請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51953完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕蓓德(Pei-Te Chiueh) | |
| dc.contributor.author | Ai-Lin Chen | en |
| dc.contributor.author | 陳艾琳 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:59:20Z | - |
| dc.date.available | 2022-08-31 | |
| dc.date.copyright | 2020-09-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H. and Kløve, B. (2015) A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology 524, 733-752. Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J. and Srinivasan, R. (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology 333(2-4), 413-430. Almeida, C., Ramos, T.B., Sobrinho, J., Neves, R. and Proença de Oliveira, R. (2019) An Integrated Modelling Approach to Study Future Water Demand Vulnerability in the Montargil Reservoir Basin, Portugal. Sustainability 11(1), 206. Boulay, A.M., Hoekstra, A.Y. and Vionnet, S. (2013) Complementarities of water focused life cycle assessment and water footprint assessment. Environmental Science Technology 47(21), 11926-11927. Bu, J., Lu, C., Niu, J. and Gao, Y. (2018) Attribution of Runoff Reduction in the Juma River Basin to Climate Variation, Direct Human Intervention, and Land Use Change. Water 10(12). Carre, E., Beigbeder, J., Jauzein, V., Junqua, G. and Lopez-Ferber, M. (2017) Life cycle assessment case study: Tertiary treatment process options for wastewater reuse. Integrated Environmental Assessment and Management 13(6), 1113-1121. Chen, Z.-M. and Chen, G.Q. (2013) Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecological Indicators 28, 142-149. Chini, C.M., Konar, M. and Stillwell, A.S. (2017) Direct and indirect urban water footprints of the United States. Water Resources Research 53, 316-327. Connor, R. (2015) The United Nations world water development report 2015: water for a sustainable world. Paris: UNESCO. Du, L., Rajib, A. and Merwade, V. (2018) Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin. Journal of Hydrology 562, 84-102. Gómez-Llanos, E., Durán-Barroso, P. and Matías-Sánchez, A. (2018) Management effectiveness assessment in wastewater treatment plants through a new water footprint indicator. Journal of Cleaner Production 198, 463-471. Giri, S., Arbab, N.N. and Lathrop, R.G. (2018) Water security assessment of current and future scenarios through an integrated modeling framework in the Neshanic River Watershed. Journal of Hydrology 563, 1025-1041. Hoekstra, A.Y. (2003) Virtual water trade: proceedings of the international expert meeting on virtual water trade. Delft: UNESCO-IHE. Hoekstra, A.Y. (2013) The Water Footprint of Modern Consumer Society. London: Routledge. Hoekstra, A.Y. and Chapagain, A.K. (2006) Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management 21(1), 35-48. Hoekstra, A.Y., Chapagain, A.K., Mekonnen, M.M. and Aldaya, M.M. (2011) The water footprint assessment manual: Setting the global standard. London: Routledge. Holloway, R.W., Miller-Robbie, L., Patel, M., Stokes, J.R., Munakata-Marr, J., Dadakis, J. and Cath, T.Y. (2016) Life-cycle assessment of two potable water reuse technologies: MF/RO/UV–AOP treatment and hybrid osmotic membrane bioreactors. Journal of Membrane Science 507, 165-178. ISO (2006) ISO 14044:2006 Environmental management Life cycle assessment requirements and guidelines. Geneva: International Standardization Organization. ISO (2014) ISO 14046: Environmental management—Water footprint—Principles, requirements and guidelines. Geneva: International Standardization Organization. Jorda-Capdevila, D., Gampe, D., Huber Garcia, V., Ludwig, R., Sabater, S., Vergonos, L. and Acuna, V. (2019) Impact and mitigation of global change on freshwater-related ecosystem services in Southern Europe. Science of The Total Environment 651(1), 895 908. Ki-Moon, B. (2014) The road to dignity by 2030: ending poverty, transforming all lives and protecting the planet. Synthesis report of the Secretary-General on the post-2015 sustainable development agenda. New York: United Nations. Lee, Y.-J. (2015) Land, carbon and water footprints in Taiwan. Environmental Impact Assessment Review 54, 1-8. Liu, T.-M., Tung, C.P., Ke, K.Y., Chuang, L.H. and Lin, C.Y. (2009) Application and development of a decision-support system for assessing water shortage and allocation with climate change. Paddy and Water Environment 7(4), 301-311. Luck, M., Landis, M. and Gassert, F. (2015) Aqueduct water stress projections: decadal projections of water supply and demand using CMIP5 GCMs. Washington: World Resources Institute. Manzardo, A., Loss, A., Fialkiewicz, W., Rauch, W. and Scipioni, A. (2016) Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza. Ecological Indicators 69, 165-175. Mastrotheodoros, T., Pappas, C., Molnar, P., Burlando, P., Manoli, G., Parajka, J., Rigon, R., Szeles, B., Bottazzi, M., Hadjidoukas, P. and Fatichi, S. (2020) More green and less blue water in the Alps during warmer summers. Nature Climate Change 10(2), 155-161. Meneses, M., Pasqualino, J.C. and Castells, F. (2010) Environmental assessment of urban wastewater reuse: treatment alternatives and applications. Chemosphere 81(2), 266-272. Morera, S., Corominas, L.I., Poch, M., Aldaya, M.M. and Comas, J. (2016) Water footprint assessment in wastewater treatment plants. Journal of Cleaner Production 112, 4741-4748. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L. (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3), 885-900. Nakhate, P.H., Moradiya, K.K., Patil, H.G., Marathe, K.V. and Yadav, G.D. (2020) Case study on sustainability of textile wastewater treatment plant based on lifecycle assessment approach. Journal of Cleaner Production 245, 118929. Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q. and Dasgupta, P. (2014) Climate change 2014: synthesis report. Geneva: Intergovernmental Panel on Climate Change, Ipcc. Pasqualino, J.C., Meneses, M. and Castells, F. (2011) Life Cycle Assessment of Urban Wastewater Reclamation and Reuse Alternatives. Journal of Industrial Ecology 15(1), 49-63. Pellicer-Martinez, F. and Martinez-Paz, J.M. (2018) Probabilistic evaluation of the water footprint of a river basin: Accounting method and case study in the Segura River Basin, Spain. Science of the Total Environment 627, 28-38. Pintilie, L., Torres, C.M., Teodosiu, C. and Castells, F. (2016) Urban wastewater reclamation for industrial reuse: An LCA case study. Journal of Cleaner Production 139, 1-14. Romeiko, X.X. (2019) Comprehensive water footprint assessment of conventional and four alternative resource recovery based wastewater service options. Resources Conservation and Recycling 151, 104458. Salmoral, G., Willaarts, B.A., Garrido, A. and Guse, B. (2017) Fostering integrated land and water management approaches: Evaluating the water footprint of a Mediterranean basin under different agricultural land use scenarios. Land Use Policy 61, 24-39. Shao, L. and Chen, G.Q. (2013) Water footprint assessment for wastewater treatment: method, indicator, and application. Environmental Science Technology 47(14), 7787 7794. Tong, L., Liu, X., Liu, X., Yuan, Z. and Zhang, Q. (2013) Life cycle assessment of water reuse systems in an industrial park. Journal of Environmental Management 129, 471-478. van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J. and Rose, S.K. (2011) The representative concentration pathways: an overview. Climatic Change 109, 5-31. Veettil, A.V. and Mishra, A.K. (2016) Water security assessment using blue and green water footprint concepts. Journal of Hydrology 542, 589-602. Zhao, R., He, H. and Zhang, N. (2015) Regional Water Footprint Assessment: A Case Study of Leshan City. Sustainability 7(12), 16532-16547. 內政部(2017)。前瞻基礎建設計畫-水環境建設(水與發展)再生水工程推動畫(核定本)。 利秀蘭(2015)。限水對國內經濟之影響-以資源利用模型評析。經濟研究,16,106-124。 高雄市政府(2015)。高雄市鳳山溪污水處理廠放流水回收再利用示範案可行性評估成果報告。 國家發展委員會(2018)。中華民國人口推估(2018 至 2065 年)。 莊雯凱(2018)。高空間解析度都市水足跡評估與低衝擊開發設施效益分析(碩士論文)。國立臺灣大學,臺北市。 許桓瑜(2014)。都市污水處理廠之生命週期評估(碩士論文)。國立臺灣大學,臺北市。 童慶斌、劉子明、林嘉佑、曹榮軒、李明旭(2015)。氣候變遷水資源風險評估與調適決策之探討。土木水利,42(4),30-45。 經濟部水利署(2016)。臺灣中部區域水資源經理基本計畫。 經濟部水利署(2018a)。水利統計。 經濟部水利署(2018b)。107 年生活用水量統計報告。 經濟部水利署(2018c)。107 年工業用水量統計報告。 經濟部統計處(2018)。107年第4季製造業產值統計。 臺中市政府水利局(2018)。水湳水資源回生中心再生水開發利用先期計畫書(修正版)。 臺中市政府經濟發展局(2018)。臺中市政府經濟發展局統計年報。 臺灣自來水公司(2018)。台灣自來水事業統計年報。 臺灣經濟研究院(2018)。水足跡應用推廣之研究。臺北市:經濟部水利署。 臺灣經濟硏究院(2010)。水再生利用經濟效益評估模式硏究。臺北市:經濟部水利署。 劉子明(2010)。氣候變遷對區域水資源衝擊評估整合系統之研究(博士論文)。國立臺灣大學,臺北市。 劉冠妤(2016)。建立生命週期評估之動態水壓力指標以預估氣候變遷情境之水資源耗用衝擊(碩士論文)。國立臺灣大學,臺北市。 鍾閔光(2015)。SWAT模式功能分析與探討-以來社溪集水區為例(碩士論文)。國立中興大學,臺中市。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51953 | - |
| dc.description.abstract | 水資源的可得性在近年逐漸受到氣候變遷、用水需求增加等因素備受威脅,使得水資源短缺的問題日趨嚴重,開發非傳統水源已成為各國趨勢,其中,再生水供水不容易受氣候影響,且能將水資源循環並永續利用,是現今重要的供水來源之一。不過,再生水雖然具有 供水效益,但在處理過程中的資源使用對水資源造成之衝擊鮮少被考量;此外,再生水利用在未來氣候變遷情境下,對環境產生的潛在影響亦尚未有一套完整的評估方法。 本研究以水足跡評估方法作為基礎,結合SWAT和 TaiWAP模式進行流域水足跡模擬,並建立再生水廠建設的衝擊與效益的評估流程,選定中部大甲溪流域及臺中水湳再生水工程做為研究案例,對再生水廠進行水足跡評估,繼以流域水足跡永續性作為指標,評估再生水廠在氣候變遷情境下的供水效益。 研究結果顯示,氣候變遷所造成的降雨型態改變將會衝擊大甲溪流域的藍水、綠水與灰水資源,藍水與綠水稀缺性將會在未來情境的3-5月有明顯上升,水污染程度將會在2月大幅度上升。比較流域藍水稀缺性在不同情境下的增減量,氣候變遷造成的稀缺性增量最大達203%,而再生水所提供的減量效益最多僅有 顯示若以流域永續性的角度來看,再生水供水對藍水稀缺性減量效益很小;若以經濟效益來看,由於大甲溪流域在未來情境缺水率高,加上水湳再生水廠供水對象為產值較高的中部科學園區,經濟效益較為明顯。水湳再生水廠的水足跡盤查結果顯示,水足跡貢獻來源主要為灰水足跡,而能源為藍水足跡貢獻的主要來源;將再生水廠的水足跡與無再生水廠情境相比,在有再生水廠的情境下,每月可以減少約20萬噸的水足跡。 本研究所建立的評估方法以水足跡做為指標,能夠呈現供水設施所帶來的效益與衝擊,可作為流域水資源的管理指標,或是應用於各種供水設施的效益評估。 | zh_TW |
| dc.description.abstract | Reclaimed water is one of the solutions to water scarcity since it can reuse water resources and provide a stable water supply. However, water resources consumed and related impacts during wastewater treatment processes are rarely considered. Moreover, there is a lack of a complete method to evaluate the potential environmental and economic impacts of using reclaimed water, especially under climate change. This study established a framework to evaluate the water reclamation plant based on the concepts of Water Footprint Assessment methodology and the simulated data from SWAT and TaiWAP models. The method was then used to assess the water footprint of the Shuinan water reclamation plant and the benefits of the reclaimed water supply to the Dajia river basin. The results show that changes in rainfall patterns will affect the blue, green, and gray water resources of the Dajia river basin. The increment of blue water scarcity caused by climate change is up to 203%, but the reduction provided by reclaimed water is only 0.31% at most. It indicates that, from the perspective of the river basin, the supply of reclaimed water has little effect on the blue water scarcity reduction. However, from the perspective of economic benefits, the high water shortage rate in the Dajia river basin made the economic benefits more significant under climate change. The water footprint assessment results of the Shuinan water reclamation plant show that the grey water footprint is the major contribution, and energy is the main contribution to the blue water footprint. Compared to the scenario without a water reclamation plant, the water reclamation plant can reduce to about 200,000 tons of the water footprint every month. This research adopted the water footprint as an indicator to establish an assessment method for reclaimed water. The results can illustrate the benefits and impacts of water supply facilities. The indicator can further be used for water resource management or the evaluation of other water supply facilities. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:59:20Z (GMT). No. of bitstreams: 1 U0001-0708202021262700.pdf: 6485378 bytes, checksum: 464b84bac025e90e2af424f14ba045f1 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程 3 第二章 文獻回顧 5 2.1臺灣水資源現況 5 2.1.1 臺灣水資源之供給與利用 5 2.1.2 臺灣水資源所面臨的問題 6 2.2 水足跡評估指標 8 2.2.1 水足跡網絡評估方法 8 2.2.2 水足跡網絡評估應用 10 2.2.3 ISO14046水足跡評估方法 16 2.3 水資源與氣候變遷 17 2.3.1 氣候變遷情境 17 2.3.2 歷史情境分析方法 18 2.3.3 未來情境預測方法 19 2.4 污水處理之衝擊與效益評估 20 2.4.1 污水處理與污水回收再利用 20 2.4.2 生命週期評估方法應用於污水處理 21 2.4.3 水足跡評估方法應用於污水處理 23 第三章 研究方法 27 3.1 評估流程確立 27 3.2 研究案例:水湳水資源回收中心再生水工程 28 3.3 情境設定 29 3.4 未來情境模擬 30 3.4.1 大甲溪流域水足跡模擬 30 3.4.2 大甲溪供水區域藍水足跡推估 38 3.5 水湳再生水廠水足跡盤查 41 3.5.1 目標與範疇界定 41 3.5.2 水足跡盤查 42 3.6 水湳再生水廠效益評估 46 3.6.1 大甲溪流域永續性評估 46 3.6.2 水湳再生水廠經濟效益評估 49 3.6.3 水湳再生水廠水足跡盤查情境比較 50 第四章 結果與討論 51 4.1 未來情境模擬 51 4.1.1 SWAT模式率定驗證 51 4.1.2 TaiWAP未來氣候資料繁衍 54 4.1.3 大甲溪供水區域藍水足跡推估 61 4.1.4 大甲溪流域水足跡模擬結果 63 4.2 水湳再生水廠水足跡 72 4.2.1 藍水足跡 73 4.2.2 灰水足跡 76 4.2.3 整體水足跡 77 4.3 氣候變遷情境下水湳再生水廠效益分析 78 4.3.1 大甲溪流域永續性效益評估 78 4.3.2 水湳再生水廠經濟效益評估 80 4.3.3 水湳再生水廠水足跡減量效益 86 4.3.4 小結 87 第五章 結論與建議 89 5.1 結論 89 5.2 建議 91 參考文獻 93 附錄 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 再生水 | zh_TW |
| dc.subject | 水足跡 | zh_TW |
| dc.subject | 水資源缺乏 | zh_TW |
| dc.subject | SWAT | zh_TW |
| dc.subject | Water footprint | en |
| dc.subject | Climate Change | en |
| dc.subject | SWAT | en |
| dc.subject | Water Scarcity | en |
| dc.subject | Reclaimed water | en |
| dc.title | 以水足跡指標建立氣候變遷情境下之再生水廠效益評估方法 | zh_TW |
| dc.title | Developing a water reclamation plant assessment method based on water footprint indicator under climate change | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 駱尚廉(Shang-Ling Lo),林裕彬(Yu-Pin Lin),簡士濠(Shih-Hao Jien) | |
| dc.subject.keyword | 再生水,水足跡,水資源缺乏,SWAT,氣候變遷, | zh_TW |
| dc.subject.keyword | Reclaimed water,Water footprint,Water Scarcity,SWAT,Climate Change, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU202002667 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0708202021262700.pdf 未授權公開取用 | 6.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
