請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52019完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳學禮(Hsuen-Li Chen) | |
| dc.contributor.author | Yu-Chia Cheng | en |
| dc.contributor.author | 程郁佳 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:03:24Z | - |
| dc.date.available | 2018-08-31 | |
| dc.date.copyright | 2015-08-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-20 | |
| dc.identifier.citation | [1] C. Fei Guo, T. Sun, F. Cao, Q. Liu and Z. Ren, 'Metallic nanostructures for light trapping in energy-harvesting devices', Light: Science & Applications, 2014, 3, e161.
[2] G. Tagliabue, H. Eghlidi and D. Poulikakos, 'Rapid-response low infrared emission broadband ultrathin plasmonic light absorber', Scientific reports, 2014, 4, 7181. [3] C. Hagglund, G. Zeltzer, R. Ruiz, I. Thomann, H. B. Lee, M. L. Brongersma and S. F. Bent, 'Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption', Nano Lett, 2013, 13, 3352-7. [4] X. Shi, K. Ueno, T. Oshikiri and H. Misawa, 'Improvement of Plasmon-Enhanced Photocurrent Generation by Interference of TiO2Thin Film', The Journal of Physical Chemistry C, 2013, 117, 24733-24739. [5] V. Thareja, J. H. Kang, H. Yuan, K. M. Milaninia, H. Y. Hwang, Y. Cui, P. G. Kik and M. L. Brongersma, 'Electrically tunable coherent optical absorption in graphene with ion gel', Nano Lett, 2015, 15, 1570-6. [6] Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin and S. He, 'Plasmonic and metamaterial structures as electromagnetic absorbers', Laser & Photonics Reviews, 2014, 8, 495-520. [7] Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu and G. Gu, 'Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation', ACS Appl Mater Interfaces, 2015, 7, 4962-8. [8] H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang and Q. Gan, 'Nanocavity Enhancement for Ultra-Thin Film Optical Absorber', Advanced materials, 2014, 26, 2737-2743. [9] L. A. Weinstein, W.-C. Hsu, S. Yerci, S. V. Boriskina and G. Chen, 'Enhanced absorption of thin-film photovoltaic cells using an optical cavity', Journal of Optics, 2015, 17, 055901. [10] N. P. Sergeant, B. Niesen, A. S. Liu, L. Boman, C. Stoessel, P. Heremans, P. Peumans, B. P. Rand and S. Fan, 'Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells', Optics letters, 2013, 38, 1431-3. [11] Y. Fang, Y. Jiao, K. Xiong, R. Ogier, Z. J. Yang, S. Gao, A. B. Dahlin and M. Kall, 'Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO Nanostructures', Nano Lett, 2015. [12] Q. Xiao, E. Jaatinen and H. Zhu, 'Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light', Chemistry, an Asian journal, 2014, 9, 3046-64. [13] U. Kreibig and M. Vollmer, Optical properties of metal clusters. Springer: Berlin; New York, 1995. [14] M. I. Stefan and J. R. Bolton, 'Mechanism of the Degradation of 1,4-Dioxane in Dilute Aqueous Solution Using the UV/Hydrogen Peroxide Process', Environmental science & technology, 1998, 32, 1588-1595. [15] L. S. Nair and C. T. Laurencin, 'Silver Nanoparticles: Synthesis and Therapeutic Applications', Journal of Biomedical Nanotechnology, 2007, 3, 301-316. [16] F. Hajiesmaeilbaigi, A. Mohammadalipour, J. Sabbaghzadeh, S. Hoseinkhani and H. R. Fallah, 'Preparation of silver nanoparticles by laser ablation and fragmentation in pure water', Laser Physics Letters, 2006, 3, 252. [17] J.-J. Chen, J. C. S. Wu, P. C. Wu and D. P. Tsai, 'Improved Photocatalytic Activity of Shell-Isolated Plasmonic Photocatalyst Au@SiO2/TiO2by Promoted LSPR', The Journal of Physical Chemistry C, 2012, 116, 26535-26542. [18] A. K. Samal, L. Polavarapu, S. Rodal-Cedeira, L. M. Liz-Marzán, J. Pérez-Juste and I. Pastoriza-Santos, 'Size Tunable Au@Ag Core–Shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties', Langmuir : the ACS journal of surfaces and colloids, 2013, 29, 15076-15082. [19] S. E. J. Bell and M. R. McCourt, 'SERS enhancement by aggregated Au colloids: effect of particle size', Physical Chemistry Chemical Physics, 2009, 11, 7455-7462. [20] M. Fan, F.-J. Lai, H.-L. Chou, W.-T. Lu, B.-J. Hwang and A. G. Brolo, 'Surface-enhanced Raman scattering (SERS) from Au:Ag bimetallic nanoparticles: the effect of the molecular probe', Chemical Science, 2013, 4, 509-515. [21] J.-J. Chen, J. C. S. Wu, P. C. Wu and D. P. Tsai, 'Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting', The Journal of Physical Chemistry C, 2011, 115, 210-216. [22] M. I. Litter and N. Quici, New Advances in Heterogeneous Photocatalysis for Treatment of Toxic Metals and Arsenic. In Nanomaterials for Environmental Protection, John Wiley & Sons, Inc: 2014; pp 143-167. [23] 垰田博史, 光觸媒圖解. 1 ed.; 商周出版: 2003. [24] C. P. Huang, C. Dong and Z. Tang, 'Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment', Waste Management, 1993, 13, 361-377. [25] G. R. Peyton, F. Y. Huang, J. L. Burleson and W. H. Glaze, 'Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 1. General principles and oxidation of tetrachloroethylene', Environmental science & technology, 1982, 16, 448-453. [26] H. Hennig, 'Homogeneous photo catalysis by transition metal complexes', Coordination Chemistry Reviews, 1999, 182, 101-123. [27] P. Cieśla, P. Kocot, P. Mytych and Z. Stasicka, 'Homogeneous photocatalysis by transition metal complexes in the environment', Journal of Molecular Catalysis A: Chemical, 2004, 224, 17-33. [28] D. L. Sedlak and A. W. Andren, 'Oxidation of chlorobenzene with Fenton's reagent', Environmental science & technology, 1991, 25, 777-782. [29] R. Bauer and H. Fallmann, 'The Photo-Fenton Oxidation — A cheap and efficient wastewater treatment method', Res. Chem. Intermed., 1997, 23, 341-354. [30] Y. He, P. Basnet, S. E. Murph and Y. Zhao, 'Ag nanoparticle embedded TiO(2) composite nanorod arrays fabricated by oblique angle deposition: toward plasmonic photocatalysis', ACS Appl Mater Interfaces, 2013, 5, 11818-27. [31] X. Zhang, Y. Liu and Z. Kang, '3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting', ACS Appl Mater Interfaces, 2014, 6, 4480-9. [32] F. X. Xiao, J. Miao, H. B. Tao, S. F. Hung, H. Y. Wang, H. B. Yang, J. Chen, R. Chen and B. Liu, 'One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis', Small, 2015, 11, 2115-31. [33] A. L. Linsebigler, G. Lu and J. T. Yates, 'Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results', Chemical Reviews, 1995, 95, 735-758. [34] N. Roy, Y. Park, Y. Sohn, K. T. Leung and D. Pradhan, 'Green synthesis of anatase TiO(2) nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity', ACS Appl Mater Interfaces, 2014, 6, 16498-507. [35] Z. Bian, T. Tachikawa, W. Kim, W. Choi and T. Majima, 'Superior Electron Transport and Photocatalytic Abilities of Metal-Nanoparticle-Loaded TiO2Superstructures', The Journal of Physical Chemistry C, 2012, 116, 25444-25453. [36] L. Ren, Y. Li, J. Hou, X. Zhao and C. Pan, 'Preparation and enhanced photocatalytic activity of TiO(2) nanocrystals with internal pores', ACS Appl Mater Interfaces, 2014, 6, 1608-15. [37] A. Fujishima and K. Honda, 'Electrochemical Photolysis of Water at a Semiconductor Electrode', Nature, 1972, 238, 37-38. [38] K. Maeda and K. Domen, 'Photocatalytic Water Splitting: Recent Progress and Future Challenges', The Journal of Physical Chemistry Letters, 2010, 1, 2655-2661. [39] W. J. Ong, L. L. Tan, S. P. Chai, S. T. Yong and A. R. Mohamed, 'Facet-dependent photocatalytic properties of TiO(2) -based composites for energy conversion and environmental remediation', ChemSusChem, 2014, 7, 690-719. [40] X. F. Wu, H. Y. Song, J. M. Yoon, Y. T. Yu and Y. F. Chen, 'Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties', Langmuir : the ACS journal of surfaces and colloids, 2009, 25, 6438-47. [41] F. Sastre, A. V. Puga, L. Liu, A. Corma and H. García, 'Complete Photocatalytic Reduction of CO2 to Methane by H2 under Solar Light Irradiation', Journal of the American Chemical Society, 2014, 136, 6798-6801. [42] C. C. Pei and W. W.-F. Leung, 'Solar photocatalytic oxidation of NO by electronspun TiO2/ZnO composite nanofiber mat for enhancing indoor air quality', Journal of Chemical Technology & Biotechnology, 2014, 89, 1646-1652. [43] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto and A. Fujishima, 'Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect', Journal of Photochemistry and Photobiology A: Chemistry, 1997, 106, 51-56. [44] R. Marschall, 'Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity', Advanced Functional Materials, 2014, 24, 2421-2440. [45] W. Hou and S. B. Cronin, 'A Review of Surface Plasmon Resonance-Enhanced Photocatalysis', Advanced Functional Materials, 2013, 23, 1612-1619. [46] K. Bourikas, C. Kordulis and A. Lycourghiotis, 'Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts', Chem Rev, 2014, 114, 9754-823. [47] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter and M. Batzill, 'Why is anatase a better photocatalyst than rutile?--Model studies on epitaxial TiO2 films', Scientific reports, 2014, 4, 4043. [48] W. Kim, T. Tachikawa, G. H. Moon, T. Majima and W. Choi, 'Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles', Angewandte Chemie, 2014, 53, 14036-41. [49] J. T. Carneiro, T. J. Savenije, J. A. Moulijn and G. Mul, 'How Phase Composition Influences Optoelectronic and Photocatalytic Properties of TiO2', The Journal of Physical Chemistry C, 2011, 115, 2211-2217. [50] J. Zhang, P. Zhou, J. Liu and J. Yu, 'New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2', Physical Chemistry Chemical Physics, 2014, 16, 20382-20386. [51] D. A. H. Hanaor and C. C. Sorrell, 'Review of the anatase to rutile phase transformation', J Mater Sci, 2010, 46, 855-874. [52] K. Yan and G. Wu, 'Titanium Dioxide Microsphere-Derived Materials for Solar Fuel Hydrogen Generation', ACS Sustainable Chemistry & Engineering, 2015, 3, 779-791. [53] C. W. Dunnill, A. Kafizas and I. P. Parkin, 'CVD Production of Doped Titanium Dioxide Thin Films', Chemical Vapor Deposition, 2012, 18, 89-101. [54] Z. He, W. Que, J. Chen, X. Yin, Y. He and J. Ren, 'Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped TiO2 nanobelts prepared by solvothermal synthesis', ACS Appl Mater Interfaces, 2012, 4, 6816-26. [55] S. Lee, Y. Lee, D. H. Kim and J. H. Moon, 'Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution', ACS Appl Mater Interfaces, 2013, 5, 12526-32. [56] J. Zhao, L. Zhang, W. Xing and K. Lu, 'A Novel Method To Prepare B/N Codoped Anatase TiO2', The Journal of Physical Chemistry C, 2015, 119, 7732-7737. [57] J. Sun, Y. Fu, P. Xiong, X. Sun, B. Xu and X. Wang, 'A magnetically separable P25/CoFe2O4/graphene catalyst with enhanced adsorption capacity and visible-light-driven photocatalytic activity', RSC Advances, 2013, 3, 22490. [58] R. Ghosh Chaudhuri and S. Paria, 'Visible light induced photocatalytic activity of sulfur doped hollow TiO2 nanoparticles, synthesized via a novel route', Dalton Trans, 2014, 43, 5526-34. [59] R. Asahi, T. Morikawa, H. Irie and T. Ohwaki, 'Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects', Chem Rev, 2014, 114, 9824-52. [60] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, 'Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides', Science, 2001, 293, 269-271. [61] T. Lin, C. Yang, Z. Wang, H. Yin, X. Lu, F. Huang, J. Lin, X. Xie and M. Jiang, 'Effective nonmetal incorporation in black titania with enhanced solar energy utilization', Energy & Environmental Science, 2014, 7, 967-972. [62] Y. Yang and C. Tian, 'Effects of calcining temperature on photocatalytic activity of Fe-doped sulfated titania', Photochemistry and photobiology, 2012, 88, 816-23. [63] Z. Jiao, T. Chen, J. Xiong, T. Wang, G. Lu, J. Ye and Y. Bi, 'Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays', Scientific reports, 2013, 3, 2720. [64] H. Sun, G. Zhou, S. Liu, H. M. Ang, M. O. Tadé and S. Wang, 'Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants', Chemical Engineering Journal, 2013, 231, 18-25. [65] P. Zhang, Y. Yu, E. Wang, J. Wang, J. Yao and Y. Cao, 'Structure of nitrogen and zirconium co-doped titania with enhanced visible-light photocatalytic activity', ACS Appl Mater Interfaces, 2014, 6, 4622-9. [66] S. Pany, B. Naik, S. Martha and K. Parida, 'Plasmon induced nano Au particle decorated over S,N-modified TiO(2) for exceptional photocatalytic hydrogen evolution under visible light', ACS Appl Mater Interfaces, 2014, 6, 839-46. [67] Y. Qu and X. Duan, 'Progress, challenge and perspective of heterogeneous photocatalysts', Chemical Society reviews, 2013, 42, 2568-80. [68] J. Huo, Y. Hu, H. Jiang and C. Li, 'In situ surface hydrogenation synthesis of Ti3+ self-doped TiO2 with enhanced visible light photoactivity', Nanoscale, 2014, 6, 9078-84. [69] Y. Yang, T. Zhang, L. Le, X. Ruan, P. Fang, C. Pan, R. Xiong, J. Shi and J. Wei, 'Quick and facile preparation of visible light-driven TiO2 photocatalyst with high absorption and photocatalytic activity', Scientific reports, 2014, 4, 7045. [70] M. Xing, X. Li and J. Zhang, 'Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite', Scientific reports, 2014, 4, 5493. [71] K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai and J. Lu, 'In-Situ-Reduced Synthesis of Ti(3+) Self-Doped TiO2/g-C3N4 Heterojunctions with High Photocatalytic Performance under LED Light Irradiation', ACS Appl Mater Interfaces, 2015, 7, 9023-30. [72] L. Kong, Z. Jiang, C. Wang, F. Wan, Y. Li, L. Wu, J. F. Zhi, X. Zhang, S. Chen and Y. Liu, 'Simple Ethanol Impregnation Treatment Can Enhance Photocatalytic Activity of TiO2 Nanoparticles under Visible-Light Irradiation', ACS Appl Mater Interfaces, 2015, 7, 7752-8. [73] T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R. A. Varin and F. Gu, 'Photocatalytic activity of hydrogenated TiO2', ACS Appl Mater Interfaces, 2013, 5, 1892-5. [74] Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie and M. Jiang, 'H-Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance', Advanced Functional Materials, 2013, 23, 5444-5450. [75] X. Chen, L. Liu, P. Y. Yu and S. S. Mao, 'Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals', Science, 2011, 331, 746-50. [76] J. Dong, J. Han, Y. Liu, A. Nakajima, S. Matsushita, S. Wei and W. Gao, 'Defective black TiOTiO(2) synthesized via anodization for visible-light photocatalysis', ACS Appl Mater Interfaces, 2014, 6, 1385-8. [77] C. Liu, D. Yang, Y. Jiao, Y. Tian, Y. Wang and Z. Jiang, 'Biomimetic synthesis of TiO(2)-SiO(2)-Ag nanocomposites with enhanced visible-light photocatalytic activity', ACS Appl Mater Interfaces, 2013, 5, 3824-32. [78] S. S. Soni, M. J. Henderson, J.-F. Bardeau and A. Gibaud, 'Visible-Light Photocatalysis in Titania-Based Mesoporous Thin Films', Advanced materials, 2008, 20, 1493-1498. [79] G. Liao, S. Chen, X. Quan, H. Chen and Y. Zhang, 'Photonic Crystal Coupled TiO2/Polymer Hybrid for Efficient Photocatalysis under Visible Light Irradiation', Environmental science & technology, 2010, 44, 3481-3485. [80] A. Kudo and Y. Miseki, 'Heterogeneous photocatalyst materials for water splitting', Chemical Society reviews, 2009, 38, 253-78. [81] S. Costacurta, G. Dal Maso, R. Gallo, M. Guglielmi, G. Brusatin and P. Falcaro, 'Influence of temperature on the photocatalytic activity of sol-gel TiO2 films', ACS Appl Mater Interfaces, 2010, 2, 1294-8. [82] J. Yan, G. Wu, W. Dai, N. Guan and L. Li, 'Synthetic Design of Gold Nanoparticles on Anatase TiO2{001} for Enhanced Visible Light Harvesting', ACS Sustainable Chemistry & Engineering, 2014, 2, 1940-1946. [83] X. Yu, B. Jeon and Y. K. Kim, 'Dominant Influence of the Surface on the Photoactivity of Shape-Controlled Anatase TiO2Nanocrystals', ACS Catalysis, 2015, 3316-3322. [84] J. B. Kim, C. I. Yeo, Y. H. Lee, S. Ravindran and Y. T. Lee, 'Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles', Nanoscale research letters, 2014, 9, 54. [85] S. P. Singh, S. Ghosh, G. Vijaya Prakash, S. A. Khan, D. Kanjilal, A. K. Srivastava, H. Srivastava and P. Srivastava, 'Ion beam induced dissolution and precipitation of in situ formed Si-nanostructures in a-SiNx:H matrix', Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, 276, 51-55. [86] C. Xue, J. Rao and S. Varlamov, 'A novel silicon nanostructure with effective light trapping for polycrystalline silicon thin film solar cells by means of metal-assisted wet chemical etching', physica status solidi (a), 2013, 210, 2588-2591. [87] F. Priolo, T. Gregorkiewicz, M. Galli and T. F. Krauss, 'Silicon nanostructures for photonics and photovoltaics', Nature nanotechnology, 2014, 9, 19-32. [88] J. H. Lim, G. J. Shin, T. Y. Hwang, H. R. Lim, Y. I. Lee, K. H. Lee, S. D. Kim, M. W. Oh, S. D. Park, N. V. Myung and Y. H. Choa, 'Three-dimensional hierarchical Te-Si nanostructures', Nanoscale, 2014, 6, 11697-702. [89] H. Kim, C. Lee, M. H. Kim and J. Kim, 'Drop Impact Characteristics and Structure Effects of Hydrophobic Surfaces with Micro- and/or Nanoscaled Structures', Langmuir : the ACS journal of surfaces and colloids, 2012, 28, 11250-11257. [90] L. Cao, H.-H. Hu and D. Gao, 'Design and Fabrication of Micro-textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials', Langmuir : the ACS journal of surfaces and colloids, 2007, 23, 4310-4314. [91] C.-W. Yen and M. A. El-Sayed, 'Plasmonic Field Effect on the Hexacyanoferrate (III)-Thiosulfate Electron Transfer Catalytic Reaction on Gold Nanoparticles: Electromagnetic or Thermal?', The Journal of Physical Chemistry C, 2009, 113, 19585-19590. [92] Z. Liu, W. Hou, P. Pavaskar, M. Aykol and S. B. Cronin, 'Plasmon resonant enhancement of photocatalytic water splitting under visible illumination', Nano Lett, 2011, 11, 1111-6. [93] X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li, H. Hu, T. Kako, H. Iwai, A. Tanaka and J. Ye, 'Photothermal conversion of CO(2) into CH(4) with H(2) over Group VIII nanocatalysts: an alternative approach for solar fuel production', Angewandte Chemie, 2014, 53, 11478-82. [94] Z. Zhang, W. Wang, E. Gao, S. Sun and L. Zhang, 'Photocatalysis Coupled with Thermal Effect Induced by SPR on Ag-Loaded Bi2WO6with Enhanced Photocatalytic Activity', The Journal of Physical Chemistry C, 2012, 116, 25898-25903. [95] J. R. Adleman, D. A. Boyd, D. G. Goodwin and D. Psaltis, 'Heterogenous Catalysis Mediated by Plasmon Heating', Nano Letters, 2009, 9, 4417-4423. [96] M. A. Mahmoud and M. A. El-Sayed, 'Enhancing Catalytic Efficiency of Hollow Palladium Nanoparticles by Photothermal Heating of Gold Nanoparticles Added to the Cavity: Palladium-Gold Nanorattles', ChemCatChem, 2014, n/a-n/a. [97] X. Pan and Y. J. Xu, 'Efficient thermal- and photocatalyst of Pd nanoparticles on TiO(2) achieved by an oxygen vacancies promoted synthesis strategy', ACS Appl Mater Interfaces, 2014, 6, 1879-86. [98] J. H. Byeon and Y. W. Kim, 'Au-TiO(2) nanoscale heterodimers synthesis from an ambient spark discharge for efficient photocatalytic and photothermal activity', ACS Appl Mater Interfaces, 2014, 6, 763-7. [99] Z. Gan, X. Wu, M. Meng, X. Zhu, L. Yang and P. K. Chu, 'Photothermal Contribution to Enhanced Photocatalytic Performance of Graphene-Based Nanocomposites', ACS Nano, 2014, 8, 9304-9310. [100] J. White and W. Smith, 'A Brief Note on the Temperature-Dependent Photocatalytic Degradation of Congo Red Using Zinc Oxide', American Journal of Water Resources, 2013, 1, 66-69. [101] T. A. Westrich, K. A. Dahlberg, M. Kaviany and J. W. Schwank, 'High-Temperature Photocatalytic Ethylene Oxidation over TiO2', The Journal of Physical Chemistry C, 2011, 115, 16537-16543. [102] J. L. Falconer and K. A. Magrini-Bair, 'Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2', Journal of Catalysis, 1998, 179, 171-178. [103] S. M. Hashemi, J. W. Choi and D. Psaltis, 'Solar thermal harvesting for enhanced photocatalytic reactions', Physical chemistry chemical physics : PCCP, 2014, 16, 5137-41. [104] Q. Hu, B. Liu, z. Zhang, M. Song and X. Zhao, 'Temperature effect on the photocatalytic degradation of methyl orange under UV-vis light irradiation', Journal of Wuhan University of Technology-Mater. Sci. Ed., 2010, 25, 210-213. [105] J. R. Smith, T. H. Van Steenkiste and X.-G. Wang, 'Thermal photocatalytic generation ofH2overCuAlO2nanoparticle catalysts inH2O', Physical Review B, 2009, 79. [106] R. Lv, C. Zhong, R. Li, P. Yang, F. He, S. Gai, Z. Hou, G. Yang and J. Lin, 'Multifunctional Anticancer Platform for Multimodal Imaging and Visible Light Driven Photodynamic/Photothermal Therapy', Chemistry of Materials, 2015, 27, 1751-1763. [107] M. J. Wijesundara and R. Azevedo, SiC Materials and Processing Technology. In Silicon Carbide Microsystems for Harsh Environments, Springer New York: 2011; Vol. 22, pp 33-95. [108] M. J. Wijesundara and R. Azevedo, Introduction. In Silicon Carbide Microsystems for Harsh Environments, Springer New York: 2011; Vol. 22, pp 1-32. [109] Z. M. Wang, One-Dimensional Nanostructures. Springer New York: 2008. [110] S. Nakashima and H. Harima, 'Raman Investigation of SiC Polytypes', physica status solidi (a), 1997, 162, 39-64. [111] T. Kitamura, S. Nakashima, T. Kato, K. Kojima and H. Okumura, 'Characterization of Electrical Properties in SiC Crystals by Raman Scattering Spectroscopy', Materials Science Forum, 2009, 600-603, 501-504. [112] S. Lin, Z. Chen, L. Li, Y. Ba, S. Liu and M. Yang, 'Investigation of micropipes in 6H–SiC by Raman scattering', Physica B: Condensed Matter, 2012, 407, 670-673. [113] G. N. Philip, Silicon Carbide Technology. In The VLSI Handbook, Second Edition, CRC Press: 2006; pp 5-1-5-34. [114] S. Nakashima, T. Mitani, T. Tomita, T. Kato, S. Nishizawa, H. Okumura and H. Harima, 'Observation of surface polarity dependent phonons in SiC by deep ultraviolet Raman spectroscopy', Physical Review B, 2007, 75. [115] C. Jing, 'Polytype Identification of SiC Crystals by Optical Absorption Spectroscopy', Journal of Huaiyin Teachers College(Natural Science Edition), 2008, 220-223. [116] W. Choi, A. Termin and M. R. Hoffmann, 'The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics', The Journal of Physical Chemistry, 1994, 98, 13669-13679. [117] J. Wang, W. Zhu, Y. Zhang and S. Liu, 'An Efficient Two-Step Technique for Nitrogen-Doped Titanium Dioxide Synthesizing: Visible-Light-Induced Photodecomposition of Methylene Blue', The Journal of Physical Chemistry C, 2007, 111, 1010-1014. [118] T. L. Chen, Y. Hirose, T. Hitosugi and T. Hasegawa, 'One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO 2 films', Journal of Physics D: Applied Physics, 2008, 41, 062005. [119] Y. Zhao, X. Qiu and C. Burda, 'The Effects of Sintering on the Photocatalytic Activity of N-Doped TiO2 Nanoparticles', Chemistry of Materials, 2008, 20, 2629-2636. [120] A. Ghanadzadeh, A. Zeini, A. Kashef and M. Moghadam, 'Concentration effect on the absorption spectra of oxazine1 and methylene blue in aqueous and alcoholic solutions', Journal of Molecular Liquids, 2008, 138, 100-106. [121] X. Zhou, J. Lu, J. Jiang, X. Li, M. Lu, G. Yuan, Z. Wang, M. Zheng and H. Seo, 'Simple fabrication of N-doped mesoporous TiO2 nanorods with the enhanced visible light photocatalytic activity', Nanoscale research letters, 2014, 9, 34. [122] M. Sathish, B. Viswanathan, R. P. Viswanath and C. S. Gopinath, 'Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst', Chemistry of Materials, 2005, 17, 6349-6353. [123] W. I. Nawawi and M. A. Nawi, 'Carbon coated nitrogen doped P25 for the photocatalytic removal of organic pollutants under solar and low energy visible light irradiations', Journal of Molecular Catalysis A: Chemical, 2014, 383-384, 83-93. [124] W. Shi, W. Yang, Q. Li, S. Gao, P. Shang and J. Shang, 'The synthesis of nitrogen/sulfur co-doped TiO2 nanocrystals with a high specific surface area and a high percentage of {001} facets and their enhanced visible-light photocatalytic performance', Nanoscale research letters, 2012, 7, 590. [125] H.-Y. Ai, J.-W. Shi, R.-X. Duan, J.-W. Chen, H.-J. Cui and M.-L. Fu, 'Sol-Gel to Prepare Nitrogen Doped TiO2Nanocrystals with Exposed {001} Facets and High Visible-Light Photocatalytic Performance', International Journal of Photoenergy, 2014, 2014, 1-9. [126] Z. Xiong and X. S. Zhao, 'Nitrogen-doped titanate-anatase core-shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity', Journal of the American Chemical Society, 2012, 134, 5754-7. [127] B. Li, Z. Zhao, Q. Zhou, B. Meng, X. Meng and J. Qiu, 'Highly efficient low-temperature plasma-assisted modification of TiO2 nanosheets with exposed {001} facets for enhanced visible-light photocatalytic activity', Chemistry, 2014, 20, 14763-70. [128] S. Yang and L. Gao, 'New Method to Prepare Nitrogen-Doped Titanium Dioxide and Its Photocatalytic Activities Irradiated by Visible Light', Journal of the American Ceramic Society, 2004, 87, 1803-1805. [129] R. Rahimi and M. Rabbani In Application of N, S-codoped TiO2 photo-catalyst for degradation of methylene blue. [130] J. Lu, F. Su, Z. Huang, C. Zhang, Y. Liu, X. Ma and J. Gong, 'N-doped Ag/TiO2hollow spheres for highly efficient photocatalysis under visible-light irradiation', RSC Adv., 2013, 3, 720-724. [131] Y. Ku, W.-J. Chen and W.-M. Hou, 'Photocatalytic decomposition of Methylene Blue with nitrogen-doped TiO under visible light irradiation', Sustain Environ Res, 2013, 23, 15-21. [132] V. Etacheri, M. K. Seery, S. J. Hinder and S. C. Pillai, 'Highly Visible Light Active TiO2−xNxHeterojunction Photocatalysts†', Chemistry of Materials, 2010, 22, 3843-3853. [133] D. Chen, Z. Jiang, J. Geng, Q. Wang and D. Yang, 'Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity', Industrial & Engineering Chemistry Research, 2007, 46, 2741-2746. [134] O. Sacco, M. Stoller, V. Vaiano, P. Ciambelli, A. Chianese and D. Sannino, 'Photocatalytic Degradation of Organic Dyes under Visible Light on N-Doped Photocatalysts', International Journal of Photoenergy, 2012, 2012, 1-8. [135] S. T. Kochuveedu, D.-P. Kim and D. H. Kim, 'Surface-Plasmon-Induced Visible Light Photocatalytic Activity of TiO2Nanospheres Decorated by Au Nanoparticles with Controlled Configuration', The Journal of Physical Chemistry C, 2012, 116, 2500-2506. [136] Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka and T. Majima, 'Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity', Journal of the American Chemical Society, 2014, 136, 458-65. [137] X. Z. Li and F. B. Li, 'Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment', Environmental science & technology, 2001, 35, 2381-2387. [138] H. Li, W. Lu, J. Tian, Y. Luo, A. M. Asiri, A. O. Al-Youbi and X. Sun, 'Synthesis and study of plasmon-induced carrier behavior at Ag/TiO2 nanowires', Chemistry, 2012, 18, 8508-14. [139] Y. Zhang, Z.-R. Tang, X. Fu and Y.-J. Xu, 'TiO2−Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2−Graphene Truly Different from Other TiO2−Carbon Composite Materials?', ACS Nano, 2010, 4, 7303-7314. [140] B. Jiang, C. Tian, W. Zhou, J. Wang, Y. Xie, Q. Pan, Z. Ren, Y. Dong, D. Fu, J. Han and H. Fu, 'In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2-graphene with enhanced photocatalytic activity', Chemistry, 2011, 17, 8379-87. [141] J. Sun, Y. Fu, P. Xiong, X. Sun, B. Xu and X. Wang, 'A magnetically separable P25/CoFe2O4/graphene catalyst with enhanced adsorption capacity and visible-light-driven photocatalytic activity', RSC Advances, 2013, 3, 22490-22497. [142] H. Sun, S. Liu, S. Liu and S. Wang, 'A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue', Applied Catalysis B: Environmental, 2014, 146, 162-168. [143] J. S. Lee, K. H. You and C. B. Park, 'Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene', Advanced materials, 2012, 24, 1084-8. [144] H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, 'P25-Graphene Composite as a High Performance Photocatalyst', ACS Nano, 2010, 4, 380-386. [145] B. Li, Z. Zhao, F. Gao, X. Wang and J. Qiu, 'Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed {001} facets for improved visible light photocatalytic activity', Applied Catalysis B: Environmental, 2014, 147, 958-964. [146] H. Zhang, R. Zong, J. Zhao and Y. Zhu, 'Dramatic Visible Photocatalytic Degradation Performances Due to Synergetic Effect of TiO2 with PANI', Environmental science & technology, 2008, 42, 3803-3807. [147] J. Zhu, J. Ren, Y. Huo, Z. Bian and H. Li, 'Nanocrystalline Fe/TiO2 Visible Photocatalyst with a Mesoporous Structure Prepared via a Nonhydrolytic Sol−Gel Route', The Journal of Physical Chemistry C, 2007, 111, 18965-18969. [148] W. J. Lee, J. M. Lee, S. T. Kochuveedu, T. H. Han, H. Y. Jeong, M. Park, J. M. Yun, J. Kwon, K. No, D. H. Kim and S. O. Kim, 'Biomineralized N-Doped CNT/TiO2 Core/Shell Nanowires for Visible Light Photocatalysis', ACS Nano, 2012, 6, 935-943. [149] T. R. Hart, R. L. Aggarwal and B. Lax, 'Temperature Dependence of Raman Scattering in Silicon', Physical Review B, 1970, 1, 638-642. [150] G. Viera, S. Huet and L. Boufendi, 'Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy', Journal of Applied Physics, 2001, 90, 4175. [151] W. D. Callister and D. G. Rethwisch, Materials science and engineering. 8 ed.; Wiley New York: 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52019 | - |
| dc.description.abstract | 奈米科技指的是對於奈米尺度下之特性加以研究、設計以及應用。本論文將探討材料於奈米尺度下之表面光學行為與其應用,包括設計不同的奈米結構以應用於環境淨化之光催化反應,以及碳化矽之原子級表面性質分析。在第一部份,我們開發出一奈米干涉共振腔結構,有效提升結構上金奈米粒子與氮摻雜二氧化鈦(N-TiO2)之吸收,增加可見光催化效率之元件。此結構可使入射光源得以被有效吸收,增加電子電洞對的產生,而N-TiO2與金奈米粒子之複合結構可以更加提高可見光催化的效果。另一方面,我們提出了單位光觸媒量反應效率之計算,光觸媒的使用量雖少但反應效率高,並且比較了不同文獻中之反應效率。
而在論文第二部份,本研究結合了光源之光效應與熱效應,並將之運用於光催化反應。我們利用奈米鐘乳石結構,可以有效吸收95%以上的寬頻光源並將之轉換為熱能,而此結構再結合N-TiO2,可在可見光下快速進行光熱催化反應。明顯優於一般基板與商用P25 TiO2粉末,可以快速的分解亞甲藍。 在論文最後一部份中,利用拉曼散射及可見光譜等非破壞光學檢測方式,檢測碳化矽之各種原子級表面性質,包括晶體型態、載子濃度、雜質、微孔洞及表面極性分析。其中微孔洞的分析是利用不同景深之拉曼雷射與物鏡搭配,可以從拉曼強度及波數的變化預估微孔洞之位置。在表面極性的判定,則使用減光法的方式。達到縮小拉曼訊號的來源深度,可以成功區分碳化矽晶片表面上只有單個原子層厚的矽面與碳面。 | zh_TW |
| dc.description.abstract | Nanotechnology is the study, design, manipulation and application of matter in nanoscale. In recent years, the properties of materials in nanoscale have attracted great attention in different fields. In this thesis, we studied the optical behaviors and applications of materials surface within nanoscale region. The main topics of the thesis include designing different nanostructures for photocatalytic reaction and analysing the surface behaviors of silicon carbide in atomic scale. In the first part, we developed an interference effect based nanocavity structure which could efficiently enhance the absorption of gold nanoparticles and N-doped TiO2 on the cavity structures. The nanocavity based structure could be applied for enhancing visible light photocatalytic reaction. Ihe cavity would increase the absorption of incident light and could effectively generate electron-hole pairs on the structures. Therefore, the combination of N-TiO2, gold nanoparticles, and nanocavity structure could dramatically enhance the efficiency of visible light photocatalytic reactions. We further calculated the photocatalytic efficiency of per unit amount of photocatalyst, and compare the result with previous studies. The result demonstrated that the amount of photocatalyst used in this study is few, however, the photocatalytic efficiency is very high.
In the second part of the thesis, we combined the optical and thermal effects from light source and applied that to enhance the photocayalytic reaction. By using a nano-stalactites structure, up to 95% of the incident light could be absorbed and further converted to heat. Therefore the N-TiO2 on nanostructures could quickly react with methylene blue under visible light by photothermal-catalytic reaction. We found the reaction rate of the N-TiO2 on nanostructure was much higher than the commerical P25 TiO2 nanoparticles based samples. In the last part, we used non-destructive optical analysis methods including Raman scattering spectroscopy and visible-IR spectroscopy to analysis the surface properties of silicon carbide within nanoscale. The analyses included the polytypes, carries concentrations, impurities, micropipes and surface polarity of silicon carbide. By combining laser with different object lenses, the position of micropipes could be determined. In this study, we found the characterization surface polarity of silicon carbide could be conducted by attenuated power of Raman laser. With reduced power of Raman laser, the penetration depth could be effectively decreased, and the Raman signal contributed by surface region of SiC would be largely increased. By this method, we could successfully identify the silicon face or carbon face with atomic layer thickness on the surface of a silicon carbide wafer . | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:03:24Z (GMT). No. of bitstreams: 1 ntu-104-R02527038-1.pdf: 7523779 bytes, checksum: 5682a0947e4766b570663cebb392bb61 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 I Abstract II 目 錄 IV 圖目錄 VIII 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 論文架構 3 第二章 文獻回顧 4 2.1 奈米共振腔結構介紹 4 2.2 金屬奈米粒子簡介 8 2.2.1 侷域性表面電漿共振(Localized surface plasmon resonance, LSPR) 8 2.2.2 電偶極耦合(Dipolar coupling) 11 2.2.3 金屬奈米粒子製作方式 12 2.2.4 金屬奈米粒子之應用 13 2.3 光催化(Photocatalysis)簡介 14 2.3.1 光催化原理及類型 16 2.3.2 光觸媒之材料(Photocatalyst) 23 2.3.3 可見光光催化(Visible light photocatalysis) 25 2.3.4 二氧化鈦(TiO2)簡介 27 2.3.5 光催化元件之種類 38 2.3.6 影響光催化效率的因素 39 2.4 矽奈米結構之相關研究 40 2.5 光熱效應之相關研究 43 2.6 碳化矽(SiC)簡介 46 2.6.1 碳化矽之基本性質 48 2.6.2 碳化矽之拉曼散射光譜 50 2.6.3 碳化矽之光譜 59 第三章 奈米共振腔結構應用於可見光催化之研究 61 3.1 研究動機和目的 61 3.2 實驗方法 63 3.2.1 實驗材料與設備 63 3.2.2 實驗步驟 64 3.3 實驗結果與討論 67 3.3.1 摻雜氮之二氧化鈦(N-TiO2)性質分析 67 3.3.2 共振腔之結構模擬分析 75 3.3.3 共振腔結構之光學性質與形貌分析 83 3.3.4 可見光光催化效果 88 3.3.5 光催化反應機制 96 3.3.6 與文獻之光催化效果比較 97 3.4 結論 103 第四章 利用奈米鐘乳石結構之熱效應 104 提升光熱催化效率 104 4.1 研究動機與目的 104 4.2 實驗方法 106 4.2.1 實驗材料與設備 106 4.2.2 實驗步驟 107 4.3 實驗結果與討論 109 4.3.1 結構分析 109 4.3.2 結構模擬分析 113 4.3.3 可見光光催化效果 116 4.3.4 結構之熱效應分析 120 4.4 結論 124 第五章 以光學檢測碳化矽之原子級表面性質與 125 品質分析 125 5.1 研究動機與目的 125 5.2 實驗方法 126 5.2.1 實驗材料與設備 126 5.3 實驗結果與討論 127 5.3.1 試片外觀 127 5.3.2 結晶形態分析 129 5.3.3 載子濃度分析 131 5.3.4 雜質分析 134 5.3.5 微孔洞分析 135 5.3.6 表面極性判定 140 5.4 結論 156 第六章 結論 158 6.1 研究總結 158 6.2 未來展望 160 參考文獻 161 | |
| dc.language.iso | zh-TW | |
| dc.subject | 金奈米粒子 | zh_TW |
| dc.subject | 奈米尺度 | zh_TW |
| dc.subject | 奈米結構 | zh_TW |
| dc.subject | 可見光催化反應 | zh_TW |
| dc.subject | 光熱效應 | zh_TW |
| dc.subject | 光熱催化反應 | zh_TW |
| dc.subject | 共振腔結構 | zh_TW |
| dc.subject | 干涉效應 | zh_TW |
| dc.subject | 表面極性 | zh_TW |
| dc.subject | 微孔洞 | zh_TW |
| dc.subject | 氮摻雜二氧化鈦 | zh_TW |
| dc.subject | 碳化矽 | zh_TW |
| dc.subject | interference effect | en |
| dc.subject | cavity structure | en |
| dc.subject | surface polarity | en |
| dc.subject | gold nanoparticles | en |
| dc.subject | silicon carbide | en |
| dc.subject | N doped titanium oxide | en |
| dc.subject | micropipe | en |
| dc.subject | nanoscale | en |
| dc.subject | nanostructure | en |
| dc.subject | visible light photocatalytic reaction | en |
| dc.subject | photothermal effect | en |
| dc.subject | photothermal-catalytic reaction | en |
| dc.title | 奈米尺度下材料表面光學行為分析與應用之研究 | zh_TW |
| dc.title | The analyses and applications of surface optical behaviors of materials within nanoscale region | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖文彬(Wen-Bin Liau,),戴子安(Chi-An Dai),萬德輝(Dehui Wan),柯富祥(Fu-Hsiang Ko) | |
| dc.subject.keyword | 奈米尺度,奈米結構,可見光催化反應,光熱效應,光熱催化反應,共振腔結構,干涉效應,表面極性,微孔洞,氮摻雜二氧化鈦,碳化矽,金奈米粒子, | zh_TW |
| dc.subject.keyword | nanoscale,nanostructure,visible light photocatalytic reaction,photothermal effect,photothermal-catalytic reaction,cavity structure,interference effect,surface polarity,micropipe,N doped titanium oxide,silicon carbide,gold nanoparticles, | en |
| dc.relation.page | 181 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 7.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
