請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51926完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊健志 | |
| dc.contributor.author | Jer-Lun Kuo | en |
| dc.contributor.author | 郭哲倫 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:57:43Z | - |
| dc.date.available | 2020-08-28 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-21 | |
| dc.identifier.citation | Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55, 373-399. Asada, K. (1999). The water-water cycle in chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu Rev Plant Physiol Plant Mol Biol 50, 601-639. Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141, 391-396. Asada, K., Kiso, K., and Yoshikawa, K. (1974). Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem 249, 2175-2181. Battino, M., Bullon, P., Wilson, M., and Newman, H. (1999). Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. Crit Rev Oral Biol Med 10, 458-476. Bethke, P.C., and Jones, R.L. (2001). Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J 25, 19-29. Bokszczanin, K.L., Solanaceae Pollen Thermotolerance Initial Training Network, C., and Fragkostefanakis, S. (2013). Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4, 315. Cahill, M.A. (2007). Progesterone receptor membrane component 1: An integrative review. J Steroid Biochem Mol Biol 105, 16-36. Chang, C.C., Ball, L., Fryer, M.J., Baker, N.R., Karpinski, S., and Mullineaux, P.M. (2004). Induction of ascorbate peroxidase 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis. Plant J 38, 499-511. Chapple, I.L., and Matthews, J.B. (2007). The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000 43, 160-232. Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143, 251-262. Chen, C., Letnik, I., Hacham, Y., Dobrev, P., Ben-Daniel, B.H., Vankova, R., Amir, R., and Miller, G. (2014). Ascorbate peroxidase 6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 166, 370-383. Chin, D.C., Shen, C.H., SenthilKumar, R., and Yeh, K.W. (2014). Prolonged exposure to elevated temperature induces floral transition via up-regulation of cytosolic ascorbate peroxidase 1 and subsequent reduction of the ascorbate redox ratio in Oncidium hybrid orchid. Plant Cell Physiol 55, 2164-2176. Cordeiro, R.M. (2014). Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochim Biophys Acta 1838, 438-444. Craven, R.J., Mallory, J.C., and Hand, R.A. (2007). Regulation of Iron Homeostasis Mediated by the Heme-binding Protein Dap1 (Damage Resistance Protein 1) via the P450 Protein Erg11/Cyp51. J Biol Chem 282, 36543-36551. Cruz de Carvalho, M.H. (2008). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal Behav 3, 156-165. Dąbrowska, G., Kata, A., Goc, A., Szechyńska-Hebda, M., and Skrzypek, E. (2007). Characteristics of the plant ascorbate peroxidase family. Acta Biol Cracow Ser Bot 49, 7-17. de Pinto, M.C., Locato, V., Sgobba, A., Romero-Puertas Mdel, C., Gadaleta, C., Delledonne, M., and De Gara, L. (2013). S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco Bright Yellow-2 cells. Plant Physiol 163, 1766-1775. del Rio, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M., and Barroso, J.B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141, 330-335. Desikan, R., S, A.H.-M., Hancock, J.T., and Neill, S.J. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127, 159-172. Douce, R., and Neuburger, M. (1999). Biochemical dissection of photorespiration. Curr Opin Plant Biol 2, 214-222. Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C.S. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45, 616-629. El-Maarouf-Bouteau, H., and Bailly, C. (2008). Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3, 175-182. Foyer, C., Trebst, A., and Noctor, G. (2006). Signaling and Integration of Defense Functions of Tocopherol, Ascorbate and Glutathione. In Photoprotection, Photoinhibition, Gene Regulation, and Environment, B. Demmig-Adams, W. Adams, III, and A. Mattoo, eds (Springer Netherlands), pp. 241-268. Foyer, C.H., and Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133, 21-25. Foyer, C.H., Bloom, A.J., Queval, G., and Noctor, G. (2009). Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60, 455-484. Gill, S.S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48, 909-930. Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., and Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14, 9643-9684. Hosogaya, N., Miyazaki, T., Nagi, M., Tanabe, K., Minematsu, A., Nagayoshi, Y., Yamauchi, S., Nakamura, S., Imamura, Y., Izumikawa, K., Kakeya, H., Yanagihara, K., Miyazaki, Y., Kugiyama, K., and Kohno, S. (2013). The heme-binding protein Dap1 links iron homeostasis to azole resistance via the P450 protein Erg11 in Candida glabrata. FEMS Yeast Res 13, 411-421. Hu, C., Lin, S.Y., Chi, W.T., and Charng, Y.Y. (2012). Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. Plant Physiol 158, 747-758. Hughes, A.L., Powell, D.W., Bard, M., Eckstein, J., Barbuch, R., Link, A.J., and Espenshade, P.J. (2007). Dap1/PGRMC1 Binds and Regulates Cytochrome P450 Enzymes. Cell Metabolism 5, 143-149. Joo, J.H., Bae, Y.S., and Lee, J.S. (2001). Role of Auxin-Induced Reactive Oxygen Species in Root Gravitropism. Plant Physiol 126, 1055-1060. Juszczuk, I.M., Wagner, A.M., and Rychter, A.M. (2001). Regulation of alternative oxidase activity during phosphate deficiency in bean roots (Phaseolus vulgaris). Physiol Plant 113, 185-192. Kao, A.-L., Chang, T.-Y., Chang, S.-H., Jong-Ching, S., and Chien-Chih, Y. (2005). Characterization of a novel Arabidopsis protein family AtMAPR homologous to 25-Dx/IZAg/Hpr6. 6 proteins. Bot Bull Acad Sinica 46. Kao, A.L. (2010). Molecular Characterization of AtMAPRs in Arabidopsis. In Institute of Microbiology and Biochemistry (National Taiwan University). Kao, A.L., Lin, Y.H., Chen, R.P., Huang, Y.Y., Chen, C.C., and Yang, C.C. (2012). E3-independent ubiquitination of AtMAPR/MSBP1. Phytochemistry 78, 7-19. Karpinski, S., Escobar, C., Karpinska, B., Creissen, G., and Mullineaux, P.M. (1997). Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9, 627-640. Kerchev, P., MÜHlenbock, P.E.R., Denecker, J., Morreel, K., Hoeberichts, F.A., Van Der Kelen, K., Vandorpe, M., Nguyen, L., Audenaert, D., and Van Breusegem, F. (2015). Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death. Plant, Cell Environ 38, 253-265. Kim, C., Meskauskiene, R., Zhang, S., Lee, K.P., Lakshmanan Ashok, M., Blajecka, K., Herrfurth, C., Feussner, I., and Apel, K. (2012). Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. Plant Cell 24, 3026-3039. Koussevitzky, S., Suzuki, N., Huntington, S., Armijo, L., Sha, W., Cortes, D., Shulaev, V., and Mittler, R. (2008). Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283, 34197-34203. Krieger-Liszkay, A. (2005). Singlet oxygen production in photosynthesis. J Exp Bot 56, 337-346. Kubo, A., Saji, H., Tanaka, K., and Kondo, N. (1995). Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Mol Biol 29, 479-489. Kuo, S.Y. (2012). Study of the expression of AtMAPR3 is induced by δ-amino levulinic acid and stress in Arabidopsis. In Department of Biochemical Science and Technology (National Taiwan University). Lee, D.G., Ahsan, N., Lee, S.H., Kang, K.Y., Bahk, J.D., Lee, I.J., and Lee, B.H. (2007). A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7, 3369-3383. Liepman, A.H., and Olsen, L.J. (2001). Peroxisomal alanine : glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25, 487-498. Lin, C.C. (2013). Studies on the mechanism of ALA-induced AtMAPR3 expression. . In Department of Biochemical Science and Technology (National Taiwan University). Losel, R.M., Besong, D., Peluso, J.J., and Wehling, M. (2008). Progesterone receptor membrane component 1--many tasks for a versatile protein. Steroids 73, 929-934. Maruta, T., Tanouchi, A., Tamoi, M., Yabuta, Y., Yoshimura, K., Ishikawa, T., and Shigeoka, S. (2010). Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol 51, 190-200. Mehler, A.H. (1951). Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen. Arch Biochem Biophys 34, 339-351. Mittler, R., Finka, A., and Goloubinoff, P. (2012). How do plants feel the heat? Trends Biochem Sci 37, 118-125. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci 9, 490-498. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V., and Van Breusegem, F. (2011). ROS signaling: the new wave? Trends Plant Sci 16, 300-309. Mittova, V., Tal, M., Volokita, M., and Guy, M. (2003). Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26, 845-856. Nelson, B.K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51, 1126-1136. Noctor, G., and Foyer, C.H. (1998). ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annu Rev Plant Physiol Plant Mol Biol 49, 249-279. Noctor, G., De Paepe, R., and Foyer, C.H. (2007). Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12, 125-134. Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L., and Foyer, C.H. (2002). Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89 Spec No, 841-850. Ogawa, K., Hatano-Iwasaki, A., Yanagida, M., and Iwabuchi, M. (2004). Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol 45, 1-8. Ort, D.R., and Baker, N.R. (2002). A photoprotective role for O(2) as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5, 193-198. Panchuk, II, Volkov, R.A., and Schoffl, F. (2002). Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129, 838-853. Peltier, J.B., Ytterberg, A.J., Sun, Q., and van Wijk, K.J. (2004). New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279, 49367-49383. Pham, J., and Desikan, R. (2009). ROS Signalling in Stomata. In Reactive Oxygen Species in Plant Signaling, L.A. Rio and A. Puppo, eds (Springer Berlin Heidelberg), pp. 55-71. Prasad, T.K., Anderson, M.D., Martin, B.A., and Stewart, C.R. (1994). Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide. Plant Cell 6, 65-74. Rhoads, D.M., Umbach, A.L., Subbaiah, C.C., and Siedow, J.N. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141, 357-366. Roháček, K., Soukupová, J., and Barták, M. (2008). Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress. Plant Cell Compartments-Selected Topics. Research Signpost, Kerala, India, 41-104. Schwarzlander, M., and Finkemeier, I. (2013). Mitochondrial energy and redox signaling in plants. Antioxid Redox Signal 18, 2122-2144. Schwarzlander, M., Fricker, M.D., and Sweetlove, L.J. (2009). Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta 1787, 468-475. Sewelam, N., Jaspert, N., Van Der Kelen, K., Tognetti, V.B., Schmitz, J., Frerigmann, H., Stahl, E., Zeier, J., Van Breusegem, F., and Maurino, V.G. (2014). Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Mol Plant 7, 1191-1210. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J Bot 2012, 1-26. Smirnoff, N. (2000). Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond B Biol Sci 355, 1455-1464. Stepien, P., and Johnson, G.N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149, 1154-1165. Storozhenko, S., De Pauw, P., Van Montagu, M., Inze, D., and Kushnir, S. (1998). The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol 118, 1005-1014. Sukenik, A., Bennett, J., and Falkowski, P. (1987). Light-saturated photosynthesis — Limitation by electron transport or carbon fixation? BBA-Bioenergetics 891, 205-215. Suzuki, N., and Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol Plant 126, 45-51. Suzuki, N., Miller, G., Sejima, H., Harper, J., and Mittler, R. (2013). Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2. J Exp Bot 64, 253-263. Szarka, A., Tomasskovics, B., and Banhegyi, G. (2012). The ascorbate-glutathione-alpha-tocopherol triad in abiotic stress response. Int J Mol Sci 13, 4458-4483. Timm, S., and Bauwe, H. (2013). The variety of photorespiratory phenotypes - employing the current status for future research directions on photorespiration. Plant Biol (Stuttg) 15, 737-747. Tripathy, B.C., and Oelmuller, R. (2012). Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7, 1621-1633. Voss, I., Sunil, B., Scheibe, R., and Raghavendra, A.S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol (Stuttg) 15, 713-722. Vranová, E., Inzé, D., and Van Breusegem, F. (2002). Signal transduction during oxidative stress. J Exp Bot 53, 1227-1236. Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C.S. (2009). Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16. Yabuta, Y., Mieda, T., Rapolu, M., Nakamura, A., Motoki, T., Maruta, T., Yoshimura, K., Ishikawa, T., and Shigeoka, S. (2007). Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58, 2661-2671. Yang, X.H., Xu, Z.H., and Xue, H.W. (2005). Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell 17, 116-131. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51926 | - |
| dc.description.abstract | 活性氧化物 (ROS) 為生物體內氧代謝的副產物,除了會造成細胞中分子的損壞,也會參與細胞內的訊息傳導抵禦氧化逆境。阿拉伯芥蛋白 Membrane-Associated Progesterone Receptor 3 in Arabidopsis thaliana (AtMAPR3)基因的表現量會被H2O2和tert-butyl hydroxide (tBHP) 等會產生氧化逆境的處理所誘導,也會被抗氧化劑ascorbate誘導。此外,ATMAPR3也被發現會和參與光呼吸作用的alanine-glyoxylate aminotransferase 1 (AGT1) 進行交互作用。這些發現顯示ROS可能會藉由調控AtMAPR3的基因表現量幫助阿拉伯芥適應氧化逆境。 本研究中進一步發現AtMAPR3的基因表現會被ascorbate-glutathione cycle中的組成分子所誘導,其中以ascorbate最明顯;有趣的是,ascorbate造成的誘導在ascorbate peroxidase 1 (apx1) 和ascorbate peroxidase 2 (apx2) 突變株中會減弱, 但在thylakoid ascorbate peroxidase (tapx) 突變株中並沒有此現象。另外,利用「粒線體螢光標定突變株」 mt-ck進行螢光定位,發現部分AtMAPR3會與粒線體共定位 (colocalization)。在高溫的環境下 (35ºC),AtMAPR3基因剔除突變株 (AtMAPR3-KO) 的存活率 (33%) 低於野生種 (59%),而AtMAPR3基因過量表現突變株 (AtMAPR3-OX) 的存活率 (71%) 則略高於野生種。本研究中發現,AtMAPR3 可能會被ROS由不同訊息傳導路徑調控,且AtMAPR3可能幫助阿拉伯芥適應熱逆境。 | zh_TW |
| dc.description.abstract | Reactive oxygen species (ROS), though generated as toxic byproducts in aerobic metabolism, are involved in defense against oxidative stresses by participating in cellular signaling. The gene expression of Membrane-Associated Progesterone Receptor 3 in Arabidopsis thaliana (AtMAPR3) has been found to be induced by externally supplied H2O2 and tBHP (tert-butyl hydroxide), which are both considered to generate ROS stresses. It is also induced by ascorbate, an ROS scavenger. AtMAPR3 interacts with alanine-glyoxylate aminotransferase 1 (AGT1), a component in photorespiration. These findings suggests that the regulation of AtMAPR3 by ROS may enable Arabidopsis to adapt to ROS-generating conditions. In this study, the regulation of AtMAPR3 expression was further investigated. AtMAPR3 expression was induced by several components in the ascorbate-glutathione cycle, especially ascorbate; interestingly, the induction by ascorbate was reduced in ascorbate peroxidase 1 (apx1) and ascorbate peroxidase 2 (apx2) mutants, but not in a thylakoid ascorbate peroxidase (tapx) mutant. AtMAPR3 partially colocalized with mitochondria as revealed by fluorescence microscopy using the mt-ck mutant, which expresses mitochondria-targeted CFP. Under high temperature conditions (35ºC), the survival rate of the AtMAPR3 knockout mutant (33%) was lower compared to wild type (59%), while that of the AtMAPR3 overexpression mutant (71%) was slightly higher. In summary, AtMAPR3 may be regulated by ROS signaling via different pathways and AtMAPR3 might function in helping Arabidopsis cope with high temperature stress. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:57:43Z (GMT). No. of bitstreams: 1 ntu-104-R02b22029-1.pdf: 1513999 bytes, checksum: aaefb42768bed4e559175219350a8a8c (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Contents i Abbreviation list iv 中文摘要 vi Abstract vii Chapter 1 Introduction 1 1.1 ROS are a part of aerobic life 1 1.2 Production of ROS in plants 1 1.3 ROS: help or harm? 3 1.4 Previous researches on the gene expression and other features of AtMAPR3 4 1.5 Aims 5 Chapter 2 Materials and Methods 6 2.1 Plant materials 6 2.1.1 Wild type 6 2.1.2 AtMAPR3 mutants 6 2.1.3 Ascorbate peroxidase (apx) mutants 6 2.1.4 Mutants with CFP-labeled organelles 7 2.2 Vectors 7 2.2.1 pEarleyGate vectors 7 2.2.2 pDONR221 8 2.3 Methods 8 2.3.1 Plant growth condition 8 2.3.2 Chemical treatments 8 2.3.3 Quantitative real-time PCR (qRT-PCR) 9 2.3.4 Construction of YFP-fused AtMAPR3 expression plasmids 10 2.3.5 Isolation of protoplasts 11 2.3.6 PEG transformation 12 2.3.7 Confocal imaging 12 2.3.8 Continuous light treatment 13 2.3.9 High light treatment 13 2.3.10 High temperature treatment 13 2.3.11 Measurement of chlorophyll fluorescence 14 Chapter 3 Results 15 3.1 Studies on the regulation of AtMAPR3 expression 15 3.1.1 The induction pattern of AtMAPR3 expression by components in the ascorbate-glutathione cycle suggested that ascorbate peroxidases might be involved 15 3.1.2 Reduced AtMAPR3 expression induction by ascorbate in apx1 and apx2 implied that APX1 and APX2 may be directly involved in AtMAPR3 regulation 18 3.2 Exploring functions of AtMAPR3 21 3.2.1 AtMAPR3 may partially colocalize with mitochondria, but not with peroxisomes and chloroplasts 21 3.2.2 AtMAPR3 mutants did not show unusual phenotypes under continuous light conditions 23 3.2.3 AtMAPR3 mutants did not show unusual phenotypes under high light conditions 24 3.2.4 Different survival rates of AtMAPR3 mutants with WT indicated that AtMAPR3 might function in tolerating high temperature conditions 25 Chapter 4 Discussion 27 4.1 The ascorbate-glutathione cycle may integrate signals from different stresses to regulate AtMAPR3 through APX1 and APX2 27 4.2 An integrated view on the possible roles of AtMAPR3 28 Chapter 5 Conclusions and prospects 31 5.1 Further investigation on the regulation of AtMAPR3 expression 31 5.1.1 AtMAPR3 expression may be regulated by H2O2 from a specific source 31 5.1.2 The mechanisms of APX1 and APX2 participating in the signaling of AtMAPR3 are yet to be investigated 32 5.2 Exploration on the subcellular localization of AtMAPR3 32 5.2.1 Confirmation of the colocalization of AtMAPR3 with mitochondria 32 5.2.2 Investigation of the AtMAPR3 distribution in unidentified granule-like patterns 33 5.3 Searches on physiological roles of AtMAPR3 33 5.3.1 Observation of AtMAPR3 mutant phenotypes under different high temperature conditions 34 5.3.2 Examination of ROS controlling abilities in AtMAPR3 mutants 34 5.4 Other directions to study AtMAPR3 35 References 36 Figures 43 | |
| dc.language.iso | en | |
| dc.subject | ascorbate-glutathione cycle | zh_TW |
| dc.subject | 熱逆境 | zh_TW |
| dc.subject | 抗壞血酸?氧化物? | zh_TW |
| dc.subject | 活性氧化物 | zh_TW |
| dc.subject | 胞器層次定位 | zh_TW |
| dc.subject | AtMAPR3 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 光呼吸相關表現型 | zh_TW |
| dc.subject | heat stress | en |
| dc.subject | AtMAPR3 | en |
| dc.subject | ROS | en |
| dc.subject | ascorbate-glutathione cycle | en |
| dc.subject | ascorbate peroxidase | en |
| dc.subject | subcellular localization | en |
| dc.subject | mitochondria | en |
| dc.subject | photorespiratory phenotypes | en |
| dc.title | AtMAPR3 的功能可能與高溫逆境有關且其表現之調控 與ascorbate-glutathione cycle 有關 | zh_TW |
| dc.title | AtMAPR3 plays a possible role in high temperature conditions and its expression is associated with the ascorbate-glutathione cycle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇仲卿,常怡庸,王愛玉,陳佩燁 | |
| dc.subject.keyword | AtMAPR3,活性氧化物,ascorbate-glutathione cycle,抗壞血酸?氧化物?,胞器層次定位,粒線體,光呼吸相關表現型,熱逆境, | zh_TW |
| dc.subject.keyword | AtMAPR3,ROS,ascorbate-glutathione cycle,ascorbate peroxidase,subcellular localization,mitochondria,photorespiratory phenotypes,heat stress, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-21 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
