Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52033
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊健志(Chien-chih Yang)
dc.contributor.authorHao Chenen
dc.contributor.author成浩zh_TW
dc.date.accessioned2021-06-15T14:04:16Z-
dc.date.available2020-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-20
dc.identifier.citationAkita, K., Hasezawa, S., and Higaki, T. (2013). Breaking of plant stomatal one-cell-spacing rule by sugar solution immersion. PLoS One 8, e72456.
Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., and Leon, P. (2000). Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14, 2085-2096.
Bergmann, D.C., Lukowitz, W., and Somerville, C.R. (2004). Stomatal development and pattern controlled by a MAPKK kinase. Science 304, 1494-1497.
Bhave, N.S., Veley, K.M., Nadeau, J.A., Lucas, J.R., Bhave, S.L., and Sack, F.D. (2009). TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems. Planta 229, 357-367.
Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu, J.K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17, 1043-1054.
Claeyssen, E., and Rivoal, J. (2007). Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry 68, 709-731.
Cordoba, E., Aceves-Zamudio, D.L., Hernandez-Bernal, A.F., Ramos-Vega, M., and Leon, P. (2015). Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana. J Exp Bot 66, 147-159.
Ding, Y., Li, H., Zhang, X., Xie, Q., Gong, Z., and Yang, S. (2015). OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32, 278-289.
Dong, C.H., Agarwal, M., Zhang, Y., Xie, Q., and Zhu, J.K. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A 103, 8281-8286.
Dong, J., MacAlister, C.A., and Bergmann, D.C. (2009). BASL controls asymmetric cell division in Arabidopsis. Cell 137, 1320-1330.
Dow, G.J., Berry, J.A., and Bergmann, D.C. (2014). The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana. New Phytol 201, 1205-1217.
Engineer, C.B., Ghassemian, M., Anderson, J.C., Peck, S.C., Hu, H., and Schroeder, J.I. (2014). Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature 513, 246-250.
Formela, M., Samardakiewicz, S., Marczak, L., Nowak, W., Narozna, D., Bednarski, W., Kasprowicz-Maluski, A., and Morkunas, I. (2014). Effects of endogenous signals and Fusarium oxysporum on the mechanism regulating genistein synthesis and accumulation in yellow lupine and their impact on plant cell cytoskeleton. Molecules 19, 13392-13421.
Fujita, Y., Fujita, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of plant research 124, 509-525.
Geisler, M., Nadeau, J., and Sack, F.D. (2000). Oriented asymmetric divisions that generate the stomatal spacing pattern in arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12, 2075-2086.
Gibson, S.I. (2005). Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8, 93-102.
Gray, J.E., Holroyd, G.H., van der Lee, F.M., Bahrami, A.R., Sijmons, P.C., Woodward, F.I., Schuch, W., and Hetherington, A.M. (2000). The HIC signalling pathway links CO2 perception to stomatal development. Nature 408, 713-716.
Hara, K., Kajita, R., Torii, K.U., Bergmann, D.C., and Kakimoto, T. (2007). The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21, 1720-1725.
Hofmann, N.R. (2008). They all scream for ICE1/SCRM2: core regulatory units in stomatal development. Plant Cell 20, 1732.
Humble, G.D., and Raschke, K. (1971). Stomatal opening quantitatively related to potassium transport: evidence from electron probe analysis. Plant Physiol 48, 447-453.
Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6, 3901-3907.
Jewaria, P.K., Hara, T., Tanaka, H., Kondo, T., Betsuyaku, S., Sawa, S., Sakagami, Y., Aimoto, S., and Kakimoto, T. (2013). Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP Kinase MPK6 and the SPCH protein level. Plant Cell Physiol 54, 1253-1262.
Jiang, F., and Hartung, W. (2008). Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59, 37-43.
Kanaoka, M.M., Pillitteri, L.J., Fujii, H., Yoshida, Y., Bogenschutz, N.L., Takabayashi, J., Zhu, J.K., and Torii, K.U. (2008). SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation. Plant Cell 20, 1775-1785.
Khan, M., Rozhon, W., Bigeard, J., Pflieger, D., Husar, S., Pitzschke, A., Teige, M., Jonak, C., Hirt, H., and Poppenberger, B. (2013). Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. J Biol Chem 288, 7519-7527.
Kim, T.W., and Wang, Z.Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61, 681-704.
Kim, T.W., Michniewicz, M., Bergmann, D.C., and Wang, Z.Y. (2012). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482, 419-422.
Laby, R.J., Kincaid, M.S., Kim, D., and Gibson, S.I. (2000). The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23, 587-596.
Lake, J.A., and Woodward, F.I. (2008). Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. New Phytol 179, 397-404.
Lampard, G.R. (2009). The missing link?: Arabidopsis SPCH is a MAPK specificity factor that controls entry into the stomatal lineage. Plant Signal Behav 4, 425-427.
Lang, Z., and Zhu, J. (2015). OST1 phosphorylates ICE1 to enhance plant cold tolerance. Science China. Life sciences. Research Highlight
Lehmann, P., and Or, D. (2015). Effects of stomata clustering on leaf gas exchange. New Phytol. Epub
Liang, C.H., and Yang, C.C. (2015). Identification of ICE1 as a negative regulator of ABA-dependent pathways in seeds and seedlings of Arabidopsis. Plant Mol Biol. Epub
MacAlister, C.A., Ohashi-Ito, K., and Bergmann, D.C. (2007). Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445, 537-540.
Miura, K., and Ohta, M. (2010). SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. J Plant Physiol 167, 555-560.
Miura, K., Ohta, M., Nakazawa, M., Ono, M., and Hasegawa, P.M. (2011). ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J 67, 269-279.
Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J., and Hasegawa, P.M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19, 1403-1414.
Ohashi-Ito, K., and Bergmann, D.C. (2006). Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell 18, 2493-2505.
Pillitteri, L.J., and Torii, K.U. (2007). Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development. Bioessays 29, 861-870.
Pillitteri, L.J., and Torii, K.U. (2012). Mechanisms of stomatal development. Annu Rev Plant Biol 63, 591-614.
Pillitteri, L.J., and Dong, J. (2013). Stomatal development in Arabidopsis. Arabidopsis book 11, e0162.
Pillitteri, L.J., Bogenschutz, N.L., and Torii, K.U. (2008). The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Plant Cell Physiol 49, 934-943.
Raghavendra, A.S., Gonugunta, V.K., Christmann, A., and Grill, E. (2010). ABA perception and signalling. Trends Plant Sci 15, 395-401.
Ramon, M., Rolland, F., and Sheen, J. (2008). Sugar sensing and signaling. Arabidopsis book 6, e0117.
Richardson, L.G., and Torii, K.U. (2013). Take a deep breath: peptide signalling in stomatal patterning and differentiation. J Exp Bot 64, 5243-5251.
Rolland, F., Baena-Gonzalez, E., and Sheen, J. (2006). Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57, 675-709.
Rook, F., Hadingham, S.A., Li, Y., and Bevan, M.W. (2006). Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ 29, 426-434.
Rook, F., Corke, F., Card, R., Munz, G., Smith, C., and Bevan, M.W. (2001). Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26, 421-433.
Rowson, J.M. (1946). The significance of stomatal index as a differential character; studies in the genera Atropa, Datura, Digitalis, Phytolacca and in polyploid leaves. Q J Pharm Pharmacol 19, 136-143.
Serna, L. (2009). Cell fate transitions during stomatal development. Bioessays 31, 865-873.
Shpak, E.D., McAbee, J.M., Pillitteri, L.J., and Torii, K.U. (2005). Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309, 290-293.
Tanaka, Y., Nose, T., Jikumaru, Y., and Kamiya, Y. (2013). ABA inhibits entry into stomatal-lineage development in Arabidopsis leaves. Plant J.
Vaten, A., and Bergmann, D.C. (2012). Mechanisms of stomatal development: an evolutionary view. EvoDevo 3, 11.
Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., Harter, K., and Kudla, J. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40, 428-438.
Wang, H., Ngwenyama, N., Liu, Y., Walker, J.C., and Zhang, S. (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19, 63-73.
Wanner, L.A., and Junttila, O. (1999). Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120, 391-400.
Weiner, J.J., Peterson, F.C., Volkman, B.F., and Cutler, S.R. (2010). Structural and functional insights into core ABA signaling. Curr Opin Plant Biol 13, 495-502.
Wrzaczek, M., and Hirt, H. (2001). Plant MAP kinase pathways: how many and what for? Biol Cell 93, 81-87.
Xu, Y., Kanauchi, A., von Arnim, A.G., Piston, D.W., and Johnson, C.H. (2003). Bioluminescence resonance energy transfer: monitoring protein-protein interactions in living cells. Methods Enzymol 360, 289-301.
Zhou, L., Jang, J.C., Jones, T.L., and Sheen, J. (1998). Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci U S A 95, 10294-10299.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52033-
dc.description.abstract植物的氣孔發育受到複雜的訊息整合所調控,使植物能適應外界環境的變化。糖在植物中不僅是代謝物,其濃度亦會隨著環境變化而改變,近期研究顯示,高濃度的糖會造成氣孔發育異常。ICE1/SCRM 在植物冷逆境之反應過程扮演重要的調控因子,同時也被發現具有促進氣孔前驅細胞分化的功能,顯示 ICE1 可能扮演整合環境訊息及氣孔發育的角色。透過氣孔指標之計算,我們發現ICE1的突變株 ice1-2 對於糖溶液浸泡處理不敏感,並無出現如同野生型植株一樣受糖促進氣孔細胞發育之性狀,顯示在糖調控氣孔發育過程中 ICE1 可能是重要的。本研究使用數種氣孔發育相關的突變株,以找出可能參與糖調控氣孔發育的基因及植物荷爾蒙訊息。結果顯示,離層酸生合成及訊息傳遞及MAPK訊息傳遞缺失之突變株,對於糖溶液浸泡處理也是不敏感的,而胜肽及油菜素類固醇訊息缺失之突變株,則如同野生型植株一樣受糖影響促使氣孔細胞發育。根據實驗結果,ICE1可能在糖調控氣孔發育中扮演重要的角色,並且可能是受到離層酸及MAPK訊息所調控。zh_TW
dc.description.abstractStomatal development is regulated to cope with external changing environment by a complex signaling network. Sugar, as an integrator of environmental signals and metabolites, has been known to perturb stomatal patterning. ICE1/SCRM, a transcriptional activator of freezing tolerance, has been found to promote the cell fate transition during stomatal development. This implicates ICE1 might be a link between environmental adaptation and stomatal development. We found that an ICE1 mutant, ice1-2, was less sensitive to sugar solution immersion treatment, which enhanced cell transition of stomatal development, than WT as shown by stomata index. This finding indicates the crucial role of ICE in sugar-mediated stomatal development. In this study, several mutants related to stomatal development were used to find components that participate in sugar-mediated stomatal development. Mutants of ABA biosynthesis and signaling and MAPK signaling pathway were shown to be less sensitive to sugar solution immersion treatment, while mutants of small peptide ligands and BR-mediated signaling were not. Our results suggested that ICE1 may be a key component to sugar induced promotion of the cell fate transition of stomatal development, and this process is likely regulated by ABA and MAPK signaling.en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:04:16Z (GMT). No. of bitstreams: 1
ntu-104-R02b22016-1.pdf: 16329773 bytes, checksum: b240828cb9350ed016e97319042a1bf1 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContents
中文摘要........................................................................................................................... I
Abstract.............................................................................................................................II
Contents...........................................................................................................................III
Contents of figures..........................................................................................................VI
Abbreviation List….......................................................................................................VII
Chapter 1 Introduction 1
1.1 Functions of stomata in plants 1
1.2 Stomatal development in Arabidopsis 1
1.3 Basic Helix-Loop-Helix proteins: SPCH, MUTE, and FAMA 3
1.4 SCREAM/ICE1 and SCREAM2 4
1.5 One-cell spacing rule 5
1.6 Short-term cell-cell signaling in stomata patterning 5
1.6.1 Leucine-Rich-Repeat receptors 6
1.6.2 Small peptide ligands 6
1.7 MAPK cascades 7
1.8 Long-term environmental and hormone signals affect stomatal development 8
1.9 Brassinosteroids inhibit stomatal development in cotyledons 9
1.10 Crosstalk between sugar and Abscisic acid signaling in Arabidopsis 10
1.11 ABA signaling in Arabidopsis 12
1.12 The physiological meaning of sugar solution immersion treatment 13
1.13 Objective and strategy of this study 14
Chapter 2 Materials and Methods 15
2.1 Plant Materials 15
2.1.1 Wild type 15
2.1.2 Mutant of ICE1 15
2.1.3 Stomata development related mutants 15
2.1.4 ABA and glucose signaling related mutants 15
2.2 Chemicals 17
2.2.1 FM4-64 fluorescence dye 17
2.3 Experimental methods 17
2.3.1 Plant growth conditions 17
2.3.2 Cell staining 17
2.3.4 Microscopy and image analysis 18
2.3.5 Histochemical analysis of β-glucuronidase (GUS) activity 18
Chapter 3 Results 19
3.1 Stomatal Index of WT increased when grown in 3% glucose solution 19
3.2 ice1-2 was less sensitive to sugar solution immersion treatment 20
3.3 Expression level and expression pattern of pICE1::GUS showed no difference when grown in 3% sugar solution 21
3.4 Are there other signals participate in the process of abnormal stomatal development caused by sugar solution immersion treatment? 22
3.4.1 Mutants of small peptide ligand and brassinosteroid exhibit phenotype similar to WT in response to sugar solution immersion treatment 23
3.4.2 MAPK signal transduction pathways may be important to sugar solution immersion treatment induced abnormal stomatal development 24
3.5 Components in sugar signaling play important role to regulate stomatal development 25
3.6 Components of ABA signaling may participate in the pathway of sugar caused abnormal stomatal development 26
Chapter 4 Discussion 28
4.1 ICE1 may plays an important role in the sugar induced abnormal stomatal development 29
4.2 BRs and small peptides may not be the main signaling to mediate the sugar induced abnormal stomatal development 29
4.3 MAPK signaling may integrates sugar signals for acclimation of environmental stress 30
4.4 ABA signaling may plays important role in sugar induced abnormal stomatal development 31
4.5 The physiological importance of the effects of stomata clustering 32
4.6 Hypothetical working model of this study 33
Chapter 5 Future perspectives 34
5.1 How sugar solution immersion treatment affect endogenous ABA level in Arabidopsis seedlings? 34
5.2 Does sugar solution immersion treatment affect protein stability of ICE1 or protein-protein interaction between ICE1 the three stomatal development related bHLH transcription factors? 35
References 37
Figures (Result and Discussion) 41
Appendix........................................................................................................................55
碩士論文口試問答集摘要.........................................................................................62
dc.language.isoen
dc.subjectICE1/SCREAMzh_TW
dc.subject離層酸訊息傳遞zh_TW
dc.subject糖溶液浸泡處理zh_TW
dc.subject糖訊息傳遞zh_TW
dc.subject氣孔發育zh_TW
dc.subjectstomatal developmenten
dc.subjectABA signalingen
dc.subjectsugar signalingen
dc.subjectICE1/SCREAMen
dc.subjectsugar solution immersion treatmenten
dc.title糖溶液處理造成氣孔發育異常機制之研究zh_TW
dc.titleStudies on the mechanism of abnormal stomatal development caused by sugar immersionen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee常怡雍,王愛玉,陳佩燁,章為皓
dc.subject.keyword氣孔發育, 糖溶液浸泡處理,ICE1/SCREAM,糖訊息傳遞,離層酸訊息傳遞,zh_TW
dc.subject.keywordstomatal development,sugar solution immersion treatment,ICE1/SCREAM,sugar signaling,ABA signaling,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2015-08-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
15.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved