請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52050
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林俊彬(Chun-Pin Lin) | |
dc.contributor.author | Shun-Chung Hsiao | en |
dc.contributor.author | 蕭舜中 | zh_TW |
dc.date.accessioned | 2021-06-15T14:05:23Z | - |
dc.date.available | 2016-09-24 | |
dc.date.copyright | 2015-09-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | 1. Paster, B.J. and F.E. Dewhirst, Molecular microbial diagnosis. Periodontology 2000, 2009. 51(1): p. 38-44.
2. Evaldson, G., et al., The normal human anaerobic microflora. Scandinavian journal of infectious diseases. Supplementum, 1981. 35: p. 9-15. 3. Lamont, R.J. and H.F. Jenkinson, Oral microbiology at a glance. Vol. 24. 2010: John Wiley & Sons. 4. Cohen, S., et al., Pathways of the pulp 10th Edition. 2006: Elsevier Mosby. 5. Seltzer, G.H., Bender's dental pulp. Carol Stream: Quintessence. 2002. 6. Ingle, J.I., L.K. Bakland, and J.C. Baumgartner, Ingle's endodontics. 2008: PMPH-USA. 7. Siqueira, J. and I. Rôças, Exploiting molecular methods to explore endodontic infections: part 2—redefining the endodontic microbiota. Journal of endodontics, 2005. 31(7): p. 488-498. 8. Rôças, I.N., J.F. Siqueira, and K.R. Santos, Association of Enterococcus faecalis with different forms of periradicular diseases. Journal of Endodontics, 2004. 30(5): p. 315-320. 9. Abramzon, N., et al., Biofilm destruction by RF high-pressure cold plasma jet. Plasma Science, IEEE Transactions on, 2006. 34(4): p. 1304-1309. 10. Costerton, J.W., P.S. Stewart, and E.P. Greenberg, Bacterial biofilms: A common cause of persistent infections. Science, 1999. 284(5418): p. 1318-1322. 11. Costerton, J., P.S. Stewart, and E. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science, 1999. 284(5418): p. 1318-1322. 12. Svensäter, G. and G. Bergenholtz, Biofilms in endodontic infections. Endodontic Topics, 2004. 9(1): p. 27-36. 13. Haapasalo, M., et al., Eradication of endodontic infection by instrumentation and irrigation solutions. Endodontic topics, 2005. 10(1): p. 77-102. 14. Loesche, W.J., Role of Streptococcus mutans in human dental decay. Microbiological reviews, 1986. 50(4): p. 353. 15. Espinosa-Cristóbal, L., et al., Antimicrobial sensibility of Streptococcus mutans serotypes to silver nanoparticles. Materials Science and Engineering: C, 2012. 32(4): p. 896-901. 16. Sakamoto, M., et al., Bacterial reduction and persistence after endodontic treatment procedures. Oral Microbiology and Immunology, 2007. 22(1): p. 19-23. 17. Gibbons, R.J., et al., Studies of the predominant cultivable microbiota of dental plaque. Archives of Oral Biology, 1964. 9(3): p. 365-370. 18. Murray, B.E., The life and times of the Enterococcus. Clinical microbiology reviews, 1990. 3(1): p. 46-65. 19. Stuart, C.H., et al., Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. Journal of endodontics, 2006. 32(2): p. 93-98. 20. Suchitra, U. and M. Kundabala, Enterococcus Faecalis-An Endodontic Pathogen. Endodontology, 2006. 18(2): p. 11-13. 21. Love, R., Enterococcus faecalis–a mechanism for its role in endodontic failure. International Endodontic Journal, 2001. 34(5): p. 399-405. 22. Matos Neto, M., et al., Effectiveness of three instrumentation systems to remove Enterococcus faecalis from root canals. International endodontic journal, 2012. 45(5): p. 435-438. 23. Gomes, B., et al., In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. International endodontic journal, 2001. 34(6): p. 424-428. 24. 林芷安, 化學-機械法之牙本質齲齒移除系統開發. 臺北醫學大學口腔科學研究所學位論文, 2006: p. 1-97. 25. Peters, O., et al., ProTaper rotary root canal preparation: effects of canal anatomy on final shape analysed by micro CT. International Endodontic Journal, 2003. 36(2). 26. HAAPASALO, B.B.M., Update on endodontic irrigating solutions. ENDODONTIC TOPICS, 2012. 2012, 27, 74-102. 27. Du, T.F., et al., Effect of Long-term Exposure to Endodontic Disinfecting Solutions on Young and Old Enterococcus faecalis Biofilms in Dentin Canals. Journal of Endodontics, 2014. 40(4): p. 509-514. 28. Hülsmann, M. and W. Hahn, Complications during root canal irrigation–literature review and case reports. International Endodontic Journal, 2000. 33(3): p. 186-193. 29. Koontongkaew, S. and S. Jitpukdeebodintra, Amphiphilic property of chlorhexidine and its toxicity against Streptococcus mutans GS-5. The Journal of Nihon University School of Dentistry, 1994. 36(4): p. 235-240. 30. Sjögren, U., et al., The antimicrobial effect of calcium hydroxide as a short‐term intracanal dressing. International Endodontic Journal, 1991. 24(3): p. 119-125. 31. Nerwich, A., D. Figdor, and H.H. Messer, pH changes in root dentin over a 4-week period following root canal dressing with calcium hydroxide. Journal of Endodontics, 1993. 19(6): p. 302-306. 32. Ng, R., et al., Endodontic photodynamic therapy ex vivo. Journal of endodontics, 2011. 37(2): p. 217-222. 33. Sadık, B., et al., Effects of laser treatment on endodontic pathogen Enterococcus faecalis: a systematic review. Photomedicine and laser surgery, 2013. 31(5): p. 192-200. 34. 洪昭南 and 郭有斌, 電漿反應器與原理. 化工技術, 2001. 9: p. 156. 35. 李灝銘, 以低溫電漿去除揮發性有機物之研究, in 環境工程研究所. 2001, 國立中央大學: 桃園縣. p. 151. 36. Peratt, A.L., Advances in numerical modeling of astrophysical and space plasmas. Astrophysics and space science, 1996. 242(1-2): p. 93-163. 37. Schutze, A., et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. Plasma Science, IEEE Transactions on, 1998. 26(6): p. 1685-1694. 38. Lee, H.W., et al., Modelling of atmospheric pressure plasmas for biomedical applications. Journal of Physics D: Applied Physics, 2011. 44(5): p. 053001. 39. Kim, J.H., et al., Plasma in dentistry: a review of basic concepts and applications in dentistry. Acta Odontol Scand, 2014. 72(1): p. 1-12. 40. Moon, S.Y., J. Han, and W. Choe, Control of radio-frequency atmospheric pressure argon plasma characteristics by helium gas mixing. Physics of Plasmas (1994-present), 2006. 13(1): p. 013504. 41. Koinuma, H., et al., Development and application of a microbeam plasma generator. Applied physics letters, 1992. 60(7): p. 816-817. 42. Lu, X., et al., An RC Plasma Device for Sterilization of Root Canal of Teeth. Ieee Transactions on Plasma Science, 2009. 37(5): p. 668-673. 43. Stoffels, E., et al., Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio) materials. Plasma Sources Science and Technology, 2002. 11(4): p. 383. 44. Goree, J., B. Liu, and D. Drake, Gas flow dependence for plasma-needle disinfection of S. mutans bacteria. Journal of Physics D: Applied Physics, 2006. 39(16): p. 3479-3486. 45. Goree, J., et al., Killing of S-mutans bacteria using a plasma needle at atmospheric pressure. Ieee Transactions on Plasma Science, 2006. 34(4): p. 1317-1324. 46. Laroussi, M., D. Mendis, and M. Rosenberg, Plasma interaction with microbes. New Journal of Physics, 2003. 5(1): p. 41. 47. Mahasneh, A., et al., Inactivation of Porphyromonas gingivalis by low-temperature atmospheric pressure plasma. Plasma Medicine, 2011. 1(3-4). 48. 張宗良, et al., 常壓非熱電漿應用於表面滅菌之研究回顧. Journal of Health Management, 2012. 10(2): p. 200-210. 49. Joshi, S.G., et al., Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrobial agents and chemotherapy, 2011. 55(3): p. 1053-1062. 50. Gardner, J.F. and M.M. Peel, Introduction to sterilization and disinfection. 1986: Churchill Livingstone. 51. Hoffmann, C., C. Berganza, and J. Zhang, Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res, 2013. 3(1): p. 21. 52. Joycharat, N., et al., Anti-Streptococcus mutans efficacy of Thai herbal formula used as a remedy for dental caries. Pharmaceutical Biology, 2012. 50(8): p. 941-947. 53. Prabhakar, J., et al., Evaluation of antimicrobial efficacy of herbal alternatives (Triphala and green tea polyphenols), MTAD, and 5% sodium hypochlorite against Enterococcus faecalis biofilm formed on tooth substrate: an in vitro study. Journal of Endodontics, 2010. 36(1): p. 83-86. 54. Wikler, M.A., Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Eighth Edition. 2003. 55. French, G., Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. Journal of Antimicrobial Chemotherapy, 2006. 58(6): p. 1107-1117. 56. Shinde, M., et al., Antimicrobial properties of uncapped silver nanoparticles synthesized by DC arc thermal plasma technique. Journal of nanoscience and nanotechnology, 2012. 12(2): p. 887-893. 57. Cao, Y., et al., Efficacy of Atmospheric Pressure Plasma as an Antibacterial Agent Against Enterococcus Faecalis in Vitro. Plasma Science & Technology, 2011. 13(1): p. 93-98. 58. Rupf, S., et al., Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. Journal of Medical Microbiology, 2010. 59(2): p. 206-212. 59. Yamazaki, H., et al., Microbicidal activities of low frequency atmospheric pressure plasma jets on oral pathogens. Dental Materials Journal, 2011. 30(3): p. 384-391. 60. Wilczynska-Borawska, M., et al., OZONE IN DENTISTRY: MICROBIOLOGICAL EFFECTS OF GAS ACTION DEPENDING ON THE METHOD AND THE TIME OF APPLICATION USING THE OZONYTRON DEVICE. EXPERIMENTAL STUDY. Roczniki Pomorskiej Akademii Medycznej w Szczecinie, 2011. 57(2): p. 99-103. 61. 王介甫, 自製噴射式大氣低溫電漿之滅菌研究, in 中原大學生物醫學工程研究所學位論文. 2013, 中原大學. p. 1-90. 62. Kim, G.C., et al., Dental Applications of Low-Temperature Nonthermal Plasmas. Plasma Processes and Polymers, 2013. 10(3): p. 199-206. 63. Sladek, R.E.J., et al., Plasma treatment of dental cavities: A feasibility study. Ieee Transactions on Plasma Science, 2004. 32(4): p. 1540-1543. 64. Du, T., et al., Evaluation of Antibacterial Effects by Atmospheric Pressure Nonequilibrium Plasmas against Enterococcus faecalis Biofilms In Vitro. Journal of Endodontics, 2012. 38(4): p. 545-549. 65. Pan, J., et al., Cold Plasma Therapy of a Tooth Root Canal Infected with Enterococcus faecalis Biofilms In Vitro. Journal of Endodontics, 2013. 39(1): p. 105-110. 66. Schaudinn, C., et al., Evaluation of a nonthermal plasma needle to eliminate ex vivo biofilms in root canals of extracted human teeth. International Endodontic Journal, 2013. 46(10): p. 930-937. 67. Tani, A., et al., Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma. Applied Physics Letters, 2012. 100(25): p. 254103. 68. Chen, W., et al., Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition. Journal of Applied Physics, 2012. 112(1): p. 013304. 69. 許耀文, 利用常壓噴射式電漿沉積氧化鋅薄膜及其特性之研究, in 臺灣大學化學工程學研究所學位論文. 2010, 臺灣大學. p. 1-173. 70. Difco宀 & BBL Manual of Microbiological Culture Media Second Edition. 71. Du, T., et al., Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro. J Endod, 2013. 39(11): p. 1438-43. 72. Gibbons, R., et al., Dental caries and alveolar bone loss in gnotobiotic rats infected with capsule forming streptococci of human origin. Archives of oral biology, 1966. 11(6): p. 549-IN4. 73. ATCC_Bacterial_Culture_Guide - tips and techniques for culturing bacteria and bacteriophages. 74. 詹, 前., 醫護微生物學實驗. 1993, 臺北市: 偉華總經銷. 75. 陳郁融, 介電質放電對大腸桿菌及枯草芽孢桿菌滅菌效率與機制之初步探討, in 中央大學環境工程研究所學位論文. 2011, 中央大學. p. 1-132. 76. Ehlbeck, J., et al., Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D-Applied Physics, 2011. 44(1). 77. Hong, Y., et al., Measurement of hydroxyl radical density generated from the atmospheric pressure bioplasma jet. Journal of Instrumentation, 2012. 7(03): p. C03046. 78. Sedghizadeh, P.P., et al., Inactivation Kinetics Study of an Atmospheric-Pressure Cold-Plasma Jet Against Pathogenic Microorganisms. Ieee Transactions on Plasma Science, 2012. 40(11): p. 2879-2882. 79. Bogaerts, A., et al., Reactive Molecular Dynamics Simulations for a Better Insight in Plasma Medicine. Plasma Processes and Polymers, 2014. 11(12): p. 1156-1168. 80. Park, S.-J., Inactivation of S. mutans Using an Atmospheric Plasma Driven by a Palm-Size-Integrated Microwave Power Module. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010. VOL. 38. 81. Laroussi, M. and F. Leipold, Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 2004. 233(1): p. 81-86. 82. Jiang, C., et al., Nanosecond Pulsed Plasma Dental Probe. Plasma Processes and Polymers, 2009. 6(8): p. 479-483. 83. Xiong, Q., et al., Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy. Plasma Sources Science and Technology, 2013. 22(1): p. 015011. 84. Mertens, N., et al., Inactivation of Microorganisms Using Cold Atmospheric Pressure Plasma with Different Temporal Discharge Characteristics. Plasma Processes and Polymers, 2014. 11(10): p. 910-920. 85. Klämpfl, T.G., et al., Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Applied and environmental microbiology, 2012. 78(15): p. 5077-5082. 86. Dunavant, T.R., et al., Comparative evaluation of endodontic irrigants against Enterococcus faecalis biofilms. Journal of Endodontics, 2006. 32(6): p. 527-531. 87. Burlica, R., et al., Bacteria inactivation using low power pulsed gliding arc discharges with water spray. Plasma Processes and Polymers, 2010. 7(8): p. 640-649. 88. Fernández, A., et al., Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. International journal of food microbiology, 2012. 152(3): p. 175-180. 89. Yu, H., et al., Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12. Journal of applied microbiology, 2006. 101(6): p. 1323-1330. 90. 彭志欽, 低溫大氣電漿束在生物表面組織應用. 清華大學物理學系學位論文, 2009: p. 1-49. 91. Joh, H.M., et al., Electrical and Optical Characterization of Atmospheric-Pressure Helium Plasma Jets Generated With a Pin Electrode: Effects of the Electrode Material, Ground Ring Electrode, and Nozzle Shape. Ieee Transactions on Plasma Science, 2014. 42(12): p. 3656-3667. 92. Mishra, L., et al., Iatrogenic Subcutaneous Emphysema of Endodontic Origin–Case Report with Literature Review. Journal of clinical and diagnostic research: JCDR, 2014. 8(1): p. 279. 93. 傅軍皓, 噴射式針型大氣低溫電漿設計開發與應用於根管滅菌之研究, in 生物醫學工程研究所. 2013, 中原大學. p. 1-115. 94. Duarte, S., et al., Air plasma effect on dental disinfection. Physics of Plasmas, 2011. 18(7). 95. Zach, L. and G. Cohen, Pulp response to externally applied heat. Oral Surgery, Oral Medicine, Oral Pathology, 1965. 19(4): p. 515-530. 96. Park, S.R., et al., Enhancement of the killing effect of low-temperature plasma on Streptococcus mutans by combined treatment with gold nanoparticles. Journal of Nanobiotechnology, 2014. 12. 97. Kim, C.S., et al.,Lung Function and Inflammatory Responses in Healthy Young Adults Exposed to 0.06 ppm Ozone for 6.6 Hours. American Journal of Respiratory and Critical Care Medicine, 2011. 183(9): p. 1215-1221. 98. Traba, C., L. Chen, and J.F. Liang, Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials. Curr Appl Phys, 2013. 13(Suppl 1): p. S12-S18. 99. Wang, S., et al., Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm. Int J Mol Sci, 2014. 15(7): p. 12791-806. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52050 | - |
dc.description.abstract | 口腔疾病與微生物感染感有高度的相關性,以目前的傳統治療方式,可利用機械性清創 (mechanical preparation)以及化學性沖洗(chemical irrigation)降低細菌量,但無法達到完全殺菌之目標,同時可能產生副作用,例如使用化學藥劑意外造成的組織傷害。而電漿系統之發展,已進展到可於常溫常壓下操作之特性,其具殺菌力之產物半衰期短,不易累積毒性,故有應用於牙科之領域潛力。變形鏈球菌(Streptococcus mutans)為兼性厭氧菌,為口腔中齲齒之主要致病菌,並且存在於感染之根管內,糞腸球菌 (Enterococcus faecalis)為根管感染中持續性感染(persistent infection)以及治療失敗案例中的優勢菌種,故選定兩種細菌作為殺菌處理之標的,採用的方式為將細菌塗布於培養基後以電漿系統進行殺菌測試,記錄抑菌圈直徑 (Diameter of inhibition zone)進行效能分析。本實驗採用的新型電漿系統,特色為短脈衝電源輸出,並且能於常溫常壓下運作,選用氦氣、氦氣混合氧氣為兩種工作氣體,可調控之參數為氣體流量、測試時間以及測試距離,選定之參數範圍以臨床上可行之範圍做為限制條件,研究結果顯示: (1)流量為決定殺菌效能的最主要因素,定量方面對於抑菌圈直徑之影響大於其他條件;定性方面,若流量大於1.0slm(standard liter per minute),則會產生抑制不全之現象,於氦氣、氦氣混合氧氣之組別皆可於抑制圈之中心發現無法抑制的菌落。(2)時間以及距離在其他條件固定之前提下,與抑菌圈直徑具有線性關係。(3)氦氣混合氧氣之組別:於流量為0.5至1.0slm之前提下,最低有效殺菌時間為15秒。(4)純氦氣組別:於流量為1.5slm之前提下,最低有效殺菌時間為60秒。(5)電漿殺菌之效能於兩個菌種間無顯著性之差異(6)以氦氣混合氧氣為輔助氣體之組別,殺菌效能明顯高於單純使用氦氣之組別。由上述之結果可得知,新型電漿殺菌系統,若以臨床上可行之參數範圍內於培養基上進行操作,可見顯著之殺菌效能,但仍需進一步完整之研究,驗證其對於生物膜(biofilm)以及實際應用於人體之效能。 | zh_TW |
dc.description.abstract | Oral disease is highly related with microbiological infection. In several decades, treatment of dental infection was accomplished by mechanical preparation and chemical irrigation. However, primary goal of treatment is to decrease the total number of bacteria, but total elimination of bacteria is impossible; In addition, accident may occurred during chemical irrigation and may damage to human tissue such as skin, mucosa, periapical tissue, etc. In recent years, plasma system can operate in atmosphere condition at room temperature and pose a potential to application in dental treatment. In this study, Streptococcus mutans, and Enterococcus faecalis which are important oral pathogens were selected as a target to perform antibacterial test with plasma system. Diameter of inhibition zone was measured in each condition for the purpose of quantitative analysis. In this study,
Needle Type Nano-second Pulsed Atmospheric-pressure Cold Plasma system was established and use pure helium and helium with oxygen mixture as two kinds of working gas; Controllable conditions including flow(gas flow rate), time(plasma exposure time), distance(applied distance of plasma). With respect to clinical limitation, all condition was set to a limited range. Result shows: (1)Flow is a determinant factor of antibacterial effect, quantitative study shows diameter increases with flow; but in qualitative study, with increase of flow(higher than 1.0 slm),incomplete bactericidal effect was noted over center zone of inhibition. (2)With fixed condition of flow, linear correlation is significant between time and diameter also significant between distance and diameter. (3)Group of Helium with oxygen mixture: with limited condition of flow(0.5~1.0 Standard Liter per Minute), minimum effective time is 15 seconds.(4)Pure helium group :with limited condition of flow(1.5 Standard Liter per Minute), minimum effective time is 60 seconds (5) No significant difference between two species of bacterial in bactericidal effect(6)With addition of oxygen into Helium, obvious higher bactericidal effects was noted compared with groups of pure helium. In conclusion, this new plasma system has an effective bactericidal effect on oral pathogen within limited conditions which are applicable in clinical treatment. Further study is indicated with biofilm condition and experiment in vivo. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T14:05:23Z (GMT). No. of bitstreams: 1 ntu-104-R01422018-1.pdf: 4990762 bytes, checksum: a5754533a0edf5699ead4cc9f7fcd2fb (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 第一章 前言 1
第二章 文獻回顧 2 2.1 口腔疾病簡介以及其致病機轉 2 2.1.1 口腔感染疾病之重要致病菌以及感染途徑 2 2.1.2 生物膜(Biofilm) 3 2.1.3 變形鏈球菌(Streptococcus mutans) 4 2.1.4 糞腸球菌 (Enterococcus faecalis) 5 2.2 口腔感染疾病之治療模式 6 2.2.1 機械性清創(Mechanical preparation) 6 2.2.2 化學性清潔(Chemical cleaning) 7 2.2.3 其他研究中之方式 9 2.3 新型殺菌治療模式-電漿殺菌 9 2.3.1 電漿簡介 9 2.3.2 電漿之分類 10 2.3.3 穩定常溫常壓電漿之設計演進 11 2.3.4 電漿滅菌檢測方式 15 2.3.5 電漿應用於生醫或牙醫學領域之研發現況 16 第三章 動機與目的 18 第四章 材料與方法 19 4.1 電漿系統 19 4.1.1 新型電漿系統之設置 19 4.1.2 電漿產物光譜分析(Optical Emission Spectroscopy) 20 4.1.3 輸出功率分析 21 4.2 實驗材料之製備與評估 21 4.2.1 培養基/液配製 21 4.2.2 實驗用菌株 22 4.2.3 菌種之活化、保存以及分離 22 4.3 抑菌圈測試 24 4.3.1 樣本製備 24 4.3.2 殺菌測試 25 4.3.3 控制組 25 4.3.4 結果評估 26 第五章 結果 27 5.1 電漿系統檢測 27 5.1.1 電漿系統電性檢測 27 5.1.2 光譜儀量測系統 27 5.2 電漿滅菌效能評估 28 5.2.1 糞腸球菌(E.faecalis)之抑菌圈直徑- 28 5.2.2 變形鏈球菌(S. mutans) 之抑菌圈直徑 30 5.2.3 電漿於不同菌種間的殺菌效能差異 31 5.2.4 控制組 32 第六章 討論 33 6.1 電漿系統檢測 33 6.1.1 電漿系統電性檢測 33 6.1.2 光譜儀量測系統 33 6.2 影響電漿殺菌之生物因素 35 6.2.1 菌種、菌落狀態 35 6.2.2 濃度,細菌生長週期 36 6.3 影響電漿殺菌之參數設定 36 6.3.1 電漿腔體之設計、電壓、電流、頻率 36 6.3.2 主要氣體與輔助氣體的選擇 37 6.3.3 氣體流量 37 6.3.4 測試時間 38 6.3.5 測試距離 39 6.4 電漿對於人體組織之潛在影響 39 第七章 結論 41 第八章 未來研究方向 42 參考資料 43 圖表目錄 49 圖 49 表 59 | |
dc.language.iso | zh-TW | |
dc.title | 針式奈秒短脈衝低溫常壓電漿對變形鏈球菌與糞腸球菌之抗菌效應研究 | zh_TW |
dc.title | Antibacterial Effects of Needle Type Nano-second Pulsed Atmospheric-pressure Cold Plasma on Streptococcus mutans and Enterococcus faecalis | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 徐振哲(Cheng-Che Hsu) | |
dc.contributor.oralexamcommittee | 陳文斌(Weng-Pin Chen),李志偉(Jyh-Wei Lee),章浩宏(Hao-Hueng Chang) | |
dc.subject.keyword | 抗菌,奈秒短脈衝電源,常溫常壓電漿,變形鏈球菌,糞腸球菌, | zh_TW |
dc.subject.keyword | Antibacterial,nano-second pulsed power module,Atmospheric-pressure Cold Plasma,Streptococcus mutans,Enterococcus faecalis, | en |
dc.relation.page | 65 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-20 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。