was used in this study to achieve the above purposes. This study was conducted through the method of data simulation, model implementation, evaluation of the performance of models and application to field study. The synthetic data was created as an hourly measurement contribution matrix, where the hourly fluctuation was added and was assumed to be random and log-normal distribution. Six source profiles, which included petroleum refinery, vehicle exhaust, industrial coating, coal combustion, natural gas and fugitive dust were created from US EPA SPECIATE dataset. Two models were run in this section so that two models could compare with each other. One was a multiple-time-resolution model, and the other was a mixed model which combined a multiple-time-resolution model and a constrained model. These two models were compared to each other by the average absolute error. The data of field study was collected from the Wanhua monitoring site in Taipei. The AEEf of the multiple-time-resolution-only receptor model and of the combined receptor model are 0.18 and 0.13, respectively; The AAEg of the multiple-time-resolution-only receptor model and of the combined receptor model are 0.11 and 0.10, respectively; The R square are 0.68 and 0.78, respectively. For a conclusion, the performances of the combined model in the prediction of the factor profile and in the source contribution were better than the performance of the multiple-time-resolution-only model. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T14:06:41Z (GMT). No. of bitstreams: 1 ntu-104-R02841011-1.pdf: 2562998 bytes, checksum: 30e5463320d0e148cbcb9b4613b84465 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………2
目錄………..………………………………………………………………………....3 表目錄……………………………………………………………………………......4 圖目錄……………………………………………………………………………….....5 附錄目錄………………………………………………………………………….....6 致謝....................................7 中文摘要…….……………………………………………………………………..….8 Abstract……………………………………………………………………….……..9 第一章 緒論……………………………………………………………….....11 第二章 研究方法…………………………………………………………....14 2.1 資料模擬…………………………………………………………...14 2.2 模式應用…………………………………………………………...17 2.3 模式成效評估…………………………………………………...19 2.4 實地資料應用…………………………………………………...20 第三章 結果與討論…………………...…………………………………………21 3.1整合模式三種使用標準與單純多重時間解析模式成效比較………21 3.2整合模式應用於特殊資料型態測試………………………......………………24 3.3敏感度分析.......................................25 3.4實地資料應用…………………….............…………………………………………27 3.5研究限制…………………..............…………………………………………………30 第四章 結論…………………………………………………..……………………...30 參考資料………………………......…………………………………………….……46 | |
dc.language.iso | zh-TW | |
dc.title | 評估整合多重時間解析度受體模式及限縮受體模式之成效:
數值模擬研究 | zh_TW |
dc.title | Evaluation of a Mixed Receptor Model Which Combined the Constrained PMF Model with the Multiple-Time-Resolution PMF Model: a Simulation Study | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳焜裕(kuen-yuh wu),蔡詩偉(Shih-Wei Tsai) | |
dc.subject.keyword | 正矩陣因素分析,受體模式,多重時間解析度,多線性引擎, | zh_TW |
dc.subject.keyword | Source apportionment,Receptor modeling,Multilinear engine,Multiple time resolution, | en |
dc.relation.page | 57 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-20 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
顯示於系所單位: | 職業醫學與工業衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。