Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51895
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳示國
dc.contributor.authorYi-Ting Changen
dc.contributor.author張宜婷zh_TW
dc.date.accessioned2021-06-15T13:55:55Z-
dc.date.available2018-09-22
dc.date.copyright2015-09-30
dc.date.issued2015
dc.date.submitted2015-08-27
dc.identifier.citationAbrahamson, E.E., Leak, R.K., and Moore, R.Y. (2001). The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12, 435-440.
Abrahamson, E.E., and Moore, R.Y. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain research 916, 172-191.
Andres, K.H., von During, M., and Veh, R.W. (1999). Subnuclear organization of the rat habenular complexes. The Journal of comparative neurology 407, 130-150.
Baver, S.B., Pickard, G.E., Sollars, P.J., and Pickard, G.E. (2008). Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. The European journal of neuroscience 27, 1763-1770.
Berson, D.M., Castrucci, A.M., and Provencio, I. (2010). Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. The Journal of comparative neurology 518, 2405-2422.
Berson, D.M., Dunn, F.A., and Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070-1073.
Brown, T.M., Gias, C., Hatori, M., Keding, S.R., Semo, M., Coffey, P.J., Gigg, J., Piggins, H.D., Panda, S., and Lucas, R.J. (2010). Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS biology 8, e1000558.
Buijs, R.M., and Kalsbeek, A. (2001). Hypothalamic integration of central and peripheral clocks. Nature reviews Neuroscience 2, 521-526.
Cai, D., Cohen, K.B., Luo, T., Lichtman, J.W., and Sanes, J.R. (2013). Improved tools for the Brainbow toolbox. Nature methods 10, 540-547.
Chen, D., Buchanan, G.F., Ding, J.M., Hannibal, J., and Gillette, M.U. (1999). Pituitary adenylyl cyclase-activating peptide: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proceedings of the National Academy of Sciences of the United States of America 96, 13468-13473.
Chen, S.K., Badea, T.C., and Hattar, S. (2011). Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476, 92-95.
Cook, P.B., and McReynolds, J.S. (1998). Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nature neuroscience 1, 714-719.
Dacey, D.M., Liao, H.W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.W., and Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749-754.
Davis, K.E., Eleftheriou, C.G., Allen, A.E., Procyk, C.A., and Lucas, R.J. (2015). Melanopsin-derived visual responses under light adapted conditions in the mouse dLGN. PloS one 10, e0123424.
de la Iglesia, H.O., Cambras, T., Schwartz, W.J., and Diez-Noguera, A. (2004). Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Current biology : CB 14, 796-800.
de la Iglesia, H.O., Meyer, J., Carpino, A., Jr., and Schwartz, W.J. (2000). Antiphase oscillation of the left and right suprachiasmatic nuclei. Science 290, 799-801.
Deschenes, C.L., and McCurry, S.M. (2009). Current treatments for sleep disturbances in individuals with dementia. Current psychiatry reports 11, 20-26.
Ding, J.M., Chen, D., Weber, E.T., Faiman, L.E., Rea, M.A., and Gillette, M.U. (1994). Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713-1717.
Dudanova, I., and Klein, R. (2013). Integration of guidance cues: parallel signaling and crosstalk. Trends in neurosciences 36, 295-304.
Ebling, F.J. (1996). The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Progress in neurobiology 50, 109-132.
Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.K., LeGates, T., Renna, J.M., Prusky, G.T., Berson, D.M., and Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67, 49-60.
Emanuel, A.J., and Do, M.T. (2015). Melanopsin tristability for sustained and broadband phototransduction. Neuron 85, 1043-1055.
Estevez, M.E., Fogerson, P.M., Ilardi, M.C., Borghuis, B.G., Chan, E., Weng, S., Auferkorte, O.N., Demb, J.B., and Berson, D.M. (2012). Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. The Journal of neuroscience : the official journal of the Society for Neuroscience 32, 13608-13620.
Feillet, C.A., Albrecht, U., and Challet, E. (2006). 'Feeding time' for the brain: a matter of clocks. Journal of physiology, Paris 100, 252-260.
Floresco, S.B., and Grace, A.A. (2003). Gating of hippocampal-evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental area. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 3930-3943.
Freedman, M.S., Lucas, R.J., Soni, B., von Schantz, M., Munoz, M., David-Gray, Z., and Foster, R. (1999). Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284, 502-504.
Fu, L., and Lee, C.C. (2003). The circadian clock: pacemaker and tumour suppressor. Nature reviews Cancer 3, 350-361.
Golombek, D.A., and Rosenstein, R.E. (2010). Physiology of circadian entrainment. Physiological reviews 90, 1063-1102.
Gooley, J.J., Lu, J., Fischer, D., and Saper, C.B. (2003). A broad role for melanopsin in nonvisual photoreception. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 7093-7106.
Guler, A.D., Ecker, J.L., Lall, G.S., Haq, S., Altimus, C.M., Liao, H.W., Barnard, A.R., Cahill, H., Badea, T.C., Zhao, H., et al. (2008). Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453, 102-105.
Halavi, M., Hamilton, K.A., Parekh, R., and Ascoli, G.A. (2012). Digital reconstructions of neuronal morphology: three decades of research trends. Frontiers in neuroscience 6, 49.
Hamada, T., Antle, M.C., and Silver, R. (2004). Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. The European journal of neuroscience 19, 1741-1748.
Hatori, M., Le, H., Vollmers, C., Keding, S.R., Tanaka, N., Buch, T., Waisman, A., Schmedt, C., Jegla, T., and Panda, S. (2008). Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PloS one 3, e2451.
Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K.W., and Berson, D.M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. The Journal of comparative neurology 497, 326-349.
Hattar, S., Liao, H.W., Takao, M., Berson, D.M., and Yau, K.W. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065-1070.
Hattar, S., Lucas, R.J., Mrosovsky, N., Thompson, S., Douglas, R.H., Hankins, M.W., Lem, J., Biel, M., Hofmann, F., Foster, R.G., et al. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 76-81.
Hoon, M., Okawa, H., Della Santina, L., and Wong, R.O. (2014). Functional architecture of the retina: development and disease. Progress in retinal and eye research 42, 44-84.
Jekely, G., and Arendt, D. (2007). Cellular resolution expression profiling using confocal detection of NBT/BCIP precipitate by reflection microscopy. BioTechniques 42, 751-755.
Kiessling, S., Sollars, P.J., and Pickard, G.E. (2014). Light stimulates the mouse adrenal through a retinohypothalamic pathway independent of an effect on the clock in the suprachiasmatic nucleus. PloS one 9, e92959.
Kornhauser, J.M., Nelson, D.E., Mayo, K.E., and Takahashi, J.S. (1990). Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5, 127-134.
Kuller, R., Ballal, S., Laike, T., Mikellides, B., and Tonello, G. (2006). The impact of light and colour on psychological mood: a cross-cultural study of indoor work environments. Ergonomics 49, 1496-1507.
Lall, G.S., Revell, V.L., Momiji, H., Al Enezi, J., Altimus, C.M., Guler, A.D., Aguilar, C., Cameron, M.A., Allender, S., Hankins, M.W., et al. (2010). Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66, 417-428.
Lambot, M.A., Depasse, F., Noel, J.C., and Vanderhaeghen, P. (2005). Mapping labels in the human developing visual system and the evolution of binocular vision. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 7232-7237.
LeGates, T.A., Altimus, C.M., Wang, H., Lee, H.K., Yang, S., Zhao, H., Kirkwood, A., Weber, E.T., and Hattar, S. (2012). Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491, 594-598.
Lehman, M.N., Silver, R., Gladstone, W.R., Kahn, R.M., Gibson, M., and Bittman, E.L. (1987). Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. The Journal of neuroscience : the official journal of the Society for Neuroscience 7, 1626-1638.
Long, M.A., Jutras, M.J., Connors, B.W., and Burwell, R.D. (2005). Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nature neuroscience 8, 61-66.
Lucas, R.J., Douglas, R.H., and Foster, R.G. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature neuroscience 4, 621-626.
Maywood, E.S., Okamura, H., and Hastings, M.H. (2002). Opposing actions of neuropeptide Y and light on the expression of circadian clock genes in the mouse suprachiasmatic nuclei. The European journal of neuroscience 15, 216-220.
Maywood, E.S., Reddy, A.B., Wong, G.K., O'Neill, J.S., O'Brien, J.A., McMahon, D.G., Harmar, A.J., Okamura, H., and Hastings, M.H. (2006). Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Current biology : CB 16, 599-605.
McNeill, D.S., Sheely, C.J., Ecker, J.L., Badea, T.C., Morhardt, D., Guido, W., and Hattar, S. (2011). Development of melanopsin-based irradiance detecting circuitry. Neural development 6, 8.
Meyer-Bernstein, E.L., Jetton, A.E., Matsumoto, S.I., Markuns, J.F., Lehman, M.N., and Bittman, E.L. (1999). Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140, 207-218.
Mikkelsen, J.D. (1990). Projections from the lateral geniculate nucleus to the hypothalamus of the Mongolian gerbil (Meriones unguiculatus): an anterograde and retrograde tracing study. The Journal of comparative neurology 299, 493-508.
Miller, C.L., Bickford, P.C., Wiser, A.K., and Rose, G.M. (1995). Long-term potentiation disrupts auditory gating in the rat hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience 15, 5820-5830.
Miura, M., Dong, K., Ahmed, F.A., Okamura, H., and Yamadori, T. (1997). The termination of optic nerve fibers in the albino mouse. The Kobe journal of medical sciences 43, 99-108.
Mohawk, J.A., and Takahashi, J.S. (2011). Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends in neurosciences 34, 349-358.
Morin, L.P. (1994). The circadian visual system. Brain research Brain research reviews 19, 102-127.
Morin, L.P., Blanchard, J., and Moore, R.Y. (1992). Intergeniculate leaflet and suprachiasmatic nucleus organization and connections in the golden hamster. Visual neuroscience 8, 219-230.
Mrosovsky, N. (1988). Phase response curves for social entrainment. Journal of comparative physiology A, Sensory, neural, and behavioral physiology 162, 35-46.
Mrosovsky, N. (1999). Masking: history, definitions, and measurement. Chronobiology international 16, 415-429.
Munch, I.C., Moller, M., Larsen, P.J., and Vrang, N. (2002). Light-induced c-Fos expression in suprachiasmatic nuclei neurons targeting the paraventricular nucleus of the hamster hypothalamus: phase dependence and immunochemical identification. The Journal of comparative neurology 442, 48-62.
Mure, L.S., Cornut, P.L., Rieux, C., Drouyer, E., Denis, P., Gronfier, C., and Cooper, H.M. (2009). Melanopsin bistability: a fly's eye technology in the human retina. PloS one 4, e5991.
Mure, L.S., Rieux, C., Hattar, S., and Cooper, H.M. (2007). Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo. Journal of biological rhythms 22, 411-424.
Nawabi, H., and Castellani, V. (2011). Axonal commissures in the central nervous system: how to cross the midline? Cellular and molecular life sciences : CMLS 68, 2539-2553.
Paxions, G., Franklin, K.J. (2001). The mouse brain in stereotaxic coordinates, second edition. Academic Press.
Peirson, S., and Foster, R.G. (2006). Melanopsin: another way of signaling light. Neuron 49, 331-339.
Pickard, G.E. (1985). Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neuroscience letters 55, 211-217.
Pickard, G.E., and Silverman, A.J. (1981). Direct retinal projections to the hypothalamus, piriform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique. The Journal of comparative neurology 196, 155-172.
Pickard, G.E., and Turek, F.W. (1982). Splitting of the circadian rhythm of activity is abolished by unilateral lesions of the suprachiasmatic nuclei. Science 215, 1119-1121.
Provencio, I., Rodriguez, I.R., Jiang, G., Hayes, W.P., Moreira, E.F., and Rollag, M.D. (2000). A novel human opsin in the inner retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 600-605.
Powner, M.B., Vevis, K., McKenzie, J.A., Gandhi, P., Jadeja, S., and Fruttiger, M. (2012). Visualization of gene expression in whole mouse retina by in situ hybridization. Nat Protoc 7, 1086-1096.
Provencio, I., Rollag, M.D., and Castrucci, A.M. (2002). Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493.
Reghunandanan, V., and Reghunandanan, R. (2006). Neurotransmitters of the suprachiasmatic nuclei. Journal of circadian rhythms 4, 2.
Saderi, N., Cazarez-Marquez, F., Buijs, F.N., Salgado-Delgado, R.C., Guzman-Ruiz, M.A., del Carmen Basualdo, M., Escobar, C., and Buijs, R.M. (2013). The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmit metabolic conditions. Neuroscience 246, 291-300.
Sanchez-Arrones, L., Nieto-Lopez, F., Sanchez-Camacho, C., Carreres, M.I., Herrera, E., Okada, A., and Bovolenta, P. (2013). Shh/Boc signaling is required for sustained generation of ipsilateral projecting ganglion cells in the mouse retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 33, 8596-8607.
Schmidt, T.M., Chen, S.K., and Hattar, S. (2011a). Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends in neurosciences 34, 572-580.
Schmidt, T.M., Do, M.T., Dacey, D., Lucas, R., Hattar, S., and Matynia, A. (2011b). Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 16094-16101.
Schmidt, T.M., and Kofuji, P. (2009). Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 476-482.
Schmidt, T.M., and Kofuji, P. (2011). Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse. The Journal of comparative neurology 519, 1492-1504.
Sehadova, H., Glaser, F.T., Gentile, C., Simoni, A., Giesecke, A., Albert, J.T., and Stanewsky, R. (2009). Temperature entrainment of Drosophila's circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 64, 251-266.
Shen, S., Spratt, C., Sheward, W.J., Kallo, I., West, K., Morrison, C.F., Coen, C.W., Marston, H.M., and Harmar, A.J. (2000). Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proceedings of the National Academy of Sciences of the United States of America 97, 11575-11580.
Shinohara, K., Tominaga, K., Fukuhara, C., Otori, Y., and Inouye, S.I. (1993). Processing of photic information within the intergeniculate leaflet of the lateral geniculate body: assessed by neuropeptide Y immunoreactivity in the suprachiasmatic nucleus of rats. Neuroscience 56, 813-822.
Silver, R., LeSauter, J., Tresco, P.A., and Lehman, M.N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382, 810-813.
Sotres-Bayon, F., Sierra-Mercado, D., Pardilla-Delgado, E., and Quirk, G.J. (2012). Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76, 804-812.
Sweeney, N.T., Tierney, H., and Feldheim, D.A. (2014). Tbr2 is required to generate a neural circuit mediating the pupillary light reflex. The Journal of neuroscience : the official journal of the Society for Neuroscience 34, 5447-5453.
Tripplett, J.W. and Feldheim, D.A. (2012). Eph and ephrin signaling in the formaiton of topographic maps. Semi Cell Dev Biol 23, 7-15.
Truett, G.E., Heeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A., and Warman, M.L. (2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). BioTechniques 29, 52, 54.
Wall, N.R., Wickersham, I.R., Cetin, A., De La Parra, M., and Callaway, E.M. (2010). Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proceedings of the National Academy of Sciences of the United States of America 107, 21848-21853.
Webb, A.B., Angelo, N., Huettner, J.E., and Herzog, E.D. (2009). Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America 106, 16493-16498.
Welsh, D.K., Logothetis, D.E., Meister, M., and Reppert, S.M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697-706.
Werblin, F.S. (1974). Control of retinal sensitivity. II. Lateral interactions at the outer plexi form layer. The Journal of general physiology 63, 62-87.
Wickersham, I.R., Lyon, D.C., Barnard, R.J., Mori, T., Finke, S., Conzelmann, K.K., Young, J.A., and Callaway, E.M. (2007). Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639-647.
Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M., and Okamura, H. (2003). Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408-1412.
Yannielli, P.C., and Harrington, M.E. (2001). Neuropeptide Y in the mammalian circadian system: effects on light-induced circadian responses. Peptides 22, 547-556.
Youngstrom, T.G., and Nunez, A.A. (1986). Comparative anatomy of the retino-hypothalamic tract in photoperiodic and non-photoperiodic rodents. Brain research bulletin 17, 485-492.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51895-
dc.description.abstract在哺乳類視網膜中,自主感光視神經細胞傳遞光訊息至腦區,以調控非視覺相關的功能,如生理時鐘和瞳孔反射。目前研究顯示,自主感光視神經細胞會直接投射至生理時鐘的中樞-視叉上核。但現階段對此神經迴路的了解,仍無法解釋光如何造成多樣的生理時鐘變化。這是由於我們的認知侷限於組織層次,究竟單一自主感光視神經細胞如何與視叉上核的細胞連結,光訊息又是如何經由這複雜的神經網路所傳遞和整合,目前仍未知。故本研究欲剖析視網膜和視叉上核間的神經迴路,我們結合藥理與基因轉殖鼠的技術,成功地追蹤單一自主感光視神經細胞,並分析其在視網膜中的樹突型態,與腦中的軸突分佈。我們的研究發現,單一自主感光視神經細胞可同時投射至多個腦區,主要投射目標為–視叉上核(SCN) 和膝狀間區小葉(IGL)。令人驚訝的是,即使異側對同側自主感光視神經細胞的比例為9:1,它們可透過非典型的軸突同時連至兩側的視叉上核,最終使得兩側的視叉上核接收等量的單眼光訊息。此外,每個自主感光視神經細胞會傾向投射至視叉上核中的特定區域,代表可能與單一種視叉上核的細胞連結,也就是光可能透過不同的神經迴路來影響生理時鐘。總結來說,建構單一自主感光視神經細胞至視叉上核的神經連結,是解開此複雜神經迴路突破性的一步,並奠定日後研究光如何調控生理時鐘的基礎。zh_TW
dc.description.abstractIn the mammalian retina, intrinsically photosensitive retinal ganglion cells (ipRGCs) convey photic inputs to several brain regions for non-image forming functions, such as circadian photoentrainment and pupil light reflex. Recent studies have shown that ipRGCs directly project to the suprachiasmatic nucleus (SCN), the mammalian master clock, through the retinohypothalamic tract (RHT). However, our understandings of retinal -SCN circuit are still limited at the tissue level, which cannot explain the variety of light effects on circadian photo-entrainment. To dissect out the complicated retinal-SCN connectivity by tracing single ipRGC is definitely a key breakthrough for revealing how light information is processed in the SCN. Here we applied a conditional and inducible Cre-LoxP system to randomly label a single ipRGC in mice, and reconstructed their dendritic structure and axonal architecture from the retina to the brain. Our findings reveal that a single ipRGC projects to multiple brain nuclei, especially the predominant targets- the SCN and IGL. Strikingly, we also found that individual ipRGCs, despite with the 9:1 contralateral to ipsilateral ratio, can bilaterally project to both ipsilateral and contralateral sides of the SCN. As a result, the photic inputs from monocular ipRGCs to both sides of the SCN are close to equal. Finally, our results show that individual ipRGCs preferentially target specific regions in the SCN, suggesting that a single ipRGC may form synapses with specific SCN neurons. These distinct neuronal circuits may explain the diverse light responses of SCN in circadian photo-entrainment. Taken together, these detailed morphological features and innervation patterns in a single-cell resolution provide us valuable insight into the complexity of retinal-SCN circuit.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:55:55Z (GMT). No. of bitstreams: 1
ntu-104-R02b21007-1.pdf: 262627643 bytes, checksum: 7d738a3df3ed4f599c0abdbffa72a9bb (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書…………………………………………………..……………………i
謝誌….......................................……………………………………...……………ii
摘要…………………………………………….……………………...……………....iv
Abstract …………………………………………..…………………………..…....….v
Abbreviations …………………………………..………………………………….…vii
Contents ……………………………………………...………………………..….….ix
Chapter I Introduction…..…...…………………………...………………………….1
1.1 Retina structure and visual processing in the retina……………...…….…1
1.2 Visual system and binocular vision……..……………......………………….2
1.3 Intrinsically photosensitive retinal ganglion cells…..…….……….……….3
1.3.1 Properties of melanopsin photopigment………...……...…..………..4
1.3.2 Projections and physiological functions of ipRGCs…………………5
1.3.3 Subtypes of ipRGCs………………….……………….…………….……5
1.4 Circadian rhythm………………………………….……………………………6
1.5 Suprachiasmatic nucleus……………………………………………….........7
1.5.1 Structures of the SCN…………………………………………...…….7
1.5.2 Inputs of the SCN………………………………………………...……...8
1.5.3 Synchronization of SCN neurons……………………………..………9
1.5.4 Outputs of the SCN………………..…………..………………………10
Statement of Purpose…………………………………………………..………...12
Chapter II Materials and methods…..………………………….....…………….13
2.1 Animals…………………………………………………..…..……………...…13
2.2 Genotyping …………………………..……………...…….………………….13
2.2.1 DNA isolation……….….....……………………...…….……………….13
2.2.2 Polymerase chain reaction (PCR)…….……...…….………………….14
2.2.3 X-gal staining……….……………...……………...…….………………14
2.3 Enucleation…………………………………………………..……………...…14
2.4 Tamoxifen injection……….………………………...…….…………………14
2.5 Alkaline phosphatase staining……….……………………...…….………15
2.6 Immunofluorescence staining………………………………………………15
2.6.1 Preparation of frozen-tissue……….………………………....…….…16
2.6.2 Immunohistochemistry…………..……………………...…….………16
2.7 3D reconstructions and analysis………..………………..……………...…17
2.7.1 3D reconstruction …….....……..……………...….…………………...17
2.7.2 Analysis ……………........……..……………...…….………………...17
2.7.3 Statistics ………………………………………………………………..18
2.8 In situ hybridization (ISH) ………………………………………………….18
2.8.1 Retina RNA extraction ………………………………………………...18
2.8.2 cDNA synthesis ………………………………………………………..19
2.8.3 Cloning for preparation of probe template…………………………19
2.8.4 Probe Synthesis …………………………………………………….…..21
2.8.5 Preparation of whole retina and frozen sections...…………………21
2.8.6 Sample pretreatment …………………………….....…………….…..22
2.8.7 Hybridization and antibody staining ………………………………...22
Chapter III Results…..…...………..…………………...…………...……………...24
3.1 A single M1 ipRGC projects to multiple brain nuclei with collateral axons…...24
3.2 The bilateral innervation of single ipRGCs contributes to the symmetric input from the retina to the SCN…………………..…………………………….25
3.3 Unilateral and bilateral ipRGCs have similar dendritic morphologies..27
3.4 Individual ipRGC prefers specific region of the SCN……………………27
3.5 A single ipRGC prefer to connect to one type of SCN neurons…….....29
3.6 The dendritic- axonal correlation of ipRGCs…………………………...…30
Chapter IV Discussion…..…...…………..…………...………….....…….……...31
4.1 M1 ipRGCs send collateral axon to multiple brain regions……………31
4.2 A single ipRGC bilaterally innervates both sides of the SCN…………33
4.3 A single ipRGC prefers to innervate a specific region in the SCN and to have a certain synaptic partners………...………………………………………36
4.4 The correlation between dendritic morphology and axonal properties.38
4.5 Limitations and future directions of current technology of single cell tracing…39
Chapter V Significance of work…..…...…………..…………...…….....………41
Chapter VI Reference……………..…...…………..…………...……....………….42
Figures……………………………………………………………………………....54
Figure 1. Schematic representation of the mouse genetic lines……………54
Figure 2. Representative images of AP staining and 3D reconstruction from a single ipRGC in the mouse………………………………………………………55
Figure 3. A single ipRGC innervates multiple brain targets……………………56
Figure 4. Overall innervation patterns of single ipRGCs……………………….58
Figure 5. Axonal architectures of a single ipRGC in the IGL…………………59
Figure 6. Axonal architectures of a single ipRGC in the SCN…………………60
Figure 7. The spatial distribution of contralateral and ipsilateral ipRGCs in the retina..61
Figure 8. Innervation patterns of single ipRGCs in the SCN……………...….62
Figure 9. The axon branch right at the optic chiasm…………………………63
Figure 10. Bilateral indexes of contralateral and ipsilateral ipRGCs.………64
Figure 11. Axonal distribution of contralateral and ipsilateral ipRGCs in both sides of the SCN………………………………………………………………...65
Figure 12. Unilateral and bilateral projecting ipRGCs have similar somato-dendritic features………………………………………………………………….66
Figure 13. A single ipRGC preferentially innervates a specific region of the SCN……68
Figure 14. Scheme of axonal Sholl analysis ….…………………………………69
Figure 15. Axonal Sholl analysis of ventral, middle and dorsal targeting ipRGCs……70
Figure 16. Merged images of axonal fields of ventral, middle and dorsal targeting ipRGCs…………………………………………………………………...71
Figure 17. Ventral, middle and dorsal targeting ipRGCs have similar somato-dendritic features but different soma spatial distribution……………………72
Figure 18. A single ipRGC connects to VIP neurons in the SCN……………74
Figure 19. A single ipRGC connects to AVP neurons in the SCN……………75
Figure 20. A single ipRGC connects to GRP neurons in the SCN……………76
Figure 21. Dendritic-axonal correlation of ipRGCs……..………………………77
Figure 22. Expression of robo3 in the P4 mouse retinas………………………78
Figure 23. Models of neuronal circuits of single M1 ipRGCs in the mouse brain……..79
Tables………………………………………………………………………………...80
Table 1. List of primers for genotyping…………………………………………...80 Table 2. List of primary antibodies used in this study…………...…..………...81
Table 3. List of secondary antibodies used in this study……………..……...82
Table 4. Summary of brain targets from single ipRGCs.………………………83
Table 5. Dendritic-axonal correlation of ipRGCs………………………………84
Appendix……………………………………………………………………………...85
Appendix I pCRRII-TOPO vector used in ISH………..………………………85
Appendix II Light promotes hair follicle regeneration via ipRGCs………….86
Appendix III Abstract and Poster…….…………………………………………101
dc.language.isoen
dc.subject神經迴路zh_TW
dc.subject生理時鐘zh_TW
dc.subject單一神經元追蹤技術zh_TW
dc.subject視叉上核zh_TW
dc.subject視神經細胞zh_TW
dc.subjectcircadian rhythmen
dc.subjectsuprachiasmatic nucleusen
dc.subjectneuronal circuiten
dc.subjectsingle cell tracingen
dc.subjectretinal ganglion cellsen
dc.title建構單一M1 自主感光視神經細胞之神經迴路及探討其下游之生理功能zh_TW
dc.titleDetermine the Neuronal Circuits of M1 Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) at the Single-Cell Level and Their Downstream Functionsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王致恬,林頌然,周申如
dc.subject.keyword視神經細胞,視叉上核,生理時鐘,神經迴路,單一神經元追蹤技術,zh_TW
dc.subject.keywordretinal ganglion cells,suprachiasmatic nucleus,circadian rhythm,neuronal circuit,single cell tracing,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2015-08-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
256.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved