請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52010
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇國棟(Guo-Dong Su) | |
dc.contributor.author | Wei-Hsiang Liao | en |
dc.contributor.author | 廖偉翔 | zh_TW |
dc.date.accessioned | 2021-06-15T14:02:52Z | - |
dc.date.available | 2017-08-26 | |
dc.date.copyright | 2015-08-26 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | [1] J. Duparré, P. Schreiber, P. Dannberg, T. Scharf, P. Pelli, R. Vӧlkel, H.-P. Herzig, and A. Bräuer, “Artifical compound eyes–different concepts and their application to ultra flat image acquisition sensors,” in MOEMS and Miniaturized Systems IV, A. El–Fatatry, ed., Proc. SPIE 5346, 89–100, 2004.
[2] Els Moens, Youri Meureta, Heidi Ottevaerea, Mukul Sarkar, David San Segundo Bello,Patrick Merken, and Hugo Thienpont, “An insect eye based image sensor with very large field of view,” Proc. of SPIE Vol. 7716, 77162D, 2010. [3] F.C. Wippermann, P. Schreiber, A. Bräuer, B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras”, Proc. of SPIE Vol. 6289, 62890T, 2007 [4] H. Gross, “Zoom lens”, Handbook of Optical systems, Vol.4, p.447-458, WILEY-VHC Verlag GmbH& Co.KGaA, Germany , 2008. [5] W. J. Smith, “Modern Optical Engineering”, the design of optical systems, 3nd , p. 295 , McGraw-Hill, Inc, 2000. [6] Bin WANG, Mao YE and Susumu SATO, “Liquid Crystal Negative Lens”, Japanese Journal of Applied Physics Vol. 44, No. 7A, pp. 4979–4983, 2005. [7] Bin WANG, Mao YE and Susumu Sato, “Liquid Crystal Lens Driven by Two voltages”, Proc. of SPIE Vol. 6018, 601812, 2005. [8] Bin Wang, Mao Ye, and Susumu Sato, “Liquid Crystal Lens With Focal Length Variable From Negative to Positive Values”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 18, NO. 1, JANUARY 1, 2006. [9] Yi-Hsin Lin, Ming-Syuan Chen, and Hung-Chun Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio”, Vol. 19, N0.5 / OPTICS EXPRESS 4714, February, 2011. [10] S. Kuipera, B.H.W. Hendriks, L.J. Huijbregtsb, A. Hirschbergb, C.A. Renders, M.A.J. van As, “Variable-focus liquid lens for portable applications” Proc. of SPIE, Vol. 5523, P.100-109,2004. [11] S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras”, APPLIED PHYSICS LETTERS VOLUME 85, 2004. [12] F.C. Wippermann, P. Schreiber, A. Bräuer, B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras”, Proc. of SPIE Vol. 6289, 62890T, 2007 [13] S. Kuiper, B.H.W. Hendriks, J.F. Suijver, S. Deladi. I. Helwegen, “Zoom camera based on liquid lenses”, Proc. of SPIE Vol. 6466, 64660F, 2007. [14] H.P. D. Shieh, Y.P. Huang, and K.W. Chien, “Micro-optics for liquid crystal displays applications,” IEEE/OSA J. Disp. Technol., vol.1, no. 1, pp. 62–76, 2005. [15] H.J. Peng, Y.L. Ho, X.J. Yu, M. Wong, and H.S. Kwok, “Coupling efficiency enhancement in organic light-emitting devices using microlens array—theory and experiment,” IEEE/OSA J. Disp. Technol., vol. 1, no. 2, pp. 278–282, 2005. [16] V. Lin, H.C. Wei, H.T. Hsieh, and G.D. J. Su, “An optical wavefront sensor based on a double layer microlens array,” Sensors, vol. 11, no. 11, pp. 10293-10307, 2011. [17] J.J. Yang, Y.S. Liao, and C.F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Opt. Commun., vol. 270, no. 2, pp. 433-440, 2007. [18] R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nature methods, vol. 6, no. 7, pp. 511-512, 2009. [19] T. Rubico Jay and M. B. Stern, “Preshaping photoresist for refractive microlens fabrication,” Optical Engineering, vol. 33, pp. 3552-3555, 1994. [20] H. Ottevaere, V. Gomez, B. Volckaerts, M. Vervaeke, P. Vynck, A. Hermanne, and H. Thienpont, “The fabrication and characterization of plastic microlens arrays by deep lithography with protons,” pp. 287-295, 2004. [21] K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt., vol. 42, pp. 6349-6359, 11/01 2003. [22] MacFarlane, D.L.; Narayan, V.; Tatum, J.A.; Cox, W.R.; Chen, T.; Hayes, D.J.; , “Microjet fabrication of microlens arrays,” Photonics Technology Letters, IEEE , vol.6, no.9, pp.1112-1114, Sept. 1994. [23] H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Journal of Optics A: Pure and Applied Optics, vol. 8, pp. 407-429, 2006. [24] Keith G. Fife, “Devices for integrated multi-aperture imaging,” A dissertation submitted to the department of electrical engineering and the committee on graduate studies of Stanford University, pp.20, June 2009. [25] Ciao-Ci Lin, “Microlens array for the enhancement of external quantum efficiency of planar light-emitting devices,” National Dong Hwa Univ., Taiwan, 2005, in press. [26] V. Lin, “Application of Long-Focal-Length microlens arrays on Shack-Hartmann Wavefront Sensor,” National Taiwan Univ., Taiwan, 2011, in press. [27] H.C. Ko, M.P. Stoykovich, J.Z. Song, V. Malyarchuk, W.M. Choi, C.J. Yu, J. B. Geddes III, J.L. Xiao, S.D. Wang, Y.G. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature, vol. 454, no. 7205, pp. 748-753, 2008. [28] D. Zhu, X. Zeng, C. Li, and H. Jiang, “Focus-Tunable microlens arrays fabricated on spherical surfaces,” IEEE/ASME J. Microelectromech. Syst., vol.20, no.2. pp. 389-395, 2011. [29] X. Zeng and H. Jiang, “Fabrication of complex structures on nonplanar surfaces through a transfer method,” J. Microelectromech. Syst., vol. 20, no. 1, pp. 6–8, 2011. [30] Yi-Shiuan Cherng, Vinna Lin, and Guo-Dung John Su, “Fabrication of Polydimethylsiloxane microlens array on spherical surface by multi-replication process,” Opt. Commun., pp. 116, 2012. [31] R. E. Fischer and B. Tadic-Galeb, Optical System Design, International ed.: McGraw-Hill, 2000. [32] Jacques Duparré, Daniela Radtke, Andreas Brückner, and Andreas Bräuer, “Latest Developments in Microoptical Artificial Compound Eyes: A Promising Approach for Next Generation Ultra-Compact Machine Vision,” Proc. of SPIE Vol. 6503, 65030I, 2007. [33] Andreas Brückner, Robert Leitel, Alexander Oberdӧrster, Peter Dannberg, Frank Wippermann, and Andreas Bräuer, “Multi-aperture optics for wafer-level cameras,” Proc. of SPIE Vol. 10 (4), 043010, 2011. [34] D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23, 2088–2093,2005. [35] P.-C. Huang, 'Bio-inspired compact camera using curved microlens array,' National Taiwan University, 2012. [36] “Compound eyes: old and new optical mechanisms” Nature 287, 681 – 686, October 23,1980 [37] 'Optical sensor array in an artificial compound eye', Opt. Eng. 33(11), 3649-3655, Nov 01, 1994. [38] Gretchen Alper. Flat field correction improves machine vision camera uniformity. [Online] Available: http://info.adimec.com/blogposts/bid/43199/Flat-field-correction-improves-machine-vision-camera-uniformity.Mar. 14,2011. [39] Flat Field Correction [Online]. Available: http://www.pixelink.com/umbraco/supportkb/?solution=/_ui/selfservice/pkb/PublicKnowledgeSolution/d?&id=50180000000SFTzCsY [40] R. A. King, A. L. Broadfoot, B. R. Sandel, and A. V. Jones,”Correcting image distortion with fiber-optic tapers,” Appl.Opt. 27, 2048–2054, 1988. [41] W. Thomas Cathey and Edward R. Dowski ” New paradigm for imaging systems” APPLIED OPTICS, Vol. 41, No. 29, 2002. [42] W. H. Chen, J.S. Lu, and G.D.J. Su, “Ionic polymer metal composite for an optical zoom in a compact camera” Vol. 23, No. 10 / OPTICS EXPRESS 13265, 2015. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52010 | - |
dc.description.abstract | 隨著科技的進步,智慧型手機已經變得非常普遍,輕薄的特性以及相機的品質是顧客購買時相當重要的考量,現今市面上的手機鏡頭模組,厚度大約在10 mm以下,隨著體積越做越薄、輕巧及高解析度的趨勢,其鏡頭的的設計想法和製作難度也不斷提升。因此,如何在這麼小的有限空間中,賦予手機鏡頭更高的成像品質,也成為現在的鏡頭公司和手機廠商的主要研究方向之一。
在本篇論文中,我們提出了一種微型多通道的光學系統。這是一種具有光學變焦及小體積且輕薄的成像系統,我們選用現今的智慧型手機的感光元件大小(1/3”吋),且在最厚的厚度不超過6.6 mm,符合目前手機鏡頭要求的基本條件,並會在細節中,對其做描述及評價。 我們利用光學設計軟體 ZEMAX,建立我們所有的光學元件。我們設計的光學系統是結合光學變焦與昆蟲複眼架構組合而成的手機鏡頭設計,利用兩片非球面鏡來實踐光學變焦,加上以曲面上的微透鏡來模擬昆蟲複眼的結構,達到減少厚度的目的。 藉由移動透鏡之間的距離來達到光學變焦,再來利用非球面表面在中心以及邊緣能有不同的曲率,使得我們在變換短焦模式和長焦模式時,在較大的角度可以取得比較好的平衡,而且藉由調整每一片微透鏡的曲率,讓不同角度的入射光,皆能在成像平面上聚焦,進而得到清晰的影像區塊;將所有單一微透鏡形成的影像區塊做拼接,最後會得到一個完整的影像。 由於微製程技術不斷進步,使得這樣的成像系統,未來有機會實現在手機鏡頭的製作上。最後,我們將會對此系統進行影像模擬且討論。 | zh_TW |
dc.description.abstract | In this thesis, we propose a multi-channel imaging system, which combines the principles of an insect’s compound eye and optical zoom. We use the distance between two aspherical lenses to achieve zoom effect. In order to shrink the thickness of the system, we use the multi-channel structure which consisted of curved micolens array. Based on this architecture, we can get the same effect like lens group. Each partial image passes through each channel separately and stitches together at the image sensor.
In our design, the thickness is 6.57 mm(wide), 6.25 mm(mid), 6.4 mm(tele) and the effective focal length is 2.2 mm(wide), 2.97 mm(mid), 4.04 mm(tele). Zoom ratio is about 1.9x. The size of image sensor is 1/3” inch which is the scale of current mobile phones. By using wafer-level micro-optical fabrication, the microlense has the potential to applied to mobile phone camera. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T14:02:52Z (GMT). No. of bitstreams: 1 ntu-104-R02941079-1.pdf: 4505653 bytes, checksum: 518dd9561f74a2463be5f1e4730d8133 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES x Chapter 1 Introduction 1 1.1 Single aperture eye 2 1.2 Compound eye 3 1.3 Zoom system 4 1.3.1 System with moving components 5 1.3.2 System without moving components 6 1.4 Basic imaging principle of camera 9 1.5 Microlens array (MLA) 10 1.5.1 Circular MLA 10 1.5.2 Other shapes MLA 12 1.5.3 Microlenses on a curved surface 15 Chapter 2 Aberration theory 19 2.1 Wave aberration 19 2.2 Seidel aberrations 22 2.2.1 Spherical aberration 22 2.2.2 Coma 23 2.2.3 Astigmatism 24 2.2.4 Field curvature 25 2.2.5 Distortion 26 2.3 Chromatic aberration 27 2.4 Ghost image 29 2.5 Overlap 30 Chapter 3 Design of a multi-channel imaging system 32 3.1 Literature review 32 3.1.1 Working principle 32 3.2 Design and optimizations 34 3.2.1 Two aspherical lenses 35 3.2.2 Microlens array design 40 3.2.3 The field apertures and an IR-filter 48 Chapter 4 Image process 51 4.1 Flat field correction (FFC) 51 4.1.1 Description 51 4.1.2 Example images 54 Chapter 5 Results and discussions 57 5.1 System layout 57 5.2 Specifications of system 61 5.3 Image simulation 63 5.4 Performance comparison 64 Chapter 6 Conclusion 68 REFERENCE 69 | |
dc.language.iso | en | |
dc.title | 將微透鏡應用於多通道光學變焦模組之設計 | zh_TW |
dc.title | Multi-Channel Compact Optical Zoom Module by using Microlenses | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃鼎偉,蔡永傑 | |
dc.subject.keyword | 微透鏡陣列,光學變焦,複眼,手機鏡頭, | zh_TW |
dc.subject.keyword | microlenses array,optical zoom,compound eye,mobile phone camera, | en |
dc.relation.page | 79 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-20 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 4.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。