Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52058
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松
dc.contributor.authorChing-Hua Wuen
dc.contributor.author吳清華zh_TW
dc.date.accessioned2021-06-15T14:05:54Z-
dc.date.available2015-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-20
dc.identifier.citation[1] 2014高雄市立第54屆中小學科學展覽會作品說明書
[2] Bharat-Apex Industries Ltd,
http://www.bharatapex.com/Heat%20Exchangers.html
[3] W. H. Zachariasen, The Atomic Arrangement in Glass, J. American Ceramic Society (1932), Vol.54, pp. 3841-3851.
[4] A. R. Stetson, Glass Frit Composition, United States Patent (1988)
[5] D. A. Klimas, B. R. Frazee, Lead-Free Glass Frit Compositions, United States Patent (1990)
[6] W. E. Halter, B. O. Mysen, Melt Speciation in the System Na2O-SiO2, Chemical Geology (2004), Vol. 213, pp. 115-123.
[7] 吳振名,“玻璃陶瓷”,陶瓷技術手冊(下),經濟部技術處發行,(1994),963-986頁
[8] E. Ercenk, U. Sen, and S. Yilmaz, Structural characterization of plasma sprayed basalt–SiC glass–ceramic coatings, Ceramics International (2011), Vol. 37, pp. 883–889.
[9] C. J. M. Lasance, Thermal Effusivity, Electronics cooling (2007)
[10] G. Leibfried, E. Schlomann, and N. A. W. Goettingen, Thermal conductivity of dielectric solids by a variational technique , Math. Physicals (1954), Kl.Vol.4, p. 71.
[11] G. A. Slack, Nonmetallic crystals with high thermal conductivity, J. Physicals and Chemistry of Solids (1973), Vol. 34, p. 321.
[12] M. P. Boron, G. A. Slack, and J. W. Szymaszek, Thermal conductivity of commercial aluminium nitride, American Ceramic Society Bulletin (1972), p. 852.
[13] G. A. Slack, D. W. Oliver, and F. H. Horn, Thermal conductivity of boron and some boron compounds, Physical Review B (1971), Vol. B-4, pp. 1714
[14] C.O. Ruud, D.J. Snoha, D.P. Ivkovich, and A.R. Mcllree, Residual Stresses in Inconel 600 U bend heat exchanger tubes, J. Pressure Vessel Tech. (1990), Vol.112, pp. 169-174.
[15] R.L. Turissini, T.V. Bruno, E.P. Dahlberg, and R.B. Setterlund, Mercury liquid metal embrittlement causes aluminum plate heat exchanger failure, Mater. Performance (1998), Vol.37, No.1, pp. 59-63.
[16] R.L. Turissini, T.V. Bruno, E.P. Dahlberg, and R.B. Setterlund, Mercury liquid metal embrittlement causes aluminum plate heat exchanger failure, Mater. Performance (1998), Vol.37, No.4, pp. 61-63.
[17] W. S. Ji, Y. W. Jang, and J. G. Kim, Effect of Tungsten on the Corrosion Behavior of Sulfuric Acid-Resistant Steels for Flue Gas Desulfurization System, Met. Mater. Int. (2011) Vol.17, No.3, pp. 463-470.
[18] A. Bahadori, Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain, Applied Thermal Engineering (2011), Vol.31, pp.1457-1462.
[19] V. Ganapathy, Cold end corrosion causes and cures, Hydrocarbon Process. (1989), Vol.68, No.1
[20] Y.Wang∗,W. Tian, Y. Yang, C.G. Li, L.Wang, Investigation of stress field and failure mode of plasma sprayed Al2O3–13%TiO2 coatings under thermal shock, Materials Science and Engineering A 516 (2009) 103–110
[21] http://www.keramverband.de/brevier_engl/5/4/5_4_3.htm,”Brevier Technical Ceramics”
[22] T. J. Lue; N. A. Fleck (1998). 'The Thermal Shock Resistance of Solids'. Acta Materialia 46 (13): 4755–4768.
[23] W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet, J. Opt. Soc. Am. B/Vol. 3, No. 1/January 1986
[24] C. Y. Jian, Toshiyuki Hashida, Hideaki Takahashi, Thermal shock and fatigue resistance evaluation of functionally graded coating for gas turbine blades by laser heating method, Composites Engineering, Vol. 5, No. 7, pp. 879-889, 1995
[25] A. Kawasaki *, R. Watanabe, Thermal fracture behavior of metal/ceramic functionally graded materials, Engineering Fracture Mechanics 69 (2002) 1713–1728
[26] X.Q. Ma *, M. Takemoto, Quantitative acoustic emission analysis of plasma sprayed thermal barrier coatings subjected to thermal shock tests, Materials Science and Engineering A308 (2001) 101–110
[27] Wang Aihua, Zhu Beidi, Tao Zengyi and Ma Xianyao, Deng Shijun and Cheng Xudong, Thermal-shock behaviour of plasma-sprayed A1203-13wt. % TiO2 coatings on A1-Si alloy influenced by laser remelting, Surface and Coatings Technology, 57 (1993) 169-172
[28] Bo Liang*, Chuanxian Ding, Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying, Surface & Coatings Technology 197 (2005) 185– 192
[29] Y. Wang ⁎, W. Tian, Y. Yang,Thermal shock behavior of nanostructured and conventional Al2O3/13 wt% TiO2 coatings fabricated by plasma spraying, Surface & Coatings Technology 201 (2007) 7746–7754
[30] LI Yin-xue1, LI Zhen1,YANG Gang2, ZhAO Yu-hang1, Testing Method and Analysis for Anti-abrasion and Thermal Shock Resistance of Foamed Vitrified Brick, Electric Power Construction,Vol.31,No.1 Jan,2010
[31] 劉宏義,”鋼鐵產品與製程特論”課程講義-鋼鐵產品之腐蝕與防蝕技術,中鋼公司鋼鐵研究發展處.
[32] Patent CN102156091A
[33] 中國國家規範-硫酸腐蝕測試GB/T 28907—2012
[34] 英國國家規範-硫酸腐蝕測試EN 14483-2
[35] 莊東漢,材料破損分析,五南出版社
[36] M.A. Salamah, D. White, J. Am. Ceram. Soc. 64 (1981) 224.
[37] C.G. Bergnon, J. Am. Ceram. Soc. 36 (1953) 373.
[38] NACA TN 2935
[39] X. Yang, A. Jha, R. Brydson, R.C. Cochrane, An analysis of the microstructure and interfacial chemistry of steel–enamel interface, Thin Solid Films 443 (2003) 33–45
[40] A. Zucchelli, M. Dignatici, M. Montorsi, R. Carlotti, C. Siligardi, Characterization of vitreous enamel–steel interface by using hot stage ESEM and nano-indentation techniques, Journal of the European Ceramic Society 32 (2012) 2243–2251
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52058-
dc.description.abstract近日,能源使用與日遽增,其主要來源仍然以燃燒石化原料為基礎。然而燃燒石化原料會生成一些像SO2、SO3、NO2、H2O和HCl等化合物,當這些具腐蝕性的酸性物質與冷卻端的金屬接觸時,會發生冷凝作用(形成鹽酸、硝酸、硫酸等),導致腐蝕的發生。熱交換器是在石化行業中常見的一個設備,因此如何防止腐蝕的發生非常重要,耐酸的玻璃基鍍層將是一個很好的方法。
本論文著重於兩部分。一為商用玻璃鍍層的分析,並探討其與鋼管間結合的機制;另一部分則是藉由增加結晶度以及添加碳化矽粉末在塗層中來增加熱傳性能。結果顯示,商業化玻璃鍍層的成分以矽氧化物加上鹼金族氧化物為主,而鈷及鎳氧化物的添加對於釉料和底材的結合至關重要,在界面處發生反應來產生不平整的接合面,提供足夠鎖合力。針對熱傳導性質的提升,結果發現提高結晶度,晶粒並沒有完全連續而是分散在各個小區域,成效不佳;碳化矽顆粒添加對於熱傳性質有所提昇,但需要使用鎳層前處理來降低界面阻抗,10%碳化矽的添加可讓商用鍍層熱傳值提升近40%之多,大幅改善了玻璃熱傳不好的性質。
本論文另外利用光學顯微鏡、SEM、TEM、X射線繞射儀,電子微探分析儀,DSC和TGA熱差熱重分析,來做鍍層性質、表面和橫截面的研究。並且制定檢測流程來測試玻璃鍍層的實用性。
zh_TW
dc.description.abstractRecently, the use of energy is increasing and the main source of energy is still burning fossil-based raw materials. However, the burning of fossil will produce exhausts such asSO2, SO3, NO2, H2O, and HCl. When the exhausts contact with the metal on the cooling side, acidic substances are formed by condensation, including HCl, HNO3, and H2SO4, and corrosion occurs. Heat exchanger is a common equipment in the petrochemical industry. How to prevent the corrosion of heat exchanger is very important. The acid-proof glass-based coating will be a good candidate to protect heat exchanger steel tubes from corrosion.
This study focuses on two parts. One is to analyze the glass-based coating on a commercial heat exchanger steel tube so as to gain better understanding on the mechanism of bonding between the glass coating and steel substrate. The other part is to improve the heat transfer properties of the glass coating by increasing the degree of crystallinity and adding SiC powders in the glass-based coating. The results show that the commercial coating is mainly composed of silicon oxide and alkali oxide, while the presence of cobalt and nickel oxide is critical to bond the glaze to the steel substrate. Reaction occurs at the interface to generate uneven surface, which provides sufficient mechanical locking force. The degree of crystallinity has little effect on the heat conductivity because crystalline grains are dispersed in an amorphous matrix. In contrast, the addition of silicon carbide particles in the glass matrix improves heat transfer properties when a nickel layer pretreatment is employed to reduce the interfacial resistance. The presence of 10 wt% silicon carbide powders in a commercial glass coating results in approximately 40% increase in the heat conductivity.
Finally, this thesis develops a testing procedure to evaluate the performance of a glass coating on heat exchanger steel tubes for the petrochemical industry, including optical microscopy, SEM, TEM, XRD, EPMA, DSC, and TGA to characterize the microstructure and defect of the glass coating.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:05:54Z (GMT). No. of bitstreams: 1
ntu-104-R02527048-1.pdf: 12500902 bytes, checksum: 68bd074ee6cca5b22c586bc07ee333b5 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents總目錄
摘要(i)
Abstract(ii)
總目錄(iv)
圖目錄(vi)
表目錄(x)
第 1 章 緒論 1
1-1 前言 1
1-2 論文架構 4
第 2 章 理論與文獻探討 5
2-1 熱交換器 5
2-2 玻璃基塗層 9
2-2-1 玻璃簡介 9
2-2-2 玻璃塗層的成分 12
2-2-3 玻璃塗層的結合 15
2-2-4 玻璃鍍層的熱傳性 18
2-3 腐蝕與破壞 22
2-3-1 露點腐蝕 23
2-3-2 熱震破壞 26
2-4 檢測 30
第 3 章 實驗步驟與方法 36
3-1 實驗流程 36
3-1-1 底材準備與前處理 38
3-1-2 粉料處理 39
3-1-3 高溫熱處理 40
3-2 巨觀性質觀察 40
3-2-1 表面顏色與形貌觀察 40
3-2-2 重量測量 40
3-3 微結構觀察 40
3-3-1 光學顯微鏡觀察 40
3-3-2 掃描式電子顯微鏡觀察 41
3-3-3 能量散佈光譜儀 41
3-3-4 電子微探分析儀 42
3-3-5 X光繞射儀分析 42
3-3-6 熱重與熱差分析儀 42
3-4 玻璃塗層性質分析 43
3-4-1 硬度 43
3-4-2 熱水耐熱性 43
3-4-3 高溫抗熱性測試 44
3-4-4 硫酸腐蝕試驗 44
3-4-5 動電位極化曲線分析 45
3-4-6 熱震阻量測 46
第 4 章 實驗結果與討論 48
4-1 玻璃鍍層 48
4-1-1 商業用玻璃鍍層觀察 51
4-2 熱傳性能 60
4-3 玻璃鍍層檢測 71
4-3-1 硬度測試 71
4-3-2 熱水耐熱性 74
4-3-3 高溫抗熱性測試 74
4-3-4 硫酸腐蝕試驗 74
4-3-5 熱震阻測量 76
第 5 章 結論 78
dc.language.isozh-TW
dc.subject熱交換器zh_TW
dc.subject熱傳導zh_TW
dc.subject琺瑯zh_TW
dc.subject結合氧化物zh_TW
dc.subject碳化矽zh_TW
dc.subjectHeat exchangeren
dc.subjectSiCen
dc.subjectHeat transferen
dc.subjectBonding oxideen
dc.subjectEnamelen
dc.title熱交換鋼管玻璃基塗層研究zh_TW
dc.titleThe Study of Glass-based Coating for Heat Exchange Steel Tubeen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張癸森,蔣龍仁
dc.subject.keyword熱交換器,琺瑯,結合氧化物,熱傳導,碳化矽,zh_TW
dc.subject.keywordHeat exchanger,Enamel,Bonding oxide,Heat transfer,SiC,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2015-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
12.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved