Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52001
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭卜壬
dc.contributor.authorTing-Yi Shihen
dc.contributor.author施亭屹zh_TW
dc.date.accessioned2021-06-15T14:02:19Z-
dc.date.available2020-08-21
dc.date.copyright2015-08-21
dc.date.issued2015
dc.date.submitted2015-08-20
dc.identifier.citation[1] H. J. Ahn. Utilizing popularity characteristics for product recommendation. Inter- national Journal of Electronic Commerce, pages 59–80, 2006.
[2] H. J. Ahn. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Information Sciences, pages 37 – 51, 2008.
[3] O. Celma and P. Cano. From hits to niches?: Or how popular artists can bias mu- sic recommendation and discovery. In Proceedings of the 2Nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition, pages 5:1– 5:8. ACM, 2008.
[4] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. Analyzing the video popularity characteristics of large-scale user generated content systems. IEEE/ACM Trans. Netw., pages 1357–1370, 2009.
[5] C.-M. Chen, H.-P. Chen, M.-F. Tsai, and Y.-H. Yang. Leverage item popularity and recommendation quality via cost-sensitive factorization machines. In Data Mining Workshop (ICDMW), 2014 IEEE International Conference on, pages 1158–1162, 2014.
[6] Y. S. Choi. Content type based adaptation in collaborative recommendation. In Pro- ceedings of the 2014 Conference on Research in Adaptive and Convergent Systems, pages 61–65. ACM, 2014.
38
[7] N. Golbandi, Y. Koren, and R. Lempel. On bootstrapping recommender systems. In
Proceedings of the 19th ACM International Conference on Information and Knowl- edge Management, pages 1805–1808. ACM, 2010.
[8] I.Guy,N.Zwerdling,D.Carmel,I.Ronen,E.Uziel,S.Yogev,andS.Ofek-Koifman. Personalized recommendation of social software items based on social relations. In Proceedings of the Third ACM Conference on Recommender Systems, pages 53–60. ACM, 2009.
[9] A.S.HarpaleandY.Yang.Personalizedactivelearningforcollaborativefiltering.In
Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 91–98. ACM, 2008.
[10] T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In Pro- ceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pages 688–693. Morgan Kaufmann Publishers Inc., 1999.
[11] M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the Fourth ACM Conference on Recommender Systems, pages 135–142. ACM, 2010.
[12] Y. Koren. Collaborative filtering with temporal dynamics. Commun. ACM, pages 89–97, 2010.
[13] Y.Koren,R.Bell,andC.Volinsky.Matrixfactorizationtechniquesforrecommender systems. Computer, pages 30–37, 2009.
[14] P. Kotler and K. Keller. Marketing Management. Prentice Hall, 2012.
[15] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong. Addressing cold-start problem in
recommendation systems. In Proceedings of the 2Nd International Conference on 39
Ubiquitous Information Management and Communication, pages 208–211. ACM, 2008.
[16] E. L. Lee, J.-K. Lou, W.-M. Chen, Y.-C. Chen, S.-D. Lin, Y.-S. Chiang, and K.- T. Chen. Fairness-aware loan recommendation for microfinance services. In Pro- ceedings of the 2014 International Conference on Social Computing, pages 3:1–3:4. ACM, 2014.
[17] Z. Lu, D. Agarwal, and I. S. Dhillon. A spatio-temporal approach to collaborative filtering. In Proceedings of the Third ACM Conference on Recommender Systems, pages 13–20. ACM, 2009.
[18] H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In Proceedings of the 32Nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 203–210. ACM, 2009.
[19] H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: Social recommendation using probabilistic matrix factorization, 2008.
[20] J. Oh, S. Park, H. Yu, M. Song, and S.-T. Park. Novel recommendation based on personal popularity tendency. In Data Mining (ICDM), 2011 IEEE 11th International Conference on, pages 507–516, 2011.
[21] M. P. O’Mahony, N. J. Hurley, and G. C. M. Silvestre. Utility-based neighbourhood formation for efficient and robust collaborative filtering. In Proceedings of the 5th ACM Conference on Electronic Commerce, pages 260–261. ACM, 2004.
[22] S.-T. Park, D. Pennock, O. Madani, N. Good, and D. DeCoste. Naive filterbots for robust cold-start recommendations. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 699– 705. ACM, 2006.
40
[23] S. Sahebi and W. Cohen. Community-based recommendations: a solution to the cold start problem. In Workshop on Recommender Systems and the Social Web (RSWEB), held in conjunction with ACM RecSys?11, 2011.
[24] A.I.Schein,A.Popescul,L.H.Ungar,andD.M.Pennock.Methodsandmetricsfor cold-start recommendations. In Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 253–260. ACM, 2002.
[25] H. Steck. Training and testing of recommender systems on data missing not at ran- dom. In Proceedings of the 16th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining, pages 713–722. ACM, 2010.
[26] H.Steck.Itempopularityandrecommendationaccuracy.InProceedingsoftheFifth ACM Conference on Recommender Systems, pages 125–132. ACM, 2011.
[27] D.Sun,Z.Luo,andF.Zhang.Anovelapproachforcollaborativefilteringtoalleviate the new item cold-start problem. In Communications and Information Technologies (ISCIT), 2011 11th International Symposium on, pages 402–406, 2011.
[28] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel. Probabilistic memory- based collaborative filtering. IEEE Trans. on Knowl. and Data Eng., 2004.
[29] X. Yu, X. Ren, Q. Gu, Y. Sun, and J. Han. Collaborative filtering with entity simi- larity regularization in heterogeneous information networks, 2013.
[30] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han. Per- sonalized entity recommendation: A heterogeneous information network approach. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pages 283–292. ACM, 2014.
41
[31] Q. Yuan, L. Chen, and S. Zhao. Factorization vs. regularization: Fusing hetero- geneous social relationships in top-n recommendation. In Proceedings of the Fifth ACM Conference on Recommender Systems, pages 245–252. ACM, 2011.
[32] R. Zhou, S. Khemmarat, L. Gao, and H. Wang. Boosting video popularity through recommendation systems. In Databases and Social Networks, pages 13–18. ACM, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52001-
dc.description.abstract當新商品 (New item) 的數量成長速度越來越快,推薦系統 (Rec- ommendation system) 就越難兼顧到每一個新商品的曝光度 (Exposure)。 因此,我們提出了一套兩段式的推薦方法,期望能幫助新上架商 品增強曝光的機會。本篇論文所提出的方法有別於以往的協同過濾 (Collaborative Filtering) 推薦,在推薦商品時不僅僅考慮使用者的滿意 度或是商品的品質,也將品質未知的新上架商品推薦給可能願意提供 評價的使用者。我們可透過蒐集得到的評價確認新商品的品質,再決 定是否繼續推廣或抑制新商品。如此一來,我們僅犧牲了一點使用者 收到滿意商品的穩定性,卻換取了所有新上架商品極需的曝光度,讓 他們都有相同的機會被看見。我們的實驗實施在現有的 MovieLens 和 Netflix 資料上,而結果顯示了此種推薦方法的可行性。zh_TW
dc.description.abstractNew items, e.g., mobile apps and movies, have been growing so fast that most of them cannot get discovered in a recommendation system. We propose a two-stage approach to appropriately promote new items. Different from pre- vious works on Collaborative Filtering (CF), our approach is not based only on item quality or user satisfaction. We force the new items to be promoted to those who would be potentially able to give ratings, and then leverage the gathered user preference to punish the promoted items with low quality in- trinsically. By slightly sacrificing the benefit of recommending the best items in terms of item quality or user satisfaction, our solution seeks to provide all of the items with a chance to be visible equally. The result of the experiments conducted on MovieLens and Netflix data demonstrates the feasibility of the approach.en
dc.description.provenanceMade available in DSpace on 2021-06-15T14:02:19Z (GMT). No. of bitstreams: 1
ntu-104-R02922038-1.pdf: 1032182 bytes, checksum: a9c6a52c9ae430905d837dbac7885514 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Exposure-augmenting CF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 User Preference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Rating Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Exposure Augmenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 User Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Exposure-Augmenting Recommendation . . . . . . . . . . . . . . . . . . 15
4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.1 Item Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Exposure and Preference . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Competitive Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Assumptions on Experimental Validity . . . . . . . . . . . . . . . . . . . . 22
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.1 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.2 RV and Item Exposure . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.3 Hit Time Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.4 Item Starving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Parameter Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.1 Unknownness Threshold . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.2 User Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
dc.language.isoen
dc.subject冷開始zh_TW
dc.subject推薦zh_TW
dc.subject推薦系統zh_TW
dc.subject商品曝光度zh_TW
dc.subject曝光度zh_TW
dc.subject協同過濾zh_TW
dc.subjectexposureen
dc.subjectcold starten
dc.subjectcollaborative filteringen
dc.subjectrecommendationen
dc.subjectrecommendation systemen
dc.subjectitem exposureen
dc.title協同過濾推薦時增強商品曝光度zh_TW
dc.titleAugmenting Item Exposure in Collaborative Filteringen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信希,蔡銘峰,張嘉惠,曾新穆
dc.subject.keyword推薦,推薦系統,商品曝光度,曝光度,協同過濾,冷開始,zh_TW
dc.subject.keywordrecommendation,recommendation system,item exposure,exposure,collaborative filtering,cold start,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2015-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved