Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52017
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳浩銘
dc.contributor.authorYa-Chu Yuen
dc.contributor.author游雅筑zh_TW
dc.date.accessioned2021-06-15T14:03:17Z-
dc.date.available2020-08-28
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-08-20
dc.identifier.citation(1) http://micro.magnet.fsu.edu/cells/.
(2) Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C:Photochem. Rev. 2012, 13, 169-189.
(3) Lide, D. R. CRC Handbook of Chemistry and Physics. 2003, 74th.
(4) Creighton, J. A.; Eadon, D. G. Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 1991, 87, 3881-3891.
(5) Wang, D. S.; Kerker, M. Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Phys. Rev. B 1981, 24, 1777-1790.
(6) Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Optical Absorption Spectra of Nanocrystal Gold Molecules. J. Phys. Chem. B 1997, 101, 3706-3712.
(7) Kreibig, U.; Genzel, L. Optical absorption of small metallic particles. Surf. Sci. 1985, 156, 678-700.
(8) Kreibig, U.; Fragstein, C. v. The limitation of electron mean free path in small silver particles. Z. Physik 1969, 224, 307-323.
(9) Barman, A.; Haldar, A.: Chapter One - Time-Domain Study of Magnetization Dynamics in Magnetic Thin Films and Micro- and Nanostructures. In Solid State Physics; Robert, E. C., Robert, L. S., Eds.; Academic Press, 2014, 65, 1-108.
(10) Scholl, J. A.; Koh, A. L.; Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 2012, 483, 421-427.
(11) Hammond, J.; Bhalla, N.; Rafiee, S.; Estrela, P. Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries. Biosensors 2014, 4, 172.
(12) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.
(13) Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253-278.
(14) Navarro, R. M.; Alvarez-Galvan, M. C.; Villoria de la Mano, J. A.; Al-Zahrani, S. M.; Fierro, J. L. G. A framework for visible-light water splitting. Energy Environ. Sci. 2010, 3, 1865-1882.
(15) Sakata, T.; Kawai, T.: 10 - Photosynthesis and Photocatalysis with Semiconductor Powders. In Energy Resources Through Photochemistry and Catalysis; Grätzel, M., Ed.; Academic Press, 1983, 331-358.
(16) Fang, Z. Biofuels - Economy, Environment and Sustainability. InTech. 2013.
(17) Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Lett. 2013, 13, 240-247.
(18) Yasun, E.; Kang, H.; Erdal, H.; Cansiz, S.; Ocsoy, I.; Huang, Y.-F.; Tan, W.: Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods, 2013, 3, 101-110.
(19) Fuertes, V. C.; Negre, C. F. A.; Oviedo, M. B.; Bonafé, F. P.; Oliva, F. Y.; Sánchez, C. G. A theoretical study of the optical properties of nanostructured TiO2. J. Phys. Condens. Matter. 2013, 25, 115304.
(20) Primo, A.; Corma, A.; Garcia, H. Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys. 2011, 13, 886-910.
(21) Baker, D. R.; Kamat, P. V. Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures. Adv. Funct. Mater. 2009, 19, 805-811.
(22) Hoyer, P. Formation of a Titanium Dioxide Nanotube Array. Langmuir 1996, 12, 1411-1413.
(23) Sander, M. S.; Côté, M. J.; Gu, W.; Kile, B. M.; Tripp, C. P. Template-Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well-Controlled Dimensions on Substrates. Adv. Mater. 2004, 16, 2052-2057.
(24) Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Sol−Gel Template Synthesis of Semiconductor Nanostructures. Chem. Mater. 1997, 9, 857-862.
(25) Chen, Y.; Crittenden, J. C.; Hackney, S.; Sutter, L.; Hand, D. W. Preparation of a Novel TiO2-Based p−n Junction Nanotube Photocatalyst. Environ. Sci. Technol. 2005, 39, 1201-1208.
(26) Lee, S.; Jeon, C.; Park, Y. Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor. Chem. Mater. 2004, 16, 4292-4295.
(27) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of Titanium Oxide Nanotube. Langmuir 1998, 14, 3160-3163.
(28) Yuan, Z.-Y.; Su, B.-L. Titanium oxide nanotubes, nanofibers and nanowires. Colloid Surf. A-Physicochem. Eng. Asp. 2004, 241, 173-183.
(29) Lan, Y.; Gao, X. P.; Zhu, H. Y.; Zheng, Z. F.; Yan, T. Y.; Wu, F.; Ringer, S. P.; Song, D. Y. Titanate Nanotubes and Nanorods Prepared from Rutile Powder. Adv. Funct. Mater. 2005, 15, 1310-1318.
(30) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania Nanotubes Prepared by Chemical Processing. Adv. Mater. 1999, 11, 1307-1311.
(31) Sun, X.; Li, Y. Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes. Chem. Eur. J. 2003, 9, 2229-2238.
(32) Wang, W.; Varghese, O. K.; Paulose, M.; Grimes, C. A.; Wang, Q.; Dickey, E. C. A study on the growth and structure of titania nanotubes. J. Mater. Res. 2004, 19, 417-422.
(33) Zwilling, V.; Aucouturier, M.; Darque-Ceretti, E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim. Acta 1999, 45, 921-929.
(34) Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E. C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331-3334.
(35) Lohrengel, M. M. Thin anodic oxide layers on aluminium and other valve metals: high field regime. Mater. Sci. Eng., R 1993, 11, 243-294.
(36) Vetter, K. J. General kinetics of passive layers on metals. Electrochim. Acta 1971, 16, 1923-1937.
(37) Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385-9454.
(38) Zhou, X.; Nguyen, N. T.; Özkan, S.; Schmuki, P. Anodic TiO2 nanotube layers: Why does self-organized growth occur—A mini review. Electrochem. Commun. 2014, 46, 157-162.
(39) Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 2011, 50, 2904-2939.
(40) Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3-18.
(41) Paramasivam, I.; Macak, J. M.; Selvam, T.; Schmuki, P. Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4). Electrochim. Acta 2008, 54, 643-648.
(42) John, S. E.; Mohapatra, S. K.; Misra, M. Double-Wall Anodic Titania Nanotube Arrays for Water Photooxidation. Langmuir 2009, 25, 8240-8247.
(43) Wender, H.; Feil, A. F.; Diaz, L. B.; Ribeiro, C. S.; Machado, G. J.; Migowski, P.; Weibel, D. E.; Dupont, J.; Teixeira, S. R. Self-Organized TiO2 Nanotube Arrays: Synthesis by Anodization in an Ionic Liquid and Assessment of Photocatalytic Properties. ACS Appl. Mater. Interfaces 2011, 3, 1359-1365.
(44) Macák, J. M.; Tsuchiya, H.; Schmuki, P. High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium. Angew. Chem. Int. Ed. 2005, 44, 2100-2102.
(45) Macak, J. M.; Hildebrand, H.; Marten-Jahns, U.; Schmuki, P. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J. Electroanal. Chem. 2008, 621, 254-266.
(46) Albu, S. P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G. E.; Macak, J. M.; Schmuki, P. Formation of Double-Walled TiO2 Nanotubes and Robust Anatase Membranes. Adv. Mater. 2008, 20, 4135-4139.
(47) Albu, S. P.; Kim, D.; Schmuki, P. Growth of Aligned TiO2 Bamboo-Type Nanotubes and Highly Ordered Nanolace. Angew. Chem. Int. Ed. 2008, 47, 1916-1919.
(48) Kim, D.; Ghicov, A.; Albu, S. P.; Schmuki, P. Bamboo-Type TiO2 Nanotubes: Improved Conversion Efficiency in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2008, 130, 16454-16455.
(49) Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. A New Benchmark for TiO2 Nanotube Array Growth by Anodization. J. Phys. Chem. C 2007, 111, 7235-7241.
(50) Li, S.; Zhang, G.; Guo, D.; Yu, L.; Zhang, W. Anodization Fabrication of Highly Ordered TiO2 Nanotubes. J. Phys. Chem. C 2009, 113, 12759-12765.
(51) Macak, J. M.; Albu, S. P.; Schmuki, P. Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys. Status Solidi Rapid Res. Lett. 2007, 1, 181-183.
(52) Shin, Y.; Lee, S. Self-Organized Regular Arrays of Anodic TiO2 Nanotubes. Nano Lett. 2008, 8, 3171-3173.
(53) Feng, X.; Macak, J. M.; Schmuki, P. Robust Self-Organization of Oxide Nanotubes over a Wide pH Range. Chem. Mater. 2007, 19, 1534-1536.
(54) Macak, J. M.; Schmuki, P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim. Acta 2006, 52, 1258-1264.
(55) Shankar, K.; Mor, G. K.; Fitzgerald, A.; Grimes, C. A. Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures. J. Phys. Chem. C 2007, 111, 21-26.
(56) Richter, C.; Wu, Z.; Panaitescu, E.; Willey, R. J.; Menon, L. Ultra-High-Aspect-Ratio Titania Nanotubes. Adv. Mater. 2007, 19, 946-948.
(57) Tsuchiya, H.; Macak, J. M.; Taveira, L.; Balaur, E.; Ghicov, A.; Sirotna, K.; Schmuki, P. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem. Commun. 2005, 7, 576-580.
(58) Regonini, D.; Bowen, C. R.; Jaroenworaluck, A.; Stevens, R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng., R 2013, 74, 377-406.
(59) http://ees2.geo.rpi.edu/probe/Images/concepts/concept2.html.
(60) http://highscope.ch.ntu.edu.tw/wordpress/?p=41141.
(61) http://students.ycp.edu/~nbirth/Ultraviolet%20Visisble%20Spec.htm.
(62) http://highscope.ch.ntu.edu.tw/wordpress/?p=40839.
(63) http://mcff.mtu.edu/acmal/electronmicroscopy/MA_EDS_Basic_Science.htm.
(64) http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter3_report2.pdf.
(65) http://www2.ndl.narl.org.tw/web/department/nmlab/device_xps.php.
(66) http://www.ch.ntu.edu.tw/~cchang/esca.htm.
(67) http://midcurrent.com/flies/shining-a-light-on-uv-materials/.
(68) http://prpc.phys.nthu.edu.tw/reference/6-F2.pdf.
(69) http://www.nsrrc.org.tw/.
(70) Zanella, L.; Casadio, F.; Gray, K. A.; Warta, R.; Ma, Q.; Gaillard, J.-F. The darkening of zinc yellow: XANES speciation of chromium in artist's paints after light and chemical exposures. J. Anal. At. Spectrom. 2011, 26, 1090-1097.
(71) Hahner, G. Near edge X-ray absorption fine structure spectroscopy as a tool to probe electronic and structural properties of thin organic films and liquids. Chem. Soc. Rev. 2006, 35, 1244-1255.
(72) Grunwaldt, J.-D.; Baiker, A. In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure. Phys. Chem. Chem. Phys. 2005, 7, 3526-3539.
(73) Koningsberger, D. C.; Prins, R.: X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, 1988.
(74) Ramaker, D. E.; Koningsberger, D. C. The atomic AXAFS and m XANES techniques as applied to heterogeneous catalysis and electrocatalysis. Phys. Chem. Chem. Phys. 2010, 12, 5514-5534.
(75) Hummer, A. A.; Rompel, A. The use of X-ray absorption and synchrotron based micro-X-ray fluorescence spectroscopy to investigate anti-cancer metal compounds in vivo and in vitro. Metallomics 2013, 5, 597-614.
(76) Patterson, B. D.; Abela, R. Novel opportunities for time-resolved absorption spectroscopy at the X-ray free electron laser. Phys. Chem. Chem. Phys. 2010, 12, 5647-5652.
(77) Nefedov, A.; Wöll, C.: Advanced Applications of NEXAFS Spectroscopy for Functionalized Surfaces. In Surface Science Techniques; Bracco, G., Holst, B., Eds.; Springer Series in Surface Sciences; Springer Berlin Heidelberg, 2013, 51, 277-303.
(78) Kuzmin, A.; Chaboy, J. EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ. 2014, 1, 571-589.
(79) Hsu, I. J.; Liu, R. S.; Chen, J.-M.; Liu, R.-G.; Jang, L.-Y.; Lee, J.-F.; Harris, K. D. M. Electronic and Local Structural Properties of the Bi2Sr2(Ca1-xYx)Cu2O8+δ Family of Materials, Studied by X-ray Absorption Spectroscopy. Chem. Mater. 2000, 12, 1115-1121.
(80) Elam, W. T. X-ray absorption. Edited by D. C. Koningsberger and R. Prins. Published by John Wiley and Sons, New York, X-Ray Spectrometry 1989, 18, 41-41.
(81) Rovezzi, M.; Glatzel, P. Hard x-ray emission spectroscopy: a powerful tool for the characterization of magnetic semiconductors. Semicond. Sci. Technol. 2014, 29, 1-21.
(82) Sayers, D. E.; Stern, E. A.; Lytle, F. W. New Method to Measure Structural Disorder: Application to GeO2 Glass. Phys. Rev. Lett. 1975, 35, 584-587.
(83) Kuzmin, A. EDA: EXAFS data analysis software package. Physica B Condens. Matter. 1995, 208–209, 175-176.
(84) Sun, Z.; Yan, W.; Yao, T.; Liu, Q.; Xie, Y.; Wei, S. XAFS in dilute magnetic semiconductors. Dalton Trans. 2013, 42, 13779-13801.
(85) Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382-20386.
(86) Ataee-Esfahani, H.; Wang, L.; Nemoto, Y.; Yamauchi, Y. Synthesis of Bimetallic Au@Pt Nanoparticles with Au Core and Nanostructured Pt Shell toward Highly Active Electrocatalysts. Chem. Mater. 2010, 22, 6310-6318.
(87) Pu, Y.-C.; Wang, G.; Chang, K.-D.; Ling, Y.; Lin, Y.-K.; Fitzmorris, B. C.; Liu, C.-M.; Lu, X.; Tong, Y.; Zhang, J. Z.; Hsu, Y.-J.; Li, Y. Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting. Nano Lett. 2013, 13, 3817-3823.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52017-
dc.description.abstract氫為一乾淨的、可再生的且具高能量密度燃料,對於目前全球能源經濟的需求和實現環境友善的目標並具有取代石化燃料的潛力。在過去十年中,採用金屬/半導體之光電化學系統將太陽能轉換成氫能的光催化水分解反應是目前最具有開發價值的能源轉換反應。目前,利用鉑等貴金屬催化劑驅動太陽能將水裂解成氫氣的反應是最有效率的,然而因其成本非常高且相當稀少,而大大限制了大規模綠色能源的發展,故對於現今的科學家們仍然是具有相當大的挑戰性。
在本研究中,我們合成了具有低生產成本和高催化效率的光催化水分解複合材。透過簡單的電化學陽極氧化方法合成自組裝之二氧化鈦奈米管,並結合簡便的化學還原方法製備出具有良好的光吸收性能之金與鉑核殼結構奈米粒子,並成功應用於高效能且穩健的太陽能驅動產氫反應系統。此外,透過調控和設計金與鉑核殼結構奈米粒子,我們能更進一步優化金核金屬的奈米顆粒尺寸及鉑金屬殼的厚度,並有系統性地提升太陽能光轉化氫能的催化反應效率。此優異的催化性能源自於具有強烈光吸收性能的金核金屬本身之可調性表面電漿共振效應並結合鉑殼金屬光催化產氫性能與具有一維材料所擁有的優異電子傳遞特性之二氧化鈦奈米管所致。二氧化鈦奈米管負載金與鉑核殼結構奈米粒子亦呈現出其於長時間反應的光催化水分解產氫穩定性能,並使此金屬/半導體異質結構光催化材料對於太陽光能轉化氫能的系統表現出具有取代石化燃料的潛在能力。
zh_TW
dc.description.abstractHydrogen, a clean, renewable, and high-energy density energy fuel, is a promising sustainable alternative for the global energy demand and achieving an environmentally friendly fuel economy. Utilizing an integrated photoelectrochemical (PEC) system based on metal/semiconductor materials to directly convert solar to hydrogen via water splitting is one of the most promising approaches in the last decade. Althougth platinum and other noble metals were efficiency for solar-driven hydrogen evolution reaction (HER), but the highly cost and scarcity greatly limit their large scale development of green energy is challenging and demanding tasks for today's scientists.
In this study, we synthesized high efficient and low-cost HER photoelectrocatalysts including self-aligned TiO2 nanotubes (TiO2 NTs) via a facial electrochemical anodization method and light absorber Au@Pt core/shell nanoparticles via facile chemical reduction method, which could produce an efficient and robust PEC catalysts for solar-driven HER. Moreover, by optimizing the size of Au core particles and thickness of Pt shell, we are able to achieve an optimal Au@Pt core/shell nanoparticles structure and futher improve the overall solar conversion hydrogen efficiency. This superior performance can be attributed to the significant improvement in light harvesting properties from surface plasmon resonance effect of Au core nanostructure as well as the optimized interface between the shell Pt nanostructure catalysts and one-dimensional TiO2 NTs substrate. Outstanding HER stability was also demonstrated over long-term operation, suggesting these Au@Pt-TiO2 NTs heterostructures are promising fossil fuel alternatives for PEC catalysts of solar-driven hydrogen production.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:03:17Z (GMT). No. of bitstreams: 1
ntu-104-R02223149-1.pdf: 15643389 bytes, checksum: c6dbcc80d48432129010c157afa5ebeb (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
中文摘要 i
英文摘要 ii
致謝 iii
目錄 v
圖目錄 x
表目錄 xx
第一章 緒論 1
1.1奈米材料 1
1.1.1奈米材料及其維度之定義 1
1.1.2量子尺寸效應 2
1.2 奈米金屬簡介 4
1.2.1古典靜電場理論 4
1.2.2表面電漿共振效應 8
1.3 雙金屬奈米粒子 9
1.3.1雙金屬奈米粒子之應用 9
1.3.2雙金屬奈米粒子之合成 10
1.4 光催化水分解 12
1.4.1光催化水分解原理 12
1.4.2半導體材料性質 14
1.4.3 提升光催化水分解效率 16
1.5 二氧化鈦 18
1.5.1 二氧化鈦分類 18
1.5.2 零維與一維之二氧化鈦電子傳遞路徑 20
1.6 二氧化鈦奈米管合成方法 21
1.6.1 模板法 21
1.6.2 溶膠凝膠法 22
1.6.3 水熱法 23
1.6.4 陽極氧化法 25
1.7 研究動機與目的 34
第二章 實驗步驟與儀器分析原理 36
2.1化學藥品 36
2.2實驗步驟 38
2.2.1二氧化鈦奈米管之製備 38
2.2.2金/鉑核殼結構奈米粒子之製備 39
2.2.3二氧化鈦奈米管負載金/鉑核殼結構奈米粒子之製備 39
2.3儀器分析 40
2.3.1 X射線繞射分析儀 40
2.3.1.1 X射線繞射原理 41
2.3.1.2儀器規格 42
2.3.2紫外光/可見光光譜光譜儀 43
2.3.2.1紫外光/可見光光譜吸收原理 43
2.3.2.2儀器規格 44
2.3.3氣相層析儀 45
2.3.3.1氣相層析儀原理 45
2.3.3.2儀器規格 46
2.3.4電子顯微鏡 47
2.3.4.1電子顯微鏡原理 47
2.3.4.2儀器規格 48
2.3.5能量散佈光譜儀 49
2.3.5.1能量散佈光譜儀原理 49
2.3.5.2儀器規格 51
2.3.6 X光光電子能譜儀 51
2.3.6.1 X光光電子能譜儀原理 51
2.3.6.2 儀器規格 52
2.3.7同步輻射 53
2.3.7.1同步輻射吸收光譜原理 56
2.3.7.2儀器規格 72
第三章 結果與討論 74
3.1二氧化鈦奈米管 74
3.1.1陽極氧化生成二氧化鈦奈米管之參數調控 74
3.1.2穿透式電子顯微鏡分析 84
3.1.3掃描式式電子顯微鏡分析 86
3.1.4 X射線繞射分析 89
3.1.5紫外光/可見光光譜光譜儀分析 92
3.1.6氣相層析儀分析 94
3.2金/鉑核殼結構奈米粒子 95
3.2.1合成金/鉑核殼結構奈米粒子 95
3.2.2穿透式電子顯微鏡分析 97
3.2.3 X射線繞射分析 101
3.2.4紫外光/可見光光譜光譜儀分析 103
3.2.6能量散佈光譜儀分析 105
3.3二氧化鈦奈米管負載金/鉑核殼結構奈米粒子 107
3.3.1穿透式電子顯微鏡分析 107
3.3.2 X射線繞射分析 115
3.3.3 X光光電子能譜分析 116
3.3.4紫外光/可見光光譜光譜儀分析 121
3.3.5同步輻射分析 123
3.3.6氣相層析儀分析 124
第四章 結論 139
第五章 參考文獻 140
dc.language.isozh-TW
dc.title二氧化鈦奈米管負載金/鉑核殼結構應用於光催化水分解製氫zh_TW
dc.titleTitania nanotubes with decorating gold/platinum
core-shell nanostructure for photocatalytic hydrogen
evolution
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖尉斯,李介仁,林律吟
dc.subject.keyword二氧化鈦奈米管,金/鉑核殼結構奈米粒子,光催化,產氫,zh_TW
dc.subject.keywordTitania nanotubes,Gold/platinum core-shell nanopartilces,Photocatalytic,Hydrogen evolution,en
dc.relation.page145
dc.rights.note有償授權
dc.date.accepted2015-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
15.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved