請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51965完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭安妮(Annie On-Lei Kwok) | |
| dc.contributor.author | Chia-Hui Lin | en |
| dc.contributor.author | 林佳暉 | zh_TW |
| dc.date.accessioned | 2021-06-15T14:00:04Z | - |
| dc.date.available | 2015-08-21 | |
| dc.date.copyright | 2015-08-21 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-20 | |
| dc.identifier.citation | 1. Ambraseys, N. N., Douglas, J., Rinaldis, D., Berge-Thierry, C., Suhadolc, P., Costa, G., Sigbjornsson, R., and Smit, P.(2004). “Dissemination of European Strong-Motion Data,” Vol. 2., CD-ROM collection. Engineering and Physical Sciences Research Council, U. K.
2. API, R. (2007). “Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms–Working Stress Design,” American Petroleum Institute. 3. Arias, Arturo. (1970). “Measure of earthquake intensity”. Massachusetts Inst. Of Tech., Cambridge. Univ. of Chile, Santiago de Chile. 4. Baker, J. W. (2011). “Conditional mean spectrum: a tool for ground-motion selection” Journal of Structural Engineering 137, pp. 322-331. 5. Bolt, B. A. (1973). “Duration of strong ground motion,” Proceeding, 5th world Conf. on Earthquake Engineering. 1, 1304-1313. 6. Boulanger, R. W., Curras, C. J., Kutter, B. L., Wilson, W., and Abghari, A. (1999). “Seismic Soil-Pile-Structure Interaction Experiments and Analyses,” J. Geotech Geoenviron Eng., ASCE, 125 (9), pp. 750–759. 7. Boulanger, R. W., Kutter, B. L., Brandenberg, S. J., Singh, P., and Chang, D. (2003). “Pile Foundations in Liquefied and Laterally Spreading Ground During Earthquakes: Centrifuge Experiments & Analyses,” Center for Geotechnical Modeling, Univ. of California, Davis, Calif. 8. Brandenberg, S., Boulanger, R. W., Kutter, B., and Chang, D. (2005). “Behavior of Pile Foundations in Laterally Spreading Ground during Centrifuge Tests,” J. Geotech. Geoenviron. Eng., 131(11), 1378–1391. 9. Byrne, P. M. (1991). “A cyclic shear-volume coupling and pore pressure model for sand proceeding,” second international conference on recent advanced in geotechnical earthquake engineering and soil dynamics, St. Louis, Missouri, Paper No. 1.24. 10. Chen, L. T., Poulos, H. G. (1993). “Analysis of pile-soil interaction under lateral loading using infinite and finite elements”, Computers and Geotechnics, 15, pp. 189-220. 11. Cundall, P. A., Coetzee, M.J., Hart, R.D., and Varona, P.M., (1993). “FLAC user’s manual,” Itasca Consulting Group, USA. 12. Cundall, P. A., Hasteen, H., Lassasse, S., and Seines, P. B. (1980). “NESSI: soil-structure interaction program for dynamic and static problems,” Norwegian Geotechnical Institute, Report: 51508-9. 13. Erol, K., and Chopra, A. K. (2010). “Practical guidelines to select and scale earthquakes records for nonlinear response history analysis of structures”. US Geological Survey Open-File Report 1068.2010:126. 14. Finn, W. D., Lee, K. W. and Martin G. R. (1977). “An effective stress model for liquefaction,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT 6, pp 517-533. 15. Kramer, Steven Lawrence. (1996). “Geotechnical earthquake engineering”. Vol. 80. Upper Saddle River, NJ: Prentice Hall. 16. Kulhawy, F. H., and Paul W. M. (1990). “Manual of estimating soil properties for foundation design,” No. EPRI-EL-6800 Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. 17. Mardfekri, M., Gardoni, P., Roesset, J. M. (2013). “Modeling laterally loaded single piles accounting for soil-pile interactions,” J. Eng. 18. Matlock, H. (1970). “Correlations for design of laterally loaded piles in soft clay,” Proc., 2nd Annu. Offshore Technol. Conf., Vol.1, 577-594. 19. Meyersohn, W. D. (1994). “Pile response to Liquefaction-induced lateral spread,” Ph.D. Thesis. Cornell University, Ithaca, New York. 20. O’Neill, M. W., and Murchison, J. M. (1983). “An evaluation of p-y relationships in sands,” University of Houston. 21. Pacific Earthquake Engineering Research Center. (2010). “PEER ground motion database user’s manual.” 22. Pitilakis, D., Dietz, M., Wood, M. D., Clouteau, D., and Modaressi, A. (2008). “Numerical Simulation of Dynamic Soil-Structure Interaction in Shaking Table Testing,” Soil Dynamics and Earthquake Engineering, 28, pp. 453–467. 23. Power, M. (2004). “Design ground motion library”. Geotechnical Engineering for Transportation Projects. ASCE, pp. 778-786. 24. Reese, L. C., Cox, W. R., and Koop, R. D. (1974). “Analysis of laterally loaded piles in sand,” Proc. 6th Annual Offshore Technology Conference, 2. Paper No. OTC 2080, Houston, Tex., 473-483. 25. Reese, L. C., Cox, W. R., and Koop, F. D. (1975). “Field testing and analysis of laterally loaded piles in stiff clay,” Proc. 7th Offshore Tech. Conf., ASCE et al., 671-690. 26. Stewart J. P., Chiou, S-J, Bray, J. D., Graves, R. W., Somerville, P. G., and Abrahamson, N. A. (2001). “Ground motion evaluation procedures for performance-based design,” Soil Dynamics and Earthquake Engineering, Vol. 22. pp. 765-772. 27. Trochanis, A. M., Bielak, J., Christiano, P. (1991). “Three-dimensional nonlinear study of piles,” Journal of Geotechnical Engineering. 117(3):429–447. 28. Winkler E. (1867). “Die Lehre von Elastizität und Festigkeit,” Prague. 29. Yang, Z., Jeremic, B. (2002). “Numerical analysis of pile behavior under lateral loads in layered elastic–plastic soils,” Int. J. Numer. Anal. Met. Geomech. 26:1385-1406. 30. 中華民國內政部營建署 (2011). 「建築物耐震設計規範」。 31. 凃亦峻 (2011). 「位於可液化砂土層中單樁基礎受震反應的離心模擬」,中央大學土木工程學系學位論文,1-192。 32. 陳家漢、翁作新 (2010).,「可能液化地盤中模型樁振動台試驗」,地工技術,第125期,第35-44頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51965 | - |
| dc.description.abstract | 台灣位於環太平洋地震帶(又稱環太平洋火山帶)上,每年大大小小地震不斷,根據中央氣象局的研究,台灣地區平均每年約發生18500次地震,其中有感的地震約有1000次。地震來臨時,短時間內的巨大能量會使建築物產生嚴重的損害,進而波及到生命財產安全。再者台灣的地形中,山地與丘陵等地形占大多數,此類區域的建築物在受到地震影響時可能會因為如地形效應等因素更為嚴重,因此根據內政部營建署的建築物耐震設計規範,在設計一建築物時,有許多需要考量的地方,從地形、斷層遠近到土壤性質,都是針對建築物耐震設計必要的考量。
因此,本研究欲利用有限差分數值模擬軟體FLAC模擬樁基礎位在傾斜地盤受震的反應。首先利用從規範得到的該區設計譜加速度並繪出該地的設計反應譜,再根據此反應譜從Pacific Earthquake Engineering Research (PEER)的強地動資料庫得到的相似於目標反應譜的不同的地震加速度歷時,接著將這些地震歷時加載至FLAC模型,並藉由改變樁基礎長度、樁長與至基盤長度之比值等因素進行探討,將最後模擬所得之結果,從許多不同地震參數的角度進行探討,希望能找出其中的關聯性。 | zh_TW |
| dc.description.abstract | Pile foundation is a very common way to support the structures built on slopes. When earthquakes strike, they may drive the slopes to move and slide, which would exert additional loading to the piles. In addition, the cyclic loading may weaken the soil surrounding the pile if the induced strain is large. All of these may cause damages to the pile foundation which, in turn, affect the structure supported by the foundation.
In the discipline of geotechnical earthquake engineering, the seismic behavior of pile can be analyzed by dynamic p-y method, or dynamic finite element / finite difference analysis. In this research, finite difference analysis (using commercial software FLAC) is utilized to model the behavior of pile installed in sloping areas. Different pile lengths, ratios of bedrock depth to pile lengths and locations of piles would be considered. Moreover, effect of input ground motion variability on pile response is studied. This is achieved by using 30 input ground motions (each with different ground motion characteristics). These ground motions are selected based on the target design spectrum for Taipei Basin, which has 10-percent probability of exceedance in 50 years (corresponding to the return period of 475 years). Pile performance considered in this study includes maximum moment, maximum shear force and maximum lateral displacement. Trends of the pile response with ground motion parameters, model geometry, pile configuration and analysis types are evaluated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T14:00:04Z (GMT). No. of bitstreams: 1 ntu-104-R02521132-1.pdf: 3608678 bytes, checksum: 64cc43ba00d0c67b0fb13d0eb3b2d048 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
致謝 II 摘要 III Abstract IV Table of Contents V List of Figures VII List of Tables X Chapter 1 Introduction 1 1.1 Motivation and Objectives of this Research 1 1.2 Thesis Organization 2 Chapter 2 Literature Review 3 2.1 Behavior of Pile under Earthquake Loading 3 2.2 Modeling of Pile under Lateral Loading 3 2.2.1 Beams on Winkler Foundations 3 2.2.2 P-Y Curves 3 2.2.3 Finite Element/ Finite Difference method 6 2.2.4 Experimental Study 7 2.3 Ground Motion Parameters 8 2.3.1 Amplitude parameters 8 2.3.2 Frequency content parameters 9 2.3.3 Duration parameters 9 2.4 Time History Selection 10 2.4.1 Based on Magnitude and Distance to Rupture 10 2.4.2 Based on Response Spectrum 10 Chapter 3 Numerical Analysis 15 3.1 FLAC introduction 15 3.2 Numerical Model 15 3.2.1 Model Geometry 15 3.2.2 Properties of Soil and Pile 16 3.2.3 Boundary Conditions 16 3.2.4 Applied loading 17 3.2.5 Finn model 17 3.3 Ground Motions 18 3.3.1 PEER Ground Motion Database 18 3.3.2 Target Spectrum 18 3.3.3 Selected Time Histories 19 3.4 FLAC Simulations 19 Chapter 4 Analyses and Results 35 4.1 Overview 35 4.2 Effects of Pile Length (Lp) 35 4.2.1 Frequency Parameters 35 4.2.2 Duration Parameters 36 4.2.3 Other Parameters 36 4.3 Effect of Ratio of Pile Head-Bedrock Distance to Pile Length (R) 37 4.3.1 Frequency Parameters 37 4.3.2 Duration Parameters 37 4.3.3 Other Parameters 38 4.4 Effect of Pile Location 39 4.4.1 Frequency Parameters 39 4.4.2 Duration Parameters 39 4.4.3 Other Parameters 40 4.5 Effective Stress Dynamic Analysis 40 4.5.1 Effect of Ratio of Pile Head-Bedrock Distance to Pile Length (R) 41 4.5.2 Effect of Pile Length (Lp) 41 Chapter 5 Conclusion and Recommendations 72 5.1 Conclusions 72 5.2 Recommendations for Future Research 73 References 74 | |
| dc.language.iso | en | |
| dc.subject | 受震分析 | zh_TW |
| dc.subject | 樁基礎 | zh_TW |
| dc.subject | FLAC | zh_TW |
| dc.subject | effective stress analysis | en |
| dc.subject | total stress analysis | en |
| dc.subject | dynamic analysis | en |
| dc.subject | pile foundations | en |
| dc.subject | FLAC | en |
| dc.title | 樁基礎在傾斜地盤受震之數值模擬 | zh_TW |
| dc.title | Numerical Study of Pile Foundation on Sloping Ground under Seismic Loading | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.subject.keyword | FLAC,樁基礎,受震分析, | zh_TW |
| dc.subject.keyword | FLAC,pile foundations,dynamic analysis,total stress analysis,effective stress analysis, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
