Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52064
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor牟中原(Chung-Yuan Mou)
dc.contributor.authorChang-An Loen
dc.contributor.author駱昶安zh_TW
dc.date.accessioned2021-06-15T14:06:18Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citation1. Pang, Q., Zhou, L. Nazar, L. F. Elastic and Li-ion – percolating hybrid membrane stabilizes Li metal plating. Proc. Natl. Acad. Sci. U. S. A. 115, 12389–12394 (2018).
2. Lin, D., Liu, Y. Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).
3. Behavior, M., Wood, K. N., Noked, M. Dasgupta, N. P. Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior. ACS Energy Lett. 2, 664–672 (2017).
4. Zhang, D. et al. Lithiophilic 3D Porous CuZn Current Collector for Stable Lithium Metal Batteries. ACS Energy Lett 5, 180–186 (2020).
5. Umeda, G. A. et al. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 21, 1593–1599 (2011).
6. Liu, K. et al. Extending the Life of Lithium-Based Rechargeable Batteries by Reaction of Lithium Dendrites with a Novel Silica Nanoparticle Sandwiched Separator. Adv. Mater. 29, 1–6 (2017).
7. Jeong, H., Choi, E., Lee, S. Hun, J. composite separator membranes for high-voltage / high-rate lithium-ion batteries : Advantageous effect of highly percolated , electrolyte-philic microporous architecture. J. Memb. Sci. 415–416, 513–519 (2012).
8. Qian, J. et al. Anode-Free Rechargeable Lithium Metal Batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).
9. Li, X. et al. E ff ects of Imide − Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries. ACS Appl. Mater. Interfaces 10, 2469–2479 (2018).
10. Suo, L., Hu, Y., Li, H., Armand, M. Chen, L. high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1–9 (2013).
11. Beyene, T. T. et al. Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. J. Electrochem. Soc. 166, A1501–A1509 (2019).
12. Assegie, A. A. et al. Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale 11, 2710–2720 (2019).
13. Tan, C. et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev 117, 6225–6331 (2017).
14. Yao, F. et al. Di ff usion Mechanism of Lithium Ion through Basal Plane of Layered Graphene. J. Am. Chem. Soc 134, 8646−8654 (2012).
15. Cogswell, D. A. Quantitative phase-field modeling of dendritic electrodeposition. Phys. Rev. E 92, 011301(R) (2015).
16. Shi, F. et al. Strong texturing of lithium metal in batteries. Proc. Natl. Acad. Sci. U. S. A. 114, 12138–12143 (2017).
17. Zheng, J., Kim, S., Tu, Z. Choudhury, S. Chem Soc Rev Regulating electrodeposition morphology of lithium : towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020).
18. Jingling Yang, Chun-Yao Wang, Chun-Chieh Wang, d Kuei-Hsien Chen, C.-Y. M. and H.-L. W. Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes. J. Mater. Chem. A 8, 5095–5104 (2020).
19. Kao, K., Lin, C., Chen, T., Liu, Y. Mou, C. A General Method for Growing Large Area Mesoporous Silica Thin Films on Flat Substrates with Perpendicular Nanochannels. J. Am. Chem. Soc. 137, 3779−3782 (2015).
20. Zhang, Y. Z. Bhattacharya, K. The distribution function of surface charge density with respect to surface curvature. J. Phys. D Appl. Phys 19, 1–6 (1986).
21. Zhang, Y. Z. Bhattacharya, K. The application of a surface charge density distribution function to the solution of boundary value problems. J. Phys. D Appl. Phys 20, 1609–1615 (1987).
22. Shin, S., Al-housseiny, T. T., Kim, B. S., Cho, H. H. Stone, H. A. The Race of Nanowires: Morphological Instabilities and a Control Strategy. Nano Lett 14, 4395−4399 (2014).
23. Cheng, X. B. et al. Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries. Adv. Mater. 28, 2888–2895 (2016).
24. Chen, L. et al. Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J. Mater. Chem. A 5, 12297–12309 (2017).
25. Wood, K. N. et al. Dendrites and Pits : Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS Cent. Sci 2, 790−801 (2016).
26. Moorthy, B., Kim, J. H., Lee, H. W. Kim, D. K. Vertically aligned carbon nanotubular structure for guiding uniform lithium deposition via capillary pressure as stable metallic lithium anodes. Energy Storage Mater. 24, 602–609 (2020).
27. Nadler, M. R. Kempter, C. P. 186. Lithium. Anal. Chem. 31, 2109 (1959).
28. Shao, L. et al. Metal carbonates as anode materials for lithium ion batteries. J. Alloys Compd. 581, 602–609 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52064-
dc.description.abstract在過去的幾十年裡,人們越來越多地探索用具有更高理論容量的鋰金屬代替傳統的陽極材料石墨。事實上,儘管鋰金屬是下一代儲能系統中有前途的候選者,但鋰金屬陽極的應用卻受到循環過程中不可預測的鋰支晶的生成而內在挑戰的限制。表面不均勻的沉積會導致“死鋰”,這主要是由於剝離過程中電場不均勻所致。電鍍無基質鋰可簡化安全生產過程,並更好地控制樹枝狀結構。我們的策略是在商用集電器上通過垂直通道合成中孔洞二氧化矽薄膜(MSTF),以便在電池運行期間鋰離子通量更加均勻,同時,所產生均勻的沉積增強了鋰金屬的穩定性。這些垂直且有序的中孔洞孔通道具有明確的孔徑(〜6nm),可以為鋰離子在陽極和陰極之間提供均勻的通道,從而實現有效的電鍍/剝除鋰金屬。在電鍍/剝除鋰金屬的過程中,均勻的鋰離子分佈會使半電池中200圈的液體電解質中的庫侖效率(CE)高(> 99%)。為了獲得有關MSTF如何提高CE的更多關鍵資訊,我們使用SEM觀察了鋰金屬沉積的形貌。由於均勻的鋰離子通量,在使用MSTF集電器的初始循環中,鍍鋰的形貌相當平坦。此外,從GIWAXS研究了鋰金屬沉積,發現MSTF會使鍍上去的鋰金屬是ㄧ大塊的單晶。更重要的是,使用這種新型集電器開發無陽極的鋰金屬電池,MSTF集電器在第一圈的充放電中顯示出電鍍/剝離的可逆性,因此經過50圈的充放電後可以保持超過100 mAh / g的放電容量。zh_TW
dc.description.abstractReplacing the traditional anode material, graphite, by Li metal with higher theoretical capacity has been increasingly explored over the last decades. Despite the fact lithium metal is a promising candidate for next generation energy-storage systems, the application of lithium metal anodes has been constrained by intrinsic challenges of unpredictable dendritic Li formation during cycling. Uneven surface deposition would cause “dead lithium” which is mainly due to the uneven electric field during stripping. Plating hostless Li results in easy and safe manufacturing, and better controls in dendritic structure is our purpose.
Our strategy is to synthesize mesoporous silica thin film (MSTF) with perpendicular tunnels on commercial current collectors, so that Li cation flux will be more homogeneous during battery operation. At the same time, the resulting uniform deposition enhanced the stability of Li metal. These vertical and ordered mesoporous channels, which has well-defined pore diameter (~5nm), provide uniform pathways between anode and cathode for Li cation, leading to efficient Li plating/stripping. The homogeneous Li cation distribution during Li plating/stripping results in a high Coulombic efficiency (CE) ( >99%) in liquid electrolyte in a half-cell for 200 cycles. To obtain more critical information on how the MSTF enhances CE, we use SEM to observe the morphologies of Li deposition. The morphologies of Li plating at preliminary cycles are pretty flat with MSTF current collector due to homogenous Li cation flux. Moreover, crystalline of Li are studied from GIWAXS. Of greater consequence, use this novel current collector to develop anode-free Li metal batteries, and MSTF current collector shows dramatically reversibility of plating/stripping at 1st cycle so that it can retains more than 100 mAh/g of discharge capacity after 50th cycle.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:06:18Z (GMT). No. of bitstreams: 1
U0001-0708202015133100.pdf: 6339206 bytes, checksum: a30408a6c1d826b2e6a4fbe285173b9e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAcknowledgement i
中文摘要 ii
Abstract iv
Chapter 1 Introduction 2
1.1 Background 2
1.2 Nanoscale Interfacial Engineering 4
1.2.1 Electrode Surface Engineering 4
1.2.2 Separator Modification. 6
1.3 The Concept of Anode-Free Lithium Metal Battery 7
1.3.1 The Origin of Anode-Free Lithium Metal Battery 7
1.3.2 Address Predicaments of AFLMBs by Electrolyte 8
1.3.3 Address Predicaments of AFLMBs by Electrode Modification 10
1.4 Understanding Electrodeposition at the Li Metal Electrode 12
1.4.1 Crystallography, Texturing, and Morphological Evolution 12
1.4.2 Confirmation of Texturing by X-ray Diffraction 13
1.5 Motivation 14
Chapter 2 Chemicals and Instrumentals 16
2.1 Chemicals 16
2.2 Instrumentals 16
2.2.1 sScanning Electron Microscope (SEM) 16
2.2.2 Nitrogen Adsorption Analysis 17
2.2.3 CH Instruments Electrochemical Analyzer 17
2.2.4 Arbin Battery Tester 17
2.2.5 Electrochemical Impedance Spectroscopy 18
2.2.6 X-ray Photoelectron Spectroscopy (XPS) 18
2.2.7 Grazing Incidence Small/Wide Angle X-ray Scattering 18
2.3 Synthesis 24
2.3.1 Syntheses of Mesoporous Silica Thin Films (MSTFs) on Stainless Steels 24
2.3.2 Syntheses of Mesoporous Silica Thin Films (MSTFs) on PVDF 24
2.3.3 Syntheses of Pore-Expanded Mesoporous Silica Nanoparticles (MSNs) 25
2.4 Batteries Preparations 26
2.4.1 Design Specifications of Components in a Coin Cell 26
2.4.2 Preparation of Conventional Electrolyte 27
2.4.3 Lithium-Lithium Battery Assemble 27
2.4.4 Lithium-Copper Battery Assemble 28
2.4.5 Lithium-Stainless Steel Battery Assemble 28
2.4.6 Anode-Free Lithium Metal Battery Assemble 29
Chapter 3 Artificial Thin Film on Current Collector 31
3.1 Characterization of MSTF⊥SS 31
3.1.1 Scanning Electron Microscopy 31
3.1.2 Nitrogen Adsorption-Desorption Isotherm 33
3.1.3 Grazing Incidence Small-Angle X-ray Scattering 34
3.1.4 Contact Angle Measurement 36
3.2 Performance comparison 37
3.2.1 High Current Density Measurement in Half Cell 37
3.2.2 Long-Term Duration Measurement in Half Cell 39
3.2.3 Anode-Free Lithium Metal Cell Measurement 40
3.3 Phenomena of MSTF Inducing 43
3.3.1 Mesoporous Structure Effect 43
3.3.2 Investigation of the Li Metal Surface after the Deposition Process 45
3.3.3 Investigation of the Li Metal Surface after the Stripping Process 48
3.3.4 Crystalline of Li Deposition 56
3.3.5 Components of Solid Electrolyte Interphase (SEI) Film 61
3.3.6 Electrochemical Impedance Spectroscopy 62
3.4 Summary 64
Chapter 4 Artificial Thin Film on Separator 66
4.1 Characterization of MSTF⊥Separator 66
4.2 Performance comparison 68
4.2.1 Galvanostatic Cycling Measurements in Half Cell 68
4.2.2 Anode-Free Lithium Metal Cell Measurement 71
4.3 Investigation of the Dead Lithium 74
4.3.1 Morphologies of Dead Lithium after Cycling in Half Cell 74
4.3.2 Morphologies of Dead Lithium after Cycling in AFLMB 76
4.4 Summary 79
Chapter 5 Conclusion and Prospect 80
References 81
dc.language.isoen
dc.title中孔洞二氧化矽薄膜在無陽極鋰金屬電池的應用zh_TW
dc.titleApplication of Mesoporous Silica Thin Film in Anode-Free Lithium Metal Batteries
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳恆良(Heng-Liang Wu),陳浩銘(Hao-Ming Chen),黃炳照(Bing-Joe Hwang)
dc.subject.keyword介孔二氧化矽材料,枝晶鋰生成,無陽極鋰金屬電池,zh_TW
dc.subject.keywordmesoporous silica material,lithium dendrite formation,anode-free lithium metal batteries,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202002639
dc.rights.note有償授權
dc.date.accepted2020-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-0708202015133100.pdf
  目前未授權公開取用
6.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved