Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52039
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪淑蕙(Shu-Huei Hung)
dc.contributor.authorTzu-Chi Linen
dc.contributor.author林姿綺zh_TW
dc.date.accessioned2021-06-15T14:04:41Z-
dc.date.available2016-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-19
dc.identifier.citationBoore, D. M. (1972). Finite difference methods for seismic wave propagation in heterogeneous materials. Methods in computational physics 11: 1-37.
Cohen, G., Joly, P., & Tordjman, N. (1993, June). Construction and analysis of higher-order finite elements with mass lumping for the wave equation. In Proceedings of the second international conference on mathematical and numerical aspects of wave propagation (pp. 152-160).
Dalrymple, R. A. and R. G. Dean (1991). Water wave mechanics for engineers and scientists, Prentice-Hall.
Dravinski, M. (1983). Scattering of plane harmonic SH wave by dipping layers or arbitrary shape. Bulletin of the Seismological Society of America 73(5): 1303-1319.
Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc Roy Soc A241, 376–396.
Faccioli, E., Maggio, F., Paolucci, R., & Quarteroni, A. (1997). 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. Journal of seismology, 1(3), 237-251.
Gazdag, J. (1981). Modeling of the acoustic wave equation with transform methods. Geophysics 46(6): 854-859.
Gutenberg, B. and C. Richter (1954). Seismicity of the earth and associated phenomena, Princeton University Press.
Hanks, Thomas C.; Kanamori, Hiroo. (1979). Moment magnitude scale. Journal of Geophysical Research. Journal of geophysical research 84 (B5): 2348–2350. Bibcode: 1979 JGR.84.2348H.
Hartzell, S. H., & Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73(6A), 1553-1583.
Helmberger, D. V. (1974). Generalized ray theory for shear dislocations. Bulletin of the Seismological Society of America 64(1): 45-64.
Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1), 4-18.
Hsu, Y. J., Ando, M., Yu, S. B., & Simons, M. (2012). The potential for a very large earthquake along the southernmost Ryukyu subduction zone. Geophys. Res. Lett, 39.
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
Imamura, F. (1996). Review of tsunami simulation with a finite difference method. Long-wave runup models: 25-42.
Imamura, F., Yalciner, A. C., & Ozyurt, G. (2006). Tsunami modelling manual. UNESCO IOC international training course on Tsunami Numerical Modelling.
Irikura, K. and H. Miyake (2011). Recipe for predicting strong ground motion from crustal earthquake scenarios. Pure and Applied Geophysics 168(1-2): 85-104.
Kanamori, H. (1977). The energy release in great earthquakes. Journal of geophysical research 82(20): 2981-2987.
Komatitsch, D. (1997). Meぴthodes spectrales et eぴleぴments spectraux pour l'eぴquation de l'eぴlastodynamique 2D et 3D en milieu heぴteぴrogene. PhD thesis, Institut de Physique du Globe de Paris, Paris.
Komatitsch, D. and J. Tromp (2002). Spectral-element simulations of global seismic wave propagation—I. Validation. Geophysical Journal International 149(2): 390-412.
Komatitsch, D. and J. Tromp (2002). Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International 150(1): 303-318.
Komatitsch, D. and J.-P. Vilotte (1998). The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America 88(2): 368-392.
Komatitsch, D., Vilotte, J. P., Vai, R., Castillo-Covarrubias, J. M., & Sanchez-Sesma, F. J. (1999). The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems. International Journal for numerical methods in engineering, 45(9), 1139-1164.
Kuo, C. H., K. L. Wen, H. H. Hsieh, C. M. Lin, T. M. Chang, and K.W. Kuo. (2012). Site classification and Vs30 Estimation of free-field TSMIP stations using the logging data of EGDT. Eng. Geol., 129-130: 68-75.
Lee, S. J., Chen, H. W., Liu, Q., Komatitsch, D., Huang, B. S., & Tromp, J. (2008). Three-dimensional simulations of seismic-wave propagation in the Taipei basin with realistic topography based upon the spectral-element method. Bulletin of the Seismological Society of America, 98(1), 253-264.
Liu, C. S., Liu, S. Y., Lallemand, S. E., Lundberg, N., & Reed, D. L. (1998). Digital elevation model offshore Taiwan and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences, 9(4), 705-738.
Liu, P. L., Woo, S. B., & Cho, Y. S. (1998). Computer programs for tsunami propagation and inundation. Cornell University.
Mindlin, R. D. (1936). Force at a point in the interior of a semi‐infinite solid. Journal of Applied Physics, 7(5), 195-202.
Minoura, K., Imamura, F., Sugawara, D., Kono, Y., & Iwashita, T. (2001). The 869 J ogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan.
Miyake, H., Iwata, T., & Irikura, K. (2003). Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bulletin of the Seismological Society of America, 93(6), 2531-2545.
Monecke, K., Finger, W., Klarer, D., Kongko, W., McAdoo, B. G., Moore, A. L., & Sudrajat, S. U. (2008). A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature, 455(7217), 1232-1234.
Nakamura, M. (2009). Fault model of the 1771 Yaeyama earthquake along the Ryukyu Trench estimated from the devastating tsunami. Geophysical Research Letters 36(19).
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 75(4): 1135-1154.
Paolucci, R., Faccioli, E., & Maggio, F. (1999). 3D response analysis of an instrumented hill at Matsuzaki, Japan, by a spectral method. Journal of Seismology, 3(2), 191-209.
Patera, A. T. (1984). A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of computational Physics 54(3): 468-488.
Priolo, E., Carcione, J. M., & Seriani, G. (1994). Numerical simulation of interface waves by high‐order spectral modeling techniques. The Journal of the Acoustical Society of America, 95(2), 681-693.
Rajendran, K. (2013). On the recurrence of great subduction zone earthquakes. Current Science 104(7): 880-892.
Saito, T., Satake, K., & Furumura, T. (2010). Tsunami waveform inversion including dispersive waves: the 2004 earthquake off Kii Peninsula, Japan. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B6).
Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. J. geophys. Res 88(6): 4984-4996.
Scholz, C. H. and J. Campos (1995). On the mechanism of seismic decoupling and back arc spreading at subduction zones. Journal of Geophysical Research: Solid Earth (1978–2012) 100(B11): 22103-22115.
SellaGf, D. and M. Revel (2002). A Modelfor Recent Plate Velocities from Space Geodesy. Journalof GeophysicalResearch 107(B4): l.
Seno, T., Stein, S., & Gripp, A. E. (1993). A model for the motion of the Philippine Sea plate consistent with NUVEL‐1 and geological data. Journal of Geophysical Research: Solid Earth (1978–2012), 98(B10), 17941-17948.
Seriani, G. (1997). A parallel spectral element method for acoustic wave modeling. Journal of Computational Acoustics 5(01): 53-69.
Seriani, G. (1998). 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor. Computer Methods in Applied Mechanics and Engineering 164(1): 235-247.
Seriani, G., Priolo, E., Carcione, J.M. & Padovani, E. (1992). High-order spectral element method for elastic wave modeling. Expanded abstracts of the SEG, pp. 1285^1288, 62nd Int. Mtng of the SEG, New-Orleans.
Seriani, G. and E. Priolo (1994). Spectral element method for acoustic wave simulation in heterogeneous media. Finite elements in analysis and design 16(3): 337-348.
Smith, W. D. (1975). The application of finite element analysis to body wave propagation problems. Geophysical Journal International 42(2): 747-768.
Steketee, J. A. (1958). On Volterra's dislocations in a semi-infinite elastic medium. Canadian Journal of Physics, 36(2), 192-205.
Theunissen, T., Font, Y., Lallemand, S., & Liang, W. T. (2010). The largest instrumentally recorded earthquake in Taiwan: revised location and magnitude, and tectonic significance of the 1920 event. Geophysical Journal International, 183(3), 1119-1133.
Titov, V. V., Mofjeld, H. O., González, F. I., & Newman, J. C. (2001). Offshore forecasting of Alaskan tsunamis in Hawaii. Tsunami Research at the End of a Critical Decade, 75-90.
Titov, V. V. and C. E. Synolakis (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering.
Uyeda, S. and H. Kanamori (1979). Back-arc opening and the mode of subduction. J. geophys. Res 84(3): 1049-1061.
Wang, C. Y., Lee, Y. H., Ger, M. L., & Chen, Y. L. (2004). Investigating subsurface structures and P-and S-wave velocities in the Taipei basin. Terrestrial Atmospheric and Oceanic Sciences, 15, 609-628.
Wells, D. L., and K. J. Coppersmith (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am., 84, 974–1002.
Wu, Y. M., Shyu, J. B. H., Chang, C. H., Zhao, L., Nakamura, M., & Hsu, S. K. (2009). Improved seismic tomography offshore northeastern Taiwan: implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophysical Journal International, 178(2), 1042-1054.
Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41-59.
Zhao, S., & Takemoto, S. (2000). Deformation and stress change associated with plate interaction at subduction zones: a kinematic modelling. Geophysical Journal International, 142(2), 300-318.
李孟芬,(1995) 台灣地區地震之可能性研究,國立中央大學地球物理學系碩士論文。
李昭興、許明光、林欽隆、徐月娟、郭鎧紋、王承韜,(2008) 台灣地區海域地震與海嘯發生之關聯性研究,中央氣象局委託計畫,計畫編號MOTC-CWB-97-E-26。
林柏佑,(2009) 利用單位海嘯模擬方法建立台灣近海海嘯警報系統,國立中央大學地球物理研究所碩士論文。
林欽隆,(2008) 台灣海域海嘯狀況與海巡艦艇因應對策之研究,國立台灣海洋大學博士論文。
洪奕星,(2013) 臺灣海域會發生大海嘯嗎?,臺灣博物,頁88-93。
陳韻如,(2008) 2006年屏東外海地震引發海嘯的數值模擬探討,國立中央大學水文科學研究所碩士論文。
黃惠絹,(2008) 馬尼拉海溝地震引發海嘯的潛勢分析,國立中央大學水文科學研究所碩士論文。
廖玲琬,(2008) 臺灣東部海嘯潛勢評估,國立中央大學地球物理學系碩士論文。
劉啟清,(2005) 海嘯與台灣,中央研究院週報,第1004期。
謝佳紘,(2009) 台灣沿海近域海嘯之數值模擬分析,國立高雄海洋科技大學海洋環境工程研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52039-
dc.description.abstract台灣位處於環太平洋地震帶上,其附近的琉球海溝及馬尼拉海溝存在引發大型隱沒帶地震的構造地質條件,其中台灣東北外海的琉球海溝最南段,透過地球物理及地質資料分析指出,其於未來具有發生大型地震之可能性。前人以花蓮-蘇澳沿海的間震期CGPS資料分析此區域的應力累積狀況,推估最大地震規模可達Mw 8.7,其所產生之地震波將會對台灣東北部及台北都會區造成嚴重威脅。另外,藉由歷史地震與海嘯紀錄顯示,除了地震本身所造成之強地動之外,亦可能引發大規模海嘯侵襲台灣本島及鄰近海域。本研究以琉球海溝南段為研究目標,透過數值模擬分析此區大型地震發生時可能產生的強地動與海嘯傳播情境。研究中採用強地震預估準則建構四種不同震源破裂模型,同時亦利用間震期CGPS資料進行震源逆推,透過實際觀測資料求得未來地震發生時斷層破裂面上之錯動量分布。進一步透過譜元素法(Spectral-Element Method, SEM)進行三維地震波傳模擬,分析此五種隱沒帶地震的破裂情境對台灣各地的強地動過程,了解各地區地表最大加速度(Peak ground acceleration, PGA)分佈。同時利用彈性半空間錯位模型(Elastic half-space dislocation model)計算各破裂情境之海底同震變形,將之作為海嘯初始波高模型,並以Dispersive海嘯傳播模式來模擬與分析所有破裂情境所產生的海嘯傳播至台灣各沿海地區之情形。由數值模擬結果得知,儘管地震發生於台灣東北外海,由於破裂方向加成效應(Directivity effect),台灣島上部分區域將可能產生超過2g的強烈震動,其主要位於近震源區之台灣東部宜蘭、花蓮一帶。台北都會區因所處之台北盆地產生的放大效應,儘管其距離震源區達150公里,產生之PGA量值仍可超過1g。所有情境之海嘯傳播模擬結果於台灣東岸皆產生顯著的海水抬升量(> 5m),如宜蘭、花蓮及台東沿海。若考量斷層錯動所造成的同震地殼下陷,宜蘭地區將可能遭受到的海嘯波高甚至達20公尺以上。透過本研究之數值模擬結果,可評估此段隱沒帶未來發生大型地震時可能的影響程度與範圍,包括地震波的震動與海嘯的襲擊,同時,這些情境地震之模擬結果,亦可作為將來研擬地震防災對策的參考。zh_TW
dc.description.abstractDuring the last century, many big earthquakes with magnitude larger than 9 had occurred along the subduction zones. For example, the 1960 Chile earthquake (M9.5), the 2004 Sumatra-Andaman earthquake (M9.3), and the 2011 Tohoku earthquake (M9.0). In this study, we focus on the southernmost Ryukyu Trench which is extremely close to northern Taiwan. Interseismic GPS data in northeast Taiwan shows a pattern of strain accumulation suggests that the maximum likely magnitude of a potential future large earthquake in this area is probably about moment magnitude 8.7. In order to evaluate the influence of the potential megathrust event, we consider a 3-D fault plane along this portion of subduction zone at depths shallower than 50 km. We apply the interseismic GPS data to invert the source slip pattern on the subducting fault plane. In addition, several source rupture scenarios with different characterized slip patterns are considered to simulate the ground shaking based on 3-D spectral-element method. We analyze ShakeMap and ShakeMovie from the simulation results to evaluate the influence over the island between different source models. A dispersive tsunami propagation simulation is also carried out to evaluate the maximum tsunami wave height along the coastal areas of Taiwan due to coseismic seafloor deformation of different source models. From the results of all rupture scenarios, the peak ground acceleration larger than 1g can be observed in many areas even though the rupture occurs off northeastern coast of Taiwan. The tsunami simulation results show that the sea level raised significantly along the eastern coast, especially in the offshore area of Ilan where tsunami high can over 20 meters. The results of this numerical simulation study can provide a physically based information of megathrust earthquake scenario for the emergency response agency to take the appropriate action before the really big one happens.en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:04:41Z (GMT). No. of bitstreams: 1
ntu-104-R02224208-1.pdf: 19742490 bytes, checksum: ea6414d72a27be384a106725fbc1126b (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究背景 2
1.2.1 歷史地震紀錄與前人研究 4
1.2.2 歷史海嘯紀錄 4
1.3 本研究內容概述 8
第二章 研究方法 9
2.1 引言 9
2.2 建立琉球隱沒帶南段三維斷層模型 9
2.3 三維地震波模擬 13
2.3.1 譜元素法 13
2.3.2 三維速度模型與網格模型 14
2.4 海嘯傳播模擬 16
2.4.1 彈性錯位理論 16
2.4.2 Dispersive海嘯傳播模式 20
2.4.3 網格模型建立 21
第三章 情境地震 23
3.1 引言 23
3.2震源破裂模型 25
3.2.1 強地動預估準則 25
3.2.2 特徵震源模型 25
3.2.3 均一錯動分布之震源破裂模型 27
3.3 地震波傳模擬結果與討論 31
3.3.1 地表最大加速度量值分布圖 31
3.3.2 瞬時速度波場 31
3.4海嘯傳播模擬結果與討論 39
3.4.1地表同震變形垂直分量分布結果 39
3.4.2最大海嘯波高分布圖與瞬時動態傳播過程 40
第四章 CGPS資料震源逆推 47
4.1 引言 47
4.2 震源錯動量逆推 47
4.2.1 反向滑移模型 47
4.2.1 間震期CGPS資料 47
4.2.2 逆推方法 48
4.2.3 解析度標準測試 48
4.2.4 實際資料逆推結果 49
4.3 地震波傳模擬結果與討論 56
4.3.1地表最大加速度量值分布圖 56
4.3.2瞬時速度波場 56
4.4 海嘯傳播模擬結果與討論 61
4.4.1地表同震變形垂直分量分布結果 61
4.4.2最大海嘯波高分布圖與瞬時動態傳播過程 61
第五章 綜合討論 65
5.1 引言 65
5.2 五種不同震源破裂情境之綜合討論 65
5.2.1 震源破裂模型 66
5.2.2 震波波傳模擬結果 66
5.2.3 地表及海底同震變形分布結果 67
5.2.4 海嘯傳播模擬結果 67
5.3 純逆衝情境地震之探討 73
5.3.1 震波波傳模擬結果 73
5.3.2 地表及海底同震變形分布結果 74
5.3.3 海嘯傳播模擬結果 74
5.4 地震重現週期之影響 78
5.5 與研究區域中大規模地震之比較 81
第六章 結論與未來展望 83
6.1 結論 83
6.2 未來研究方向 84
參考文獻 86
dc.language.isozh-TW
dc.subject地震波與海嘯數值模擬zh_TW
dc.subject琉球海溝南段zh_TW
dc.subject大型隱沒帶地震zh_TW
dc.subject情境地震zh_TW
dc.subject震源逆推zh_TW
dc.subjectsource inversionen
dc.subjectlarge subduction zone earthquakeen
dc.subjectSouthernmost Ryukyu Trenchen
dc.subjecttsunami and shaking simulationsen
dc.subjectscenario earthquakeen
dc.title琉球海溝南段大型隱沒帶地震之地震波與海嘯數值模擬研究zh_TW
dc.titleTsunami and shaking simulations of potential large subduction zone earthquake along the southernmost Ryukyu Trenchen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor李憲忠(Shiann-Jong Lee)
dc.contributor.oralexamcommittee馬國鳳(Kuo-Fong Ma),曾泰琳(Tai-Lin Tseng),許雅儒(Ya-Ju Hsu)
dc.subject.keyword琉球海溝南段,大型隱沒帶地震,情境地震,震源逆推,地震波與海嘯數值模擬,zh_TW
dc.subject.keywordSouthernmost Ryukyu Trench,large subduction zone earthquake,scenario earthquake,,source inversion,tsunami and shaking simulations,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2015-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
19.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved