請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51941
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林啟萬 | |
dc.contributor.author | Yi-Chung Yu | en |
dc.contributor.author | 余以中 | zh_TW |
dc.date.accessioned | 2021-06-15T13:58:36Z | - |
dc.date.available | 2016-08-27 | |
dc.date.copyright | 2015-08-27 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | [1] V. Bidlack, E. Fasig, Paint and Varnish Production Manual, 1(1951)
[2] J. Herbert, Printing and Litho Inkl, 3(1941) [3] R. Larson, The Structure and Rheology of Complex Fluids, 1(1999) [4] A. Keith, W. Snipes, “Viscosity of cellular protoplasm”, Science, 183, 666–668(1974) [5] J. Yarnell, I. Baker, P. Sweetnam, D Bainton, J. Obrien, Circulation, 83, 836-844(1991) [6] A. Peter, A. Doring, H. Wichmann, Lancet, 1582-1587(1997) [7] R. Zengerle, P. Koltay, “Microfluidics: An enabling technology for the life sciences,” The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 31, 1-6(2004) [8] www.bio-disk.com, assessed, 2012 [9] M. Madou, G. Kellogg, “The LabCD, a centrifugal-based microfluidic platform for diagnostics,” SPIE Proceeding(1998) [10] M. Madou, Y. Lu, S. Lai, C. Koh, “A novel design on a CD disk for 2-point calibration measurement,” Sensor and Actuators, 91, 301-306(2001) [11] A. Haidekker, G. Tsai, B. Thomas, Y. Stevens, A. Frangos, “A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors,” Heart and Circulatory Physiology, 282, 1609-1614(2001) [12] P. Larsen, R. Holsworth, “Measuring blood viscosity to improve patient outcomes”, Townsend Letter, 342, 53(2012) [13] F. Fowkes, J. Pell, et al., “Sex differences in susceptibility to etiologic factors for peripheral atherosclerosis. Importance of plasma fibrinogen and blood viscosity”, Arterioscler Thromb, 14, 862-868(1994) [14] M. Kamaneva, M. Watach, H. Borovetz, “Gender difference in rheologic properties of blood and risk of cardiovascular diseases,” Clin Hemorheol Microcirc, 21, 357-363(1999) [15] T. Jax, A, Peter, G. Plehn, F. Schoebel, “Hemostatic risk factors in patients with coronary artery disease and type 2 diabetes - a two year follow-up of 243 patients,” Cardiovasc Diabetol, 8, 48(2009) [16] S. Rafnsson, I. Deary, M. Whiteman, A. Rumbley, G. Lowe, F. Fowkes, “Haemorheological predictors of cognitive decline: the Edinburgh Artery Study,” Age Ageing, 39, 217-222(2010) [17] C. Mascosko, “Rheology principles measurements and applications,” New York: VCH, 6, 1(1993) [18] P. O’neal, G. Stachowiek, “A high shear rate, high pressure micro viscometer,” Tribology International, 29, 547-557(1996) [19] A. Burns, N. Srivastava, D. Davenport, “Nanoliter viscometer for analyzing blood plasma and other liquid samples,” Anal. Chem., 77, 383-392(2005) [20] A. Burns, L. Eric, J. Lee, “Nanoliter droplet viscometer with addive-free operation,” Lab Chip, 13, 297(2013) [21] L. Smith, B. Hok, “A silicon self-aligned non-reverse valve,” Proc. Of Transducers, 91, 1049-1051(1991) [22] J. Tiren, L. Tenerz, B. Hok, “A batch-fabricated non-reverse valve with cantilever beam manufactured by micromachining of silicon,” Sensors and Actuators, 18, 396-398(1989) [23] C. Vieider, O. Ohman, “A pneumatically actuated micro valve with a silicon rubber membrane for integration with fluid-handling systems,” Proc. Of Trasducers, 2, 284-286(1995) [24] M. Zdeblick, et al., “Thermopneumatically actuated microvalves and integrated electro-fluidic circuits,” Proc. of Solid-State Sensor and Actuator Workshop, 251-255(1994) [25] Piccolo, Abaxis Inc., Union City, CA, USA, www.abaxis.com, accessed 2005 [26] L. Lee, M. Madou, M. Koelling, “Design and fabrication of CD-like microfluidic platforms for diagnostics: polymer-based microfabrication,” Biomedical Microdevices, 3, 339-351(2001) [27] M. Grumann, “Readout of diagnostic assays on a centrifugal microfluidic platform,” Dissertaion Thesis, IMTEK, Laboratory for MEMS Applications, University of Freiburg, Germany(2005) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51941 | - |
dc.description.abstract | 黏滯係數(Viscosity)是生醫檢驗上的一個重要指標,它代表了檢體的黏稠度,與心血管等疾病有著絕對關聯。量測黏滯係數的儀器稱為黏度計(Viscometer),傳統黏度計設計大多利用機械力來驅動流體,但傳統器材需要過多的檢體與耗時的檢驗。本研究欲利用光碟式微流道系統達成黏滯係數分析,光碟微流道系統不僅擁有微流道的各種優點,還能利用碟片轉動所帶來的力學效應驅動流體,藉由轉速和轉向的控制調節各力間的平衡,控制流體的流動。光碟式微流道同時也是快速檢測、低成本的檢測系統,並能達成床邊檢驗功能。
研究從流體模擬方面著手,調整不同注入槽位置及流道尺寸,尋找所需的流道參數。並由不同流體的流動情形,建立與黏滯係數關聯性,發現在光碟式微流道黏度計中,流動距離與黏滯係數的反比有著線性關係,不同流體的相對流動狀況與光碟轉速無關,這些情況可以應用在0.8 ~ 16m Pa-s黏滯係數區段,做為臨床醫學上的量測工作。 | zh_TW |
dc.description.abstract | Viscosity is an important marker in biological industry and medical predictions. It corresponds to the “thickness” of sample fluid and plays an important role in cardiovascular disease. The device used to measure the viscosity is viscometer. The traditional viscometers utilize mechanical forces for pumping and control sample fluid. In this study, we design a disc-shape centrifugal microfluidic device in order to measure the fluidic viscosity. There are many benefits of disc-shape microfluidic devices as the same with other ordinary microfluidic devices. Furthermore, it is possible and easier to manipulate the flow conditions by controlling the rotational speed.
In this study, we use computer simulations to develop the relationship between sample viscosities with their flow conditions and manufacture the microfluidic device. Viscosity is inversely proportion to the flow distance regardless of rotational speed within 0.8 ~ 16m Pa-s. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:58:36Z (GMT). No. of bitstreams: 1 ntu-104-R01548022-1.pdf: 2063870 bytes, checksum: e4a024e0a64bec2745675c26790e7e3e (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 I
ABSTRACT II 目錄 III 圖目錄 V 表目錄 VI 第一章:緒論 1 1.1研究動機與目標 1 1.2文獻回顧 3 1.2.1 血液黏滯係數在生醫上之病理關聯 3 1.2.2 黏滯係數的量測方式及器材 6 1.2.3 微流道晶片的微閥設計 8 1.2.4 光碟式微流道系統發展過程 11 第二章:理論介紹 14 2.1 流體物理模型 14 2.1.1 雷諾傳輸定理 15 2.1.2 黏滯係數 16 2.1.3 Navior-Stokes Equations 17 2.1.4 管內流運動方程式 20 2.2 光碟微流道力學原理 22 2.2.1 光碟微流道中的驅動力 22 2.2.2 光碟微流道之流速 23 2.2.3 光碟微流道系統的微閥結構與原理 24 第三章:實驗材料與研究方法 28 3.1 微流道設計製造 28 3.2 光碟片微流道模擬分析 30 3.3 光碟機台硬體架設 31 第四章:實驗結果與討論 33 4.1 注入槽與光碟轉動中心距離 33 4.2 流道尺寸對流動影響 34 4.3 不同黏滯係數流體之流動情形 36 4.4 相同流道不同轉速的流動情形 37 第五章:結論與未來展望 39 參考文獻 40 | |
dc.language.iso | zh-TW | |
dc.title | 光碟微流道晶片在流體黏滯係數量測之研究 | zh_TW |
dc.title | Development of Centrifugal Microfluidic Device for Viscosity Measurement | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏家鈺,陳中明,邱南福 | |
dc.subject.keyword | 黏滯係數,黏度計,微流道晶片,床邊檢驗,離心力,微閥, | zh_TW |
dc.subject.keyword | Viscosity,Viscometer,Microfluidic,Point-of-care,Centrifugal force,Microvalve, | en |
dc.relation.page | 41 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。