Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣本基(Pen-Chi Chiang)
dc.contributor.authorChen-Hsiang Hungen
dc.contributor.author洪晨翔zh_TW
dc.date.accessioned2021-06-15T13:56:19Z-
dc.date.available2018-08-27
dc.date.copyright2015-08-27
dc.date.issued2015
dc.date.submitted2015-08-26
dc.identifier.citation[1] A. Wesselsky, O.M. Jensen(2009) “Synthesis of pure Portland cement phases”,Cement and Concrete Research, vol.39, issue 11, pp.973-980 [2] Abass A. Olajire(2013), “A review of mineral carbonation technology in sequestration of CO2”, Journal of Petroleum Science and Engineering, vol.109 pp364-392. [3] B. Feng, H. An, E. Tan(2007), “Screening of CO2 absorbing materials for zero emission power generation systems” , Energy Fuels, pp.426-434 [4] Chang, E.-E., Chen, T.-L., Pan, S.-Y., Chen, Y.-H., and Chiang, P.-C(2013). “Kinetic modeling on CO2 capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed”. J Hazard Mater, vol.260, pp.937-946. [5] Chang, E., Pan, S.-Y., Chen, Y.-H., Tan, C.-S., and Chiang, P.-C. (2012). “Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed.” Journal of hazardous materials, vol.227, pp.97-106. [6] Chea Chandara, K.A.M. Azizli, Z.A. Ahmad, E. Sakai(2009), “Use of waste gypsum to replace natural gypsum as set retarders in portland cement”, Waste Management, vol.29, issue 5, pp.1675-1679 [7] Chea Chandara, Khairun Azizi, Mohd Azizli, Zainal Arifin Ahmad, Etsuo Sakai(2009) “Use of waste gypsum to replace natural gypsum as set retarders in portland cement”, Waste Management, vol.29, issue 5, pp.1675-1679 [8] C Ferreira, A Ribeiro, L Ottosen(2003) “Possible applications for municipal solid waste fly ash”, Journal of Hazardous Materials, pp.201-216 [9] D Ravina (1997),“Properties of fresh concrete incorporating a high volume of fly ash as partial fine sand replacement”, Materials and Structures, pp.473-479 [10] F. Bouchaala, C. Payan, V. Garnier, J.P. Balayssac(2011),” Carbonation assessment in concrete by nonlinear ultrasound”, Cement and Concrete Research, vol.41 pp. 557-559 [11] Fernandez Bertos, M., Simons, S., Hills, C., and Carey, P. (2004). “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO”. J Hazard Mater, vol.112, pp.193-205. [12] Formosa Petrochemical Corp. 台塑石化廠股份有限公司 [13] J.M Chimenos, A.I Fernández, R Nadal, F Espiell(2000),“Short-term natural weathering of MSWI bottom ash”, Journal of Hazardous Materials, vol.79 pp. 287-299.
87
[14] K. Svinning, K.A. Datu(2003) “Prediction of microstructure and properties of Portland Cement from production condition in cement mill: Part II: Prediction and sensitivity analysis”, 11th international congress on the chemistry of cement, Durban, [15] R. Zhang, H. Yang, N. Hu, J. Lu, Y. Wu(2013),“Experimental investigation and model validation of the heat flux profile in a 300 MW CFB boiler”, Powder Technology, vol.246 pp. 31-40 [16] Klaus S. Lackner, Christopher H. Wendt, Darryl P. Butt, Edward L. Joyce Jr., David H. Sharp(1995) “Carbon dioxide disposal in carbonate minerals”, Energy, vol.20, issue 11, pp.1153-1170. [17] Kyle J. Fricker, Ah-Hyung Alissa Park(2012), “Effect of H2O on Mg(OH)2 carbonation pathways for combined CO2 capture and storage”, Chemical Engineering Science, vol.100 pp.332-341 [18] L.K.A. Sear, J. Dews, B. Kite, F.C. Harris, J.F. Troy(1996),“Abrams law, air and high water-to-cement ratios” Construction and Building Materials, Vol.10, issue3, pp.221-226 [19] M.M. Faruque Hasan, Eric L. First, Fani Boukouvala, Christodoulos A. Floudas(2015) “A Multi-scale Framework for CO2 Capture, Utilization, and Sequestration: CCUS and CCU”, Computers & Chemical Engineering, Available online 27. [20] Morel, F.M.M., Hering, J.G.(1993). Principles and Applications of Aquatic Chemistry, John Wiley & Sons, New York. [21] Mehta, P.K.(1993), ”Concrete-structure, properties, and materials”, Prentice. [22] Mehta, P. K., and Monteiro, P. J. (2006), “Concrete: microstructure, properties, and materials”, McGraw-Hill New York. [23] Neville, A.M., (2002) “Properties of concrete”, Pitman books, [24] Poon, C.S., Kou, S.C. and Lin, Z.S. (2001), “Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO 4 ),” Cement and Concrete Research, vol.31, pp.873-881 [25] Q.Li, Z.A. Chen, J.-T. Zhang, L.-C. Liu, X.C. Li, L. Jia(2015),”Positioning and revision of CCUS technology development in China”, International Journal of Greenhouse Gas Control [26] Raungrut Cheerarot, Chai Jaturapitakkul(2004),”A study of disposed fly ash from landfill to replace Portland cement”, Waste Management, vol.24 pp.701-709. [27] R.E. Conn(1995).,“Laboratory Techniques for Evaluating the Ash Agglomeration Potential in Petroleum Coke Fired Circulating Fluidized Bed Combustors”, Fuel Processing Technology, vol.44, pp. 95-103,
88
[28] R.H. Matjie, Z. Li, C.R. Ward, D. French (2008), “Chemical composition of glass and crystalline phases in coarse coal gasification ash”, Fuel, 87, pp.857–869 [29] Sarkar, S.L., Kumar, A., Das, D.K., Banerjee, G(1995),“Utilization of fly ash in the development of cost effective cementitious product”, USA [30] Savannah, Georgia(1999),” Utilization of CFB Fly Ash for Construction Applications”, Proceedings of the 15th International Conference on Fluidized Bed Combustion, Paper No. FBC99-0144 [31] Sheng, G., Li,Q., Zhai, J., and Li, F. (2007), “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke,” Cement and Concrete Research, vol.37, pp.871-876. [32] Stefano Maschio, Gabriele Tonello, Luciano Piani, Erika Furlani (2011)“Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: Rheological behaviour of the pastes and materials compression strength”, Chemosphere, Vol.85, Issue 4, pp. 666–671 [33] S.Y. Pan,, E.E. Chang, P.C. Chiang, Y.H. Chen, C.S. Tan(2014). “Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion”, Applied Energy, 113, 267-276. [34] S.Y. Pan,, E.E. Chang, P.C. Chiang, Y.H. Chen, C.S. Tan(2013). “Ex Situ CO2 Capture by Carbonation of Steelmaking Slag Coupled with Metalworking Wastewater in a Rotating Packed Bed”, Environmental science & technology, 47(7), 3308-3315. [35] S.Y. Pan, E.E. Chang and P.C. Chiang(2012),” CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications”, Aerosol and Air Quality Research. [36] S.Y. Pan, E.E. Chang, P.C. Chiang, Y.H. Chen, C.S. Tand(2012),” Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed”, Journal of Hazardous Materials. [37] S.Y. Pan, E.E. Chang and P.C. Chiang(2012),” CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications”, Aerosol and Air Quality Research. [38] T.L. Chen, P.C. Chiang(2012), “Wastewater in a Rotating Packed Bed Kinetics on Carbonation of Basic Oxygen Furnace Slag with Cold-rolling”, Master Thesis Oral Defense. [39] Taiwan Cement Corp.台灣水泥股份有限公司 [40] Taylor, G.D.,(1991) ”Construction materials”, Longman Group UK. [41] University of Leuven: X-ray diffraction – Bruker D8 Discover
89
[42] W.K. Carey, G. Gürcan, M.C. Stuart, N.L. Vanessa(2013),”The system-wide economics of a carbon dioxide capture, utilization, and storage network: Texas Gulf Coast with pure CO2-EOR flood”, Environmental Research Letters, Vol. 8 Number 3. [43] Xiaoxiong Zha, Min Yu, Jianqiao Ye, Ganlin Feng(2015) “Numerical modeling of supercritical carbonation process in cement-based materials”, Cement and Concrete Research, vol.72 pp.10-20. [44] Xiaomin Li, Marta Fernández Bertos, Colin D. Hills, Paula J. Carey, Stef Simon(2007),“Accelerated carbonation of municipal solid waste incineration fly ashes”, Waste Management, vol.27 pp.1200-1206 [45] Youzhi Liu. Deyin Gu, Chengcheng Xu, Guisheng Qi, Weizhou Jiao(2015),” Mass transfer characteristics in a rotating packed bed with split packing”, Chinese Journal of Chemical Engineering [46] Yongzhuo Liu, Weihua Jia, Qingjie Guo, Hojung Ryu,(2014)“Effect of Gasifying Medium on the Coal Chemical Looping Gasification with CaSO4 as Oxygen Carrier” Chinese Journal of Chemical Engineering, Vol.22, Issues 11–12, pp.1208-1214 [47] 潘坤勝,”以水灰比及水化程度預測混凝土強度”, 2002 [48] 顏聰(Yen Cong), 土木材料, 中興大學土木系, 2014 [49] “How does a Circulating Fluidized Bed Boiler Work ?” Bright Hub Engineering [50] “Circulating fluidised bed (CFB) boiler” ALSTOM
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51902-
dc.description.abstract近年來,全球的氣候受到溫室效應的影響而造成全球暖化,二氧化碳的排
放管制及減量技術也受到重視,本研究試以石化工業高溫循環式流體化床鍋爐
(Circulating Fluidized Bed Boiler,簡稱 CFB)所產出的副產石灰(粉狀飛灰)之
鹼性廢棄物通過超重力旋轉床(RPB)進行碳酸化程序,來達到固存二氧化碳。
其中超重力旋轉床的轉速(550-950rpm)、飛灰與水的固液比(15-35
ml/g)、反應槽溫度(20-60 oC)為非常重要的參數,改變這些參數來探討對轉
換率的影響,研究中將嘗試找出碳酸化程序最佳參數。反應後的產物將會做熱
重分析儀(TGA)進行定量分析,再使用掃描式電子顯微鏡(SEM)進行定性分
析。而反應後之副產石灰加入水泥進行取代的可行性評估,為了確保副產石灰
的加入不會造成結構上及化學上的破壞,故必須對水泥砂漿體進行稠度試驗、
流度試驗、凝結時間試驗、蒸壓膨脹試驗、乾縮試驗、抗壓強度試驗等力學測
試。結果顯示反應後的副產石灰確實優於未反應的副產石灰,故本研究在固存
二氧化碳及減少水泥用量減少能量耗損上是可行的。
zh_TW
dc.description.abstractFor the past few years, the climate has been greatly influenced by greenhouse
effects, which is also the main factor that causes global warming. In addition, the
emission control and the regulation technology of carbon dioxide has been getting more
and more attention in the research community. The study of carbonated alkaline waste
of By-product lime (fly ash) produced by Circulating Fluidized Bed Boiler (so called
CFB) in Petrochemical Industry is used to fixate the carbon dioxide. Furthermore, the
study tries to find the best parameters in the carbonation process through changing
parameters to investigate the effect of conversion, among which rotation speed of
Rotating Packed Bed (550-950rpm), tank temperature (20-60 oC) and Solid-liquid ratio
of water and fly ash (15-35 ml/g) are the most important parameters. The carbonated
CFB fly ash will not only be analyzed quantitatively by Thermogravimetric analysis,
but also analyzed qualitatively by Energy Dispersive X-ray Spectroscope; moreover, we
add Portland cement to make a replaceable feasibility assessment regarding whether the
CFB fly ash is fresh or carbonated. For the purpose of assuring added CFB fly ash will
not cause chemical and structural destruction, we have to take Normal Consistency,
Flow Test, Setting Time, Autoclave Expansion, Drying Shrinkage, Compressive
Strength in account for the Cement mortars. The study result shows that the carbonated
CFB fly ash is definitely better than fresh CFB fly ash, as it is available to fixate carbon
dioxide and reduce the quantity of cement to regulate energy dissipation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:56:19Z (GMT). No. of bitstreams: 1
ntu-104-R02541131-1.pdf: 4953549 bytes, checksum: ae5da827e47d49cf4932e8061fba8c90 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要......................................................................................................................... I Abstract .......................................................................................................................... II Contents ........................................................................................................................ III 1. Introduction .......................................................................................................... 1 1.1 Background .......................................................................................... 1 1.1.1 Greenhouse Gas Reduction Technology .................................... 1 1.1.2 CO2 Capture, Utilization and Storage (CCUS) Technology .... 2 1.1.3 CFB Fly ash .................................................................................. 4 1.1.4 Reused for the cement ................................................................. 5 1.2 Objective ............................................................................................... 6 2 Literature Review ................................................................................................ 7 2.1 Mineral Carbonation Technology (MCT) ......................................... 7 2.1.1 Carbonation reaction ................................................................... 9 2.1.2 High-Gravity Rotating Packed Bed (RPB) .............................. 14 2.1.3 Circulating Fluidized Bed Boiler : Byproduct lime ................ 16 2.2 Cements ............................................................................................... 19 2.2.1 Cements Chemical ..................................................................... 21 2.2.2 Fly ash cement system ............................................................... 25 3 Materials and Methods ...................................................................................... 27 3.1 Research Flochart .............................................................................. 27 3.2 Materials ............................................................................................. 28 3.3 Experiment ......................................................................................... 30 3.3.1 Via High-Gravity Rotating Packed Bed (RPB) ................... 31 3.3.2 Experimental Factors and Operational Procedure ............ 33 3.3.3 Design of Response Surface Methodology (RSM)............... 34 3.3.4 Inductively Coupled Plasma - Optical Emission Spectrometer ...................................................................................... 36 3.4 Physico-chemical Analysis................................................................. 37 3.4.1 Thermogravimetric Analysis (TGA) ........................................ 37 3.4.2 Scanning Electron Microscope (SEM) ..................................... 39 3.5 Cement Property Analysis ................................................................ 40 3.5.1 Workability ................................................................................. 40 3.5.1-1 Normal Consistency ............................................................ 41 3.5.1-2 Flow Test ............................................................................. 42 3.5.1-3 Setting Time (Initial, Final) ............................................... 44 3.5.2 Mechanical strength................................................................... 45 3.5.2-1 Autoclave Expansion .......................................................... 46
IV
3.5.2-2 Drying Shrinkage ................................................................ 47 3.5.2-3 Compressive Strength ........................................................ 49 4 Results and Discussion ....................................................................................... 51 4.1 Accelerated Carbonation in RPB ..................................................... 51 4.1.1 Effects of Rotating Speed .......................................................... 51 4.1.2 Effects of Liquid to Solid ratio .................................................. 53 4.1.3 Effects of Temperature .............................................................. 55 4.1.4 Response Surface Models for Carbonation ............................. 56 4.1.5 Summary ..................................................................................... 58 4.2 Characterization ................................................................................ 61 4.2.1 Composition analysis ................................................................. 61 4.2.2 Toxicity Characteristic Leaching Procedure (TCLP) Test .... 62 4.2.3 Ion Concentration Analysis in water by ICP-OES ................. 65 4.2.4 SEM Analysis ............................................................................. 69 4.3 CFB Fly Ash to Replace Cement Analysis ....................................... 70 4.3.1 Workability ................................................................................. 70 4.3.1-1 Normal Consistency and Flow test Analysis .................... 70 4.3.1-2 Setting Time Analysis ......................................................... 71 4.3.2 Mechanical strength................................................................... 73 4.3.2-1 Autoclave Expansion Analysis ........................................... 73 4.3.2-2 Drying Shrinkage ................................................................ 75 4.3.2-3 Compressive Strength Analysis ......................................... 76 4.3.2-4 Summary ............................................................................. 81 5. Conclusions and Recommendations ..................................................................... 83 5-1 Conclusions ......................................................................................... 83 5-2 Recommendations .............................................................................. 85 6. References ............................................................................................................. 86
Appendix
dc.language.isoen
dc.subject取代水泥zh_TW
dc.subject固碳zh_TW
dc.subject超重力旋轉床zh_TW
dc.subject碳酸化zh_TW
dc.subject副產石灰zh_TW
dc.subject抗壓強度zh_TW
dc.subjectCompressive Strengthen
dc.subjectCement Replacementen
dc.subjectCO2 Fixationen
dc.subjectHigh-Gravity Rotating Packed Beden
dc.subjectCarbonation Reactionen
dc.subjectBy-product Limeen
dc.title以石化廠副產石灰進行超重力碳酸化程序固化二氧化碳與
取代水泥
zh_TW
dc.titleUtilization By-product Lime from Petrochemical Industry for
CO2 Fixation and Cement Replacement via High-gravity
Carbonation Process
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張怡怡(E-E Chang),顧洋,談駿嵩,陳奕宏
dc.subject.keyword副產石灰,碳酸化,超重力旋轉床,固碳,取代水泥,抗壓強度,zh_TW
dc.subject.keywordBy-product Lime,Carbonation Reaction,High-Gravity Rotating Packed Bed,CO2 Fixation,Cement Replacement,Compressive Strength,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2015-08-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved