Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51904
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷(Chuan-Kai Ho)
dc.contributor.authorSung-Hua Linen
dc.contributor.author林松樺zh_TW
dc.date.accessioned2021-06-15T13:56:27Z-
dc.date.available2020-09-17
dc.date.copyright2015-09-17
dc.date.issued2015
dc.date.submitted2015-08-26
dc.identifier.citation盧英權. 1970. 食用作物. 臺灣中華.
蔡文福. 1994. 雜糧作物各論. 臺灣區雜糧發展基金會.
Chou, K. L. 2008. 毛豆外銷生力軍-高雄 9 號 ( 綠晶 ) 高雄區農技報導
(Soya bean ‘Kaohsiung 9’. Agrotechnical Report in Kaohsiung District) 93:1-15.
COA. 2013a. 102年毛豆出口量及產值
(Exportation of vegetative soybean in 2013) http://agrstat.coa.gov.tw/sdweb/public/trade/tradereport.aspx.
COA. 2013b. 臺灣地區主要農產品出口量值
(Exportation of main agricultural products in Taiwan) http://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx.
TaiBIF. 2015.七星瓢蟲《臺灣生物多樣性資訊網-TaiBIF》。
(Coccinella septempunctata Linnaeus, 1758) http://taibif.tw/zh/namecode/332645.
Acker, R. C. V., C. J. Swanton, and S. F. Weise. 1993. The critical period of weed control in soybean [Glycine max (L.) Merr.]. Weed Science 41:194-200.
Aickin, M., and H. Gensler. 1996. Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. American Journal of Public Health 86:726-728.
Amarasekare, P. 2015. Effects of temperature on consumer–resource interactions. Journal of Animal Ecology 84:665-679.
Appel, H. 1993. Phenolics in ecological interactions: the importance of oxidation. Journal of Chemical Ecology 19:1521-1552.
Arimura, G.-I., R. Ozawa, and M. E. Maffei. 2011. Recent advances in plant early signaling in response to herbivory. International Journal of Molecular Sciences 12:3723-3739.
Baker, J. T., L. H. Allen, K. J. Boote, P. Jones, and J. W. Jones. 1989. Response of soybean to air temperature and carbon dioxide concentration. Crop Science 29:98-105.
Barton, B. T., A. P. Beckerman, and O. J. Schmitz. 2009. Climate warming strengthens indirect interactions in an old-field food web. Ecology 90:2346-2351.
Battisti, A., M. Stastny, S. Netherer, C. Robinet, A. Schopf, A. Roques, and S. Larsson. 2005. Expension of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications 15:2084-2096.
Bauerfeind, S. S., and K. Fischer. 2013. Testing the plant stress hypothesis: stressed plants offer better food to an insect herbivore. Entomologia Experimentalis et Applicata 149:148-158.
Bertrand, R., J. Lenoir, C. Piedallu, G. Riofrio-Dillon, P. de Ruffray, C. Vidal, J.-C. Pierrat, and J.-C. Gegout. 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517-520.
Boggs, C. L., and D. W. Inouye. 2012. A single climate driver has direct and indirect effects on insect population dynamics. Ecology Letters 15:502-508.
Bridge, L. J., K. A. Franklin, and M. E. Homer. 2013. Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model. Journal of the Royal Society Interface 10:20130326.
Brose, U., J. A. Dunne, J. M. Montoya, O. L. Petchey, F. D. Schneider, and U. Jacob. 2012. Climate change in size-structured ecosystems. Philosophical Transactions of the Royal Society of London B: Biological Sciences 367:2903-2912.
Campbell, W. J., L. H. J. Allen, and G. Bowes. 1990. Response of soybean canopy photosynthesis to CO2 concentration, light, and temperature. Journal of Experimental Botany 41:427-433.
Catangui, M. A., E. A. Beckendorf, and W. E. Riedell. 2009. Soybean aphid population dynamics, soybean yield loss, and development of stage-specific economic injury levels. Agronomy Journal 101:1080-1092.
Chen, I.-C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024-1026.
Chrzanowski, G., B. Leszczyński, P. Czerniewicz, H. Sytykiewicz, H. Matok, R. Krzyżanowski, and C. Sempruch. 2012. Effect of phenolic acids from black currant, sour cherry and walnut on grain aphid (Sitobion avenae F.) development. Crop Protection 35:71-77.
Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogee, V. Allard, M. Aubinet, N. Buchmann, C. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein, T. Grunwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala, and R. Valentini. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529-533.
Coley, P. D., and J. A. Barone. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27:305-335.
Costamagna, A. C., D. A. Landis, and C. D. Difonzo. 2007. Suppresion of soybean aphid by generalist predators results in a trophic cascade in soybeans. Ecological Applications 17:441-451.
de Wit, M., S. Lorrain, and C. Fankhauser. 2014. Auxin-mediated plant architectural changes in response to shade and high temperature. Physiologia Plantarum 151:13-24.
Dell, A. I., S. Pawar, and V. M. Savage. 2014. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. Journal of Animal Ecology 83:70-84.
DeLucia, E. H., C. L. Casteel, P. D. Nabity, and B. F. O'Neill. 2008. Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proceedings of the National Academy of Sciences 105:1781-1782.
Dimarco, R. D., C. C. Nice, and J. A. Fordyce. 2012. Family matters: effect of host plant variation in chemical and mechanical defenses on a sequestering specialist herbivore. Oecologia 170:687-693.
Dyer, L. A., L. A. Richards, S. A. Short, and C. D. Dodson. 2013. Effects of CO2 and temperature on tritrophic interactions. PLoS ONE 8(4):e62528.
Eleftherianos, I., P. Vamvatsikos, D. Ward, and F. Gravanis. 2006. Changes in the levels of plant total phenols and free amino acids induced by two cereal aphids and effects on aphid fecundity. Journal of Applied Entomology 130:15-19.
Elliott, N. C., R. W. Kieckhefer, and D. A. Beck. 2000. Adult coccinellid activity and predation on aphids in spring cereals. Biological Control 17:218-226.
Evans, E. W. 2004. Habitat displacement of north american ladybirds by an introduced species. Ecology 85:637-647.
Evans, E. W., N. R. Carlile, M. B. Innes, and N. Pitigala. 2013. Warm springs reduce parasitism of the cereal leaf beetle through phenological mismatch. Journal of Applied Entomology 137:383-391.
Fan, X., D. Chen, Z. Sun, S. Tang, X. Wang, G. Ren, and X. Wang. 2014. Effects of brief exposure to high temperatures on the development, reproduction and feeding behavior of Myzus persicae (Hemiptera: Aphididae). Acta Entomologica Sinica 57:1188-1197.
FAOSTAT. 2013. http://faostat3.fao.org/
Fehr, W. R., and C. E. Caviness. 1977. Stages of soybean development. Iowa Agricultural and Home Economics Experiment Station Special Report:3-11.
Fehr, W. R., C. E. Caviness, D. T. Burmood, and J. S. Pennington. 1971. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science 11:929-931.
Fill, A., E. Y. Long, and D. L. Finke. 2012. Non-consumptive effects of a natural enemy on a non-prey herbivore population. Ecological Entomology 37:43-50.
Fitter, A. H., and R. S. R. Fitter. 2002. Rapid changes in flowering time in british plants. Science 296:1689-1691.
Ghorashy, S. R., J. W. Pendleton, R. L. Bernard, and M. E. Bauer. 1971. Effect of leaf pubescence on transpiration, photosynthetic rate and seed yield of three near-isogenic lines of soybeans. Crop Sci. 11:426-427.
Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2001. Effects of size and temperature on metabolic rate. Science 293:2248-2251.
Gillooly, J. F., E. L. Charnov, G. B. West, V. M. Savage, and J. H. Brown. 2002. Effects of size and temperature on developmental time. Nature 417:70-73.
Girousse, C., B. Moulia, W. Silk, and J.-L. Bonnemain. 2005. Aphid infestation causes different changes in carbon and nitrogen allocation in alfalfa stems as well as different inhibitions of longitudinal and radial expansion. Plant Physiology 137:1474-1484.
Goggin, F. L. 2007. Plant–aphid interactions: molecular and ecological perspectives. Current Opinion in Plant Biology 10:399-408.
Gresens, S., M. Cothran, and J. Thorp. 1982. The influence of temperature on the functional response of the dragonfly Celithemis fasciata (Odonata: Libellulidae). Oecologia 53:281-284.
Guerfel, M., O. Baccouri, D. Boujnah, W. Chaïbi, and M. Zarrouk. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Scientia Horticulturae 119:257-263.
Hagerman, A., and L. G. Butler. 1991. Tannins and lignins. Herbivores: their interactions with secondary plant metabolites 1:355-388.
Hanafi, A., E. B. Radcliffe, and D. W. Ragsdale. 1989. Spread and control of potato leafroll virus in Minnesota 82(4):1201-1206.
Harrington, R., R. A. Fleming, and I. P. Woiwod. 2001. Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agricultural and Forest Entomology 3:233-240.
Ho, C.-K., and S. C. Pennings. 2008. Consequences of omnivory for trophic interactions on a salt marsh shrub. Ecology 89:1714-1722.
HonĚK, A. 1985. Activity and predation of Coccinella septempunctata adults in the field (Col., Coccinellidae). Zeitschrift für Angewandte Entomologie 100:399-409.
Huey, R. B., and J. J. Tewksbury. 2009. Can behavior douse the fire of climate warming? Proceedings of the National Academy of Sciences 106:3647-3648.
Hunter, M. D., and P. W. Price. 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:723-732.
Inouye, D. W., B. Barr, K. B. Armitage, and B. D. Inouye. 2000. Climate change is affecting altitudinal migrants and hibernating species. Proceedings of the National Academy of Sciences 97:1630-1633.
Jalali, M., L. Tirry, and P. De Clercq. 2010. Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. BioControl 55:261-269.
Jeong, S.-J., C.-H. Ho, H.-J. Gim, and M. E. Brown. 2011. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biology 17:2385-2399.
Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie. 2003. The DSSAT cropping system model. European Journal of Agronomy 18:235-265.
Kajita, Y., E. M. O'Neill, Y. B. Zheng, J. J. Obrycki, and D. W. Weisrock. 2012. A population genetic signature of human releases in an invasive ladybeetle. Molecular Ecology 21:5473-5483.
Kennedy, J. S., and H. L. G. Stroyan. 1959. Biology of aphids. Annual Review of Entomology 4:139-160.
Kessler, A., and I. T. Baldwin. 2002. Plant respnoses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Biology 53:299-328.
Kordas, R. L., C. D. G. Harley, and M. I. O'Connor. 2011. Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology 400:218-226.
Koti, S., K. R. Reddy, V. R. Reddy, V. G. Kakani, and D. Zhao. 2005. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. Journal of Experimental Botany 56:725-736.
Kukal, O., and T. Dawson. 1989. Temperature and food quality influences feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia 79:526-532.
Lawton, J. 1983. Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology 28:23-39.
Lenoir, J., J. C. Gégout, P. A. Marquet, P. de Ruffray, and H. Brisse. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768-1771.
Levin, D. A. 1973. The role of trichomes in plant defense. The Quarterly Review of Biology 48:3-15.
Lin, C.-J., C.-Y. Li, S.-K. Lin, F.-H. Yang, J.-J. Huang, Y.-H. Liu, and H.-S. Lur. 2010. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry 58:10545-10552.
Linderholm, H. W. 2006. Growing season changes in the last century. Agricultural and Forest Meteorology 137:1-14.
Lobell, D. B., W. Schlenker, and J. Costa-Roberts. 2011. Climate trends and global crop production since 1980. Science 333:616-620.
Long, S. P., X.-G. Zhu, S. L. Naidu, and D. R. Ort. 2006. Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment 29:315-330.
Louis, J., and J. Shah. 2013. Arabidopsis thaliana - Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Frontiers in Plant Science 4:213.
Lovett Doust, J., and L. Lovett Doust. 1988. Plant reproductive ecology: patterns and strategies. Oxford University Press.
Ma, R., J.-L. Chen, D.-F. Cheng, and J.-R. Sun. 2010. Activation of defense mechanism in wheat by polyphenol oxidase from aphid saliva. Journal of Agricultural and Food Chemistry 58:2410-2418.
Mattson, W. J., Jr. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11:119-161.
McCornack, B. P., D. W. Ragsdale, and R. C. Venette. 2004. Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures. Journal of Economic Entomology 97:854-861.
Miles, P. W. 1999. Aphid saliva. Biological Reviews 74:41-85.
Mitton, J. B., and S. M. Ferrenberg. 2012. Mountain pine beetle develops an unprecedented summer generation in response to climate warming. The American Naturalist 179:E163-E171.
Moran, P. J., and G. A. Thompson. 2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology 125:1074-1085.
Murray, T. J., D. S. Ellsworth, D. T. Tissue, and M. Riegler. 2013. Interactive direct and plant-mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt-feeding insect herbivore. Global Change Biology 19:1407-1416.
Oksanen, L., S. D. Fretwell, J. Arruda, and P. Niemela. 1981. Exploitation ecosystems in gradients of primary productivity. The American Naturalist 118:240-261.
Olesen, J. E., and M. Bindi. 2002. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy 16:239-262.
Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:637-669.
Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579-583.
Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman. 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101:9971-9975.
Pennings, S. C., and V. J. Paul. 1992. Effect of plant toughness, calcification, and chemistry on herbivory by Dolabella auricularia. Ecology 73:1606-1619.
Peñuelas, J., and I. Filella. 2001. Responses to a warming world. Science 294:793-795.
Picotte, J., D. Rosenthal, J. Rhode, and M. Cruzan. 2007. Plastic responses to temporal variation in moisture availability: consequences for water use efficiency and plant performance. Oecologia 153:821-832.
Porter, J. H., M. L. Parry, and T. R. Carter. 1991. The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology 57:221-240.
Prado, E., and W. F. Tjallingii. 2007. Behavioral evidence for local reduction of aphid-induced resistance. Journal of Insect Science 7:48.
Prasad, P. V. V., K. J. Boote, L. H. Allen Jr, J. E. Sheehy, and J. M. G. Thomas. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research 95:398-411.
Prasad, P. V. V., and M. Djanaguiraman. 2011. High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Functional Plant Biology 38:993-1003.
Prather, C. M., S. L. Pelini, A. Laws, E. Rivest, M. Woltz, C. P. Bloch, I. Del Toro, C.-K. Ho, J. Kominoski, T. A. S. Newbold, S. Parsons, and A. Joern. 2013. Invertebrates, ecosystem services and climate change. Biological Reviews 88:327-348.
Price, P. W., C. E. Bouton, P. Gross, B. A. McPheron, J. N. Thompson, and A. E. Weis. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics 11:41-65.
Ragsdale, D. W., D. J. Voegtlin, and R. J. O’neil. 2004. Soybean aphid biology in North America. Annals of the Entomological Society of America 97:204-208.
Raupp, M. J. 1985. Effects of leaf toughness on mandibular wear of the leaf beetle, Plagiodera versicolora. Ecological Entomology 10:73-79.
Robinet, C., and A. Roques. 2010. Direct impacts of recent climate warming on insect populations. Integrative Zoology 5:132-142.
Romo, C. M. 2012. Climate-induced changes to multi-trophic interactions in an agroecosystem. University of Canterbury.
Rosenzweig, C., J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. Thorburn, J. M. Antle, G. C. Nelson, C. Porter, S. Janssen, S. Asseng, B. Basso, F. Ewert, D. Wallach, G. Baigorria, and J. M. Winter. 2013. The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agricultural and Forest Meteorology 170:166-182.
Ruppel, R. F. 1983. Cumulative insect-days as an index of crop protection. Journal of Economic Entomology 76:375-377.
Schlenker, W., and M. J. Roberts. 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences 106:15594-15598.
Schmitz, O. J., V. Krivan, and O. Ovadia. 2004. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters 7:153-163.
Schoonhoven, L. M., J. J. Van Loon, and M. Dicke. 2005. Insect-plant biology. Oxford University Press.
Sentis, A., J.-L. Hemptinne, and J. Brodeur. 2012. Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency. Oecologia 169:1117-1125.
Sentis, A., J.-L. Hemptinne, and J. Brodeur. 2013. Effects of simulated heat waves on an experimental plant–herbivore–predator food chain. Global Change Biology 19:833-842.
Shurin, J. B., J. L. Clasen, H. S. Greig, P. Kratina, and P. L. Thompson. 2012. Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society London B: Biological Sciences 367:3008–3017
Singh, G. 2010. The soybean: botany, production and uses. CAB International.
Singleton, V. L., and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144-158.
Son, Y., E. A. Backus, R. L. Groves, and M. W. Johnson. 2012. Pattern of stylet penetration activity by Homalodisca vitripennis (Hemiptera: Cicadellidae) adults in relation to environmental temperature and light conditions. Environmental Entomology 41:1215-1230.
Stevenson, K. R. 1969. The effects of environmental variables and plant morphology on leaf resistances, leaf temperatures and relative water content in soybeans. Iowa State University, Retrospective Theses and Dissertations. Paper 3611 http://lib.dr.iastate.edu/rtd/3611.
Traill, L. W., M. L. M. Lim, N. S. Sodhi, and C. J. A. Bradshaw. 2010. Mechanisms driving change: altered species interactions and ecosystem function through global warming. Journal of Animal Ecology 79:937-947.
Tubiello, F. N., J.-F. Soussana, and S. M. Howden. 2007. Crop and pasture response to climate change. Proceedings of the National Academy of Sciences 104:19686-19690.
Turgeon, R. 1989. The sink-source transition in leaves. Annual Review of Plant Physiology and Plant Molecular Biology 40:119-138.
USDA. 2015. Oil crops yearbook. table47.xls http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do;jsessionid=BAFFE3ADFFB5C291EAC746E5BCE8FFA0?documentID=1290
Valle, R., J. W. Mishoe, W. J. Campbell, J. W. Jones, and L. H. Allen. 1985. Photosynthetic responses of ‘Bragg’ soybean leaves adapted to different CO2 environments. Crop Science 25:333-339.
Van M. Savage, James F. Gillooly, James H. Brown, Geoffrey B. West, and Eric L. Charnov. 2004. Effects of body size and temperature on population growth. The American Naturalist 163:429-441.
Van Roekel, R. J., and L. C. Purcell. 2014. Soybean biomass and nitrogen accumulation rates and radiation use efficiency in a maximum yield environment. Crop Science. 54:1189-1196.
Velioglu, Y. S., G. Mazza, L. Gao, and B. D. Oomah. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry 46:4113-4117.
Visser, M. E., and C. Both. 2005. Shifts in phenology due to global climate change: the need for a yardstick. Proceedings of the Royal Society of London B: Biological Sciences 272:2561-2569.
Walther, G.-R. 2010. Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365:2019-2024.
Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416:389-395.
Welch, K. D., and J. D. Harwood. 2014. Temporal dynamics of natural enemy–pest interactions in a changing environment. Biological Control 75:18-27.
Went, F. 1953. The effect of temperature on plant growth. Annual Review of Plant Physiology 4:347-362.
Wheeler, T., and J. von Braun. 2013. Climate change impacts on global food security. Science 341:508-513.
Wilkens, R., G. Shea, S. Halbreich, and N. Stamp. 1996. Resource availability and the trichome defenses of tomato plants. Oecologia 106:181-191.
Wilson, A. C. C., L. d. S. L. Sternberg, and K. B. Hurley. 2011. Aphids alter host-plant nitrogen isotope fractionation. Proceedings of the National Academy of Sciences 108:10220-10224.
Wolf, R. B., J. F. Cavins, R. Kleiman, and L. T. Black. 1982. Effect of temperature on soybean seed constituents: oil, protein, moisture, fatty acids, amino acids and sugars. Journal of the American Oil Chemists’ Society 59:230-232.
Woolley, J. T. 1964. Water relations of soybean leaf hairs. Agronomy Journal. 56:569-571.
Wrolstad, R. E., R. W. Durst, and J. Lee. 2005. Tracking color and pigment changes in anthocyanin products. Trends in Food Science & Technology 16:423-428.
Wu, Z., D. Schenk-Hamlin, W. Zhan, D. W. Ragsdale, and G. E. Heimpel. 2004. The soybean aphid in china: a historical review. Annals of the Entomological Society of America 97:209-218.
Zhang, L., R. Wang, and J. D. Hesketh. 2001. Effects of photoperiod on growth and development of soybean floral bud in different maturity. Agronomy Journal 93:944-948.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51904-
dc.description.abstract氣候暖化影響生物群聚的例子近年來不斷的增加,在未來暖化的程度將更趨顯著下,我們需要了解暖化影響生物群聚的機制,以幫助預測未來暖化對生態系統造成的衝擊。本研究探討暖化影響生物群聚(含三個營養階層)的機制,主要著重在暖化如何影響各營養階層,及營養階層間的交互作用。我們探討3種溫度處理(18.5℃(控制組,為研究區域農夫種植大豆時的月均溫)、21.5℃(暖化3℃)、24.5℃(暖化6℃))下的大豆產量、蟲害(大豆蚜)、及生物防治效果(七星瓢蟲);而每溫度下設3種營養階層處理,以反映不同的營養階層結構:1) 大豆;2) 大豆和大豆蚜;3) 大豆、大豆蚜、及七星瓢蟲。結果顯示暖化可顯著影響大豆的一些形質,且此影響會取決於營養階層結構,例如:1) 若營養階層僅含大豆,暖化可直接增進大豆發育速率、繁殖生物量分配的比率及種子產量;2) 若營養階層含大豆和大豆蚜,暖化會增加蟲害(蚜蟲),進而減少大豆產量 ;3) 若營養階層含大豆、大豆蚜、及七星瓢蟲,暖化會增加瓢蟲生物防治的成效(控制蚜蟲族群),進而增加大豆的產量,展現出顯著的”營養瀑布”(瓢蟲至大豆)。大豆產量提高主要原因在累積較多的繁殖器官生物量,而非先累積了較高的營養器官生物量,而產量變化主要反映在種子數上而非種子粒重及種子碳氮元素比。對照種子產量的結果,暖化對大豆生長發育,及大豆防禦的影響和營養階層結構無關。另外,植物的三種物理或化學防禦對暖化或是營養階層處理有不同的反應:葉表絨毛密度隨暖化增加;葉片韌度不受暖化影響,但會隨蚜蟲感染處理而降低;而葉片總酚含量則在各實驗處理間無差異。這些結果顯示暖化很有可能經由影響營養階層及(或)其間的交互作用,進而影響作物產量、害蟲族群動態、及蟲害生物防治的成效。zh_TW
dc.description.abstractAs climate warming has been increasingly reported to affect communities, there is a need to understand its underlying mechanisms in order to help predict the outcome of future warming, which is projected to become more severe than the current one. This study investigated the mechanisms through which warming may affect a sub-tropical tri-trophic agricultural community, focusing on warming effects on each trophic level and trophic interactions. In specific, this study examined how experimental warming would affect plants (the soybean Glycine max), herbivores (the aphid Aphis glycines), predators (the ladybug Coccinella septempunctata), and their interactions in three environmental chambers (18.5, 21.5, 24.5°C). The chamber at 18.5°C served as control, reflecting the average monthly temperature when local farmers grew soybeans in our study region. The temperature of 21.5 and 24.5°C represented a 3 and 6°C warming by the year of 2100, respectively, based on IPCC predictions. Each chamber included three treatments, representing systems with different trophic structure: 1) soybeans; 2) soybeans and aphids; 3) soybeans, aphids, and ladybugs. Our results showed that the impact of warming on soybeans was strong and could be trophic-structure dependent in some cases. For example, warming impact on seed production was trophic-structure dependent: 1) In the system with soybeans only, warming increased soybean developmental rate, reproductive investment (i.e. reproductive / vegetative biomass), and seed production. 2) In the system with soybeans and aphids, warming increased the top-down control of plants by herbivores (aphids) and reduced seed production relatively. 3) In the system with soybeans, aphids, and ladybugs, warming increased the top-down control of aphids by ladybugs, yielding a stronger trophic cascade (from predators to plants) and higher soybean production. Soybean seed yield changes were mainly due to a higher investment in reproductive mass, but not the vegetative part, and in seed number, rather than the weight per seed or seed C/N ratio. Contrary to the effect on seed production, warming impact on many soybean growth, developmental, and defensive traits were trophic-structure independent. As for plant physical and chemical defense, three soybean defensive traits responded differently in various treatment combinations: leaf trichome density increased under warming; leaf toughness was not affected by warming but decreased in aphid-only treatment (Tro2); soybean total phenolics remained constant across temperature or trophic structure treatments. These results above suggest that climate warming will likely affect crop production, pest population dynamics, and biocontrol effectiveness, via warming effects on specific trophic levels and/ or trophic interactions.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:56:27Z (GMT). No. of bitstreams: 1
ntu-104-R00b44019-1.pdf: 1251976 bytes, checksum: eaba5c1731fbb03d18df22a83924e796 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iv
Content vii
Content of Tables ix
Content of Figures x
Introduction 1
Materials and Methods 8
Study system 8
Experimental design – warming and trophic structure treatment 11
Plant and animal traits measured in this study 14
Soybean yield, vegetative biomass investment, and reproductive biomass investment 17
Soybean morphology, growth and development 17
Soybean defense 19
Stoichiometry and stable-isotope measurement for each trophic level 21
Warming and ladybug biocontrol effect on aphid population dynamics and the cumulative pest stress on plant 22
Plant only experiment 23
Statistical analysis 24
Results 26
Soybean yield 26
Soybean vegetative and reproductive biomass investment 28
Soybean morphology, growth and development 29
Soybean defense 32
C:N stoichiometry in soybean leaves and seeds 33
Warming and ladybug biocontrol effect on aphid population dynamics and the cumulative pest stress on plants 34
Discussion 36
Soybean yield in a warming world will likely depend on trophic structure 36
Warming speeded up soybean development and made them “sparse” 40
Three soybean defensive traits reacted differently to temperature and trophic structure treatments 43
Soybean leaf quality was marginally higher under pest infestation, but seed quality was stable 47
Conclusions 49
References 50
Appendix 1 – Supplementary tables and figures 88
Appendix 2 – R code for permutation ANOVA 96
dc.language.isoen
dc.title暖化試驗對作物產量、害蟲族群、及生物防治效果的影響:以大豆─蚜蟲─瓢蟲系統為研究範例zh_TW
dc.titleExperimental warming effects on crop production, pest population, and biocontrol effectiveness: an example from a soybean-aphid-ladybug systemen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高文媛(Wen-Yuan Kao),黃紹毅(Shaw-yhi Hwang),郭美華(Mei-Hwa Kuo)
dc.subject.keyword氣候變遷,全球暖化,農業,農業生態系,掠食者,草食者,食物鏈,三營養階層,營養瀑布,zh_TW
dc.subject.keywordclimate change,global warming,agroecology,tri-trophic community,trophic cascade,plant-animal interactions,herbivory,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2015-08-26
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
1.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved