請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51891
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃筱鈞(Hsiao-Chun Huang) | |
dc.contributor.author | Yang Liu | en |
dc.contributor.author | 劉陽 | zh_TW |
dc.date.accessioned | 2021-06-15T13:55:40Z | - |
dc.date.available | 2016-12-17 | |
dc.date.copyright | 2015-08-31 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-28 | |
dc.identifier.citation | Reference
1. Purnick, P.E. and R. Weiss, The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol, 2009. 10(6): p. 410-22. 2. Benner, S.A. and A.M. Sismour, Synthetic biology. Nat Rev Genet, 2005. 6(7): p. 533-43. 3. Bornens, M., Organelle positioning and cell polarity. Nat Rev Mol Cell Biol, 2008. 9(11): p. 874-86. 4. Drubin, D.G. and W.J. Nelson, Origins of cell polarity. Cell, 1996. 84(3): p. 335-44. 5. Macara, I.G. and S. Mili, Polarity and differential inheritance--universal attributes of life? Cell, 2008. 135(5): p. 801-12. 6. Rafelski, S.M. and W.F. Marshall, Building the cell: design principles of cellular architecture. Nat Rev Mol Cell Biol, 2008. 9(8): p. 593-602. 7. Chau, A.H., et al., Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell, 2012. 151(2): p. 320-32. 8. Shapiro, L., H.H. McAdams, and R. Losick, Why and How Bacteria Localize Proteins. Science, 2009. 326(5957): p. 1225-1228. 9. Thanbichler, M. and L. Shapiro, Getting organized--how bacterial cells move proteins and DNA. Nat Rev Microbiol, 2008. 6(1): p. 28-40. 10. Shapiro, L., H.H. McAdams, and R. Losick, Generating and exploiting polarity in bacteria. Science, 2002. 298(5600): p. 1942-6. 11. Henrici, A.T. and D.E. Johnson, Studies of Freshwater Bacteria: II. Stalked Bacteria, a New Order of Schizomycetes. J Bacteriol, 1935. 30(1): p. 61-93. 12. Poindexter, J.S., Biological Properties and Classification of the Caulobacter Group. Bacteriol Rev, 1964. 28: p. 231-95. 13. Collier, J. and L. Shapiro, Spatial complexity and control of a bacterial cell cycle. Curr Opin Biotechnol, 2007. 18(4): p. 333-40. 14. Ausmees, N., J.R. Kuhn, and C. Jacobs-Wagner, The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell, 2003. 115(6): p. 705-13. 15. McAdams, H.H. and L. Shapiro, System-level design of bacterial cell cycle control. FEBS Lett, 2009. 583(24): p. 3984-91. 16. Brun, Y.V., G. Marczynski, and L. Shapiro, The expression of asymmetry during Caulobacter cell differentiation. Annu Rev Biochem, 1994. 63: p. 419-50. 17. Nierman, W.C., et al., Complete genome sequence of Caulobacter crescentus. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(7): p. 4136-4141. 18. Laloux, G. and C. Jacobs-Wagner, How do bacteria localize proteins to the cell pole? Journal of Cell Science, 2014. 127(1): p. 11-19. 19. Ebersbach, G., et al., A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell, 2008. 134(6): p. 956-968. 20. Laloux, G. and C. Jacobs-Wagner, Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization. Journal of Cell Biology, 2013. 201(6): p. 827-841. 21. Bowman, G.R., et al., Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Molecular Microbiology, 2010. 76(1): p. 173-189. 22. Jiang, C., et al., Sequential evolution of bacterial morphology by co-option of a developmental regulator. Nature, 2014. 506(7489): p. 489-93. 23. Treuner-Lange, A. and L. Sogaard-Andersen, Regulation of cell polarity in bacteria. Journal of Cell Biology, 2014. 206(1): p. 7-17. 24. Quan, J. and J. Tian, Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One, 2009. 4(7): p. e6441. 25. Seguritan, V. and F. Rohwer, FastGroup: a program to dereplicate libraries of 16S rDNA sequences. BMC Bioinformatics, 2001. 2: p. 9. 26. Jiang, C., et al., Sequential evolution of bacterial morphology by co-option of a developmental regulator. Nature, 2014. 506(7489): p. 489-+. 27. Shaw, A.S. and E.L. Filbert, Scaffold proteins and immune-cell signalling. Nature Reviews Immunology, 2009. 9(1): p. 47-56. 28. Levchenko, A., J. Bruck, and P.W. Sternberg, Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(11): p. 5818-5823. 29. Dueber, J.E., et al., Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol, 2009. 27(8): p. 753-9. 30. Whitaker, W.R. and J.E. Dueber, Metabolic pathway flux enhancement by synthetic protein scaffolding. Methods Enzymol, 2011. 497: p. 447-68. 31. You, C. and Y.H.P. Zhang, Self-Assembly of Synthetic Metabolons through Synthetic Protein Scaffolds: One-Step Purification, Co-immobilization, and Substrate Channeling. ACS Synth Biol, 2013. 2(2): p. 102-110. 32. Yu, T., et al., Assembly of cellulases with synthetic protein scaffolds in vitro. Bioresources and Bioprocessing, 2015. 2(1). 33. Yang, J.Y., et al., The I-TASSER Suite: protein structure and function prediction. Nat Methods, 2015. 12(1): p. 7-8. 34. Roy, A., A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc, 2010. 5(4): p. 725-738. 35. Zhang, Y., I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008. 9. 36. Bowman, G.R., et al., A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell, 2008. 134(6): p. 945-55. 37. Lenarcic, R., et al., Localisation of DivIVA by targeting to negatively curved membranes. EMBO J, 2009. 28(15): p. 2272-82. 38. Radhakrishnan, S.K., M. Thanbichler, and P.H. Viollier, The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus. Genes & Development, 2008. 22(2): p. 212-225. 39. Biasini, M., et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res, 2014. 42(W1): p. W252-W258. 40. Arnold, K., et al., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006. 22(2): p. 195-201. 41. Benkert, P., M. Biasini, and T. Schwede, Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011. 27(3): p. 343-350. 42. Petersen, T.N., et al., SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011. 8(10): p. 785-786. 43. Dueber, J.E., et al., Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol, 2009. 27(8): p. 753-U107. 44. Ghosh, I., A.D. Hamilton, and L. Regan, Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescent protein. Journal of the American Chemical Society, 2000. 122(23): p. 5658-5659. 45. Delebecque, C.J., et al., Organization of Intracellular Reactions with Rationally Designed RNA Assemblies. Science, 2011. 333(6041): p. 470-474. 46. Hu, C.D., Y. Chinenov, and T.K. Kerppola, Visualization of interactions among bZip and Rel family proteins in living cells using bimolecular fluorescence complementation. Molecular Cell, 2002. 9(4): p. 789-798. 47. Legrain, P. and L. Selig, Genome-wide protein interaction maps using two-hybrid systems. FEBS Lett, 2000. 480(1): p. 32-36. 48. Di Lallo, G., P. Ghelardini, and L. Paolozzi, Two-hybrid assay: construction of an Escherichia coli system to quantify homodimerization ability in vivo. Microbiology-Uk, 1999. 145: p. 1485-1490. 49. Lissmann, H.W., Continuous electrical signals from the tail of a fish. Gymnarchus niloticus Cuv. Nature, 1951. 167(4240): p. 201-2. 50. Markham, M.R., Electrocyte physiology: 50 years later. Journal of Experimental Biology, 2013. 216(13): p. 2451-2458. 51. Kralj, J.M., et al., Electrical Spiking in Escherichia coli Probed with a Fluorescent Voltage-Indicating Protein. Science, 2011. 333(6040): p. 345-348. 52. Oesterhelt, D. and W. Stoeckenius, Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol, 1971. 233(39): p. 149-52. 53. Hayashi, S., E. Tajkhorshid, and K. Schulten, Molecular dynamics simulation of bacteriorhodopsin's photoisomerization using ab initio forces for the excited chromophore. Biophysical Journal, 2003. 85(3): p. 1440-1449. 54. PebayPeyroula, E., et al., X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science, 1997. 277(5332): p. 1676-1681. 55. Dunn, R.J., et al., Studies on the Light-Transducing Pigment Bacteriorhodopsin. Cold Spring Harbor Symposia on Quantitative Biology, 1983. 48: p. 853-862. 56. Shis, D.L. and M.R. Bennett, Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(13): p. 5028-5033. 57. Shis, D.L. and M.R. Bennett, Synthetic biology: the many facets of T7 RNA polymerase. Mol Syst Biol, 2014. 10(7). 58. Schaerli, Y., M. Gili, and M. Isalan, A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Res, 2014. 42(19): p. 12322-12328. 59. Segall-Shapiro, T.H., et al., A 'resource allocator' for transcription based on a highly fragmented T7 RNA polymerase. Mol Syst Biol, 2014. 10(7). 60. Martinac, B., et al., Patch clamp electrophysiology for the study of bacterial ion channels in giant spheroplasts of E. coli. Methods Mol Biol, 2013. 966: p. 367-80. 61. Cao, G., et al., Genetically targeted optical electrophysiology in intact neural circuits. Cell, 2013. 154(4): p. 904-13. 62. Mahon, M.J., pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Adv Biosci Biotechnol, 2011. 2(3): p. 132-137. 63. Kodama, Y. and C.D. Hu, Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques, 2012. 53(5): p. 285-98. 64. Suzuki, N., et al., Crystallization of small proteins assisted by green fluorescent protein. Acta Crystallographica Section D-Biological Crystallography, 2010. 66: p. 1059-1066. 65. Fu, H.Y., et al., A novel six-rhodopsin system in a single archaeon. J Bacteriol, 2010. 192(22): p. 5866-73. 66. Zhang, J., et al., Crystal structure of the O intermediate of the Leu93?Ala mutant of bacteriorhodopsin. Proteins-Structure Function and Bioinformatics, 2012. 80(10): p. 2384-2396. 67. Kennedy, W.P., J.R. Momand, and Y.W. Yin, Mechanism for de novo RNA synthesis and initiating nucleotide specificity by T7 RNA polymerase. Journal of Molecular Biology, 2007. 370(2): p. 256-268. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51891 | - |
dc.description.abstract | 在漫長的生命進化歷史中,由單細胞生命向多細胞生命進化是一段具有里程碑意義的歷程。毫無疑問,這個過程裡最關鍵的要素即為細胞不對稱性和細胞分化行為的出現。細胞的不對稱性賦予了生命在單細胞水準上將生理功能區域化的能力,並且促使細胞發展出分化行為。時至今日,當我們嘗試揭示上述自然哲學真理的本質,適逢合成生物學迅猛發展。合成生物學是一門日益精密的新興學科,致力於通過設計和構建人工基因線路來研究生命科學。一方面,合成生物學嘗試利用合成的基因元件、線路、裝置和系統以研究生命的自然本質。另一方面,研究者們亦在求索的過程中將天然的生物學系統拆分為可替代的標準化基因元件,且利用它們構建出進化所不曾創造生物學系統和生物學功能。從合成生物學的角度出發,在相對簡單的對稱性細胞中構建人工不對稱裝置,對於未來從頭建立人工多細胞生命、探討細胞分化的分子機制起源以及進一步細化工程細胞的生理功能,都有著重要意義。在我們的研究裡,我們在最簡單、應用最廣泛的基因工程學平臺大腸桿菌(Escherichia coli)中,設計並建立了具有不對稱分佈性質的蛋白質支架工具。同時,揭示了這個支架系統的魯棒性和實用性。我們從新月柄桿菌(Caulobacter crescentus)中分離並標準化了自組織蛋白PopZ和膜支架蛋白SpmX的基因,通過實驗證明它們之間存在直接相互作用,還發現了這兩種蛋白在不同基因表達比例下特殊的極性分佈規律。在這些發現的基礎上,我們提出“粘性假說”以闡釋這些獨特現象背後的機制,並由此設計並建立了可誘導的單極-雙極分佈轉換蛋白質支架。為了體現這一支架工具的可用性,我們通過雙分子螢光互補實驗(BiFC)實驗證明PopZ/SpmX支架系統可以有效調控第三方蛋白質的活性。還發現與PopZ的聚合能力可以顯著影響與之融合的抑制子蛋白CI功能域之活性。最後,我們證明了SpmX蛋白質的N末端結構域作為一種蛋白質支架適配子(adapter),具有良好的通用性。我們利用這一支架工具,成功在大腸桿菌(E.coli)細胞基礎上構建了一種微米級細胞光電單元(MCPU)。 | zh_TW |
dc.description.abstract | In the long history of biological evolution, the evolution of unicellular to multicellular is a milestone event. Undoubtedly, the cornerstone of this event is the emergence of cell asymmetry and cell differentiation. The asymmetry of cells gives cell capacity to divide functional areas at the single cell level, even more, to promote the development process of differentiation behavior. Just today, as we trying to reveal the truths of natural philosophy include above themes, synthetic biology is developing rapidly. Synthetic biology is an increasingly sophisticated emerging discipline that dedicates to study life science by constructing and designing artificial genes circuits. On the one hand, synthetic biologists trying to research the natural essence of life by utilizing synthetic parts, circuits, devices and systems. On the other hand, we also research and split natural gene systems to some replaceable standardized DNA parts, and then, use these parts to design and build unnatural life system with desired functions. In the vision of synthetic biology, building asymmetric device in simple symmetric cell has great significance for construction of multi-cellular system from scratch, researching basic mechanisms of cell differentiation and refinement of artificial function in prokaryotes. In our research, we designed and built asymmetric protein scaffold in the most popular and the simplest single-cell gene engineering platform, E. coli. Also, we verify the practicality and robustness of this scaffold system. We first standardized the self-organizing scaffold proteins PopZ and SpmX from Caulobacter crescentus. Then we prove the existence of the direct interaction between them and test the polarized regularity in different expression proportion of these two genes. Based on our research results, we propose a complete theoretical hypothesis ‘Stickiness hypothesis’ to reveal the rule of the interaction between the two proteins. Based on hypothesis, we make a inducible unipolar-bipolar switch (IUBS) scaffold in E. coli. To prove the availability of this scaffold system, we confirmed that the PopZ can regulate the activity of split EYFP fused with SpmX∆C adapter by a Bimolecular Fluorescence Complementation (BiFC) experiment. Even more, the fusion protein includes N terminus of cI repressor and PopZ can change the expression behavior of the downstream gene circuit. As a scaffold molecule, PopZ can affect the activity of transcription factor. Finally, we prove the universality of SpmX∆C as an adapter then make a Micron Cell-based Photovoltaic Unit (MCPU) to show the powerful feature and versatility of this asymmetry platform. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:55:40Z (GMT). No. of bitstreams: 1 ntu-104-R02b43033-1.pdf: 9403111 bytes, checksum: 54b02e4227ea0a26ab66e0b8908a2b70 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Catalog
摘 要 I Abstract III Catalog V Figure List VIII Table List XI Chapter 1.Introduction 1 Chapter 2.Materials and Methods 5 2.1. Conventional Molecular Manipulation 5 2.1.1. Primer Design and PCR 5 2.1.2. Agarose Gel Electrophoresis 7 2.1.3. Gel Extraction 7 2.1.4. PCR Clean Up 8 2.1.5. Mini Plasmid DNA Extraction & Clone Preservation 9 2.1.6. DNA Digestion & Ligation 10 2.2. Protocol for Cell Culture and Conservation 11 2.2.1. Culture Method for C. crescentus 11 2.2.2. Culture Method for E. coli with Recombinant Plasmid 11 2.2.3. Conservation 12 2.3. Protocol for DNA Assembly 12 2.3.1. 3A Assembly 13 2.3.2. Gibson Assembly 15 2.3.3. Standardized Assembly 17 2.3.4. CPEC Assembly 17 * One-step Small Fragment Synthesis 19 2.4. Protocol for Microscope Imaging 20 2.4.1. Culture Protocol for Quantitative Experiments 20 2.4.2. Culture Protocol for Qualitative Experiments 21 2.4.3. The Protocol of Loading Sample into Microscope 21 2.5. Protocol for Flow Cytometry 24 2.6. Protocol for Optical Experiment 24 2.7. List of Commonly Used Reagents 26 2.8. Cited Primer Sequences List 27 Chapter 3.Results and Discussions 29 3.1. Standardization and Redesign of PopZ Protein Scaffold in E. coli 29 3.1.1. Isolation and Standardization of PopZ gene 30 3.1.2. Modified Versions of PopZ 31 3.1.3. Expression Strength and Polarization Characteristic 33 3.1.4. Solid Ball Model 37 3.1.5. PopZ Expression in Eukaryotic Cells 37 3.2. Artificial Distribution Regulating of PopZ-SpmX Sacffold System 38 3.2.1. Isolation and Standardization SpmX gene as Adapter of PopZ Scafflod 39 3.2.2. Direct Interaction between PopZ and SpmX 40 3.2.3. Molecular Number Ratio of PopZ & SpmX Determines the Distribution Characteristic 42 3.2.4. The ’Stickiness Hypothesis’ 43 3.2.5. Inducible Bipolar-Unipolar Switch (iBUS) 45 3.3. The PopZ/SpmX Scaffold Regulates Activity of the Third-party Protein 46 3.3.1. The PopZ/SpmX Scaffold Regulates Activity of a Functional Protein 47 3.3.2. The Polymerization of PopZ Regulates Activity of a Transcriptional Factor 49 3.4. Application Potential of Polarized Protein Scaffold Platform -MCPU 51 3.4.1. The Universality of PopZ/SpmX Scaffold 52 3.4.2. The Design of Micron level Cellular Photovoltaic Unit 54 3.4.3. Asymmetrically Distributed based on PopZ/SpmX∆C Scaffold 56 3.4.4. Functional Test of bop::EYFP::SpmX∆C and bop::SpmX∆C::EYFP 57 Chapter 4. Conclusion and Future Work 59 4.1. Conclusion 59 4.1.1. The Properties of PopZ in E. coli 59 4.1.2. The Properties of PopZ/SpmX scaffold tool 60 4.1.3. The Function of PopZ/SpmX Scaffold Tool 61 4.1.4. The Potential of PopZ/SpmX Scaffold Tool 62 4.1.5. Micron level Cellular Photovoltaic Unit (MCPU) 63 4.2. Future Work 64 4.2.1. Asymmetrically Distributed Protein and Artificial Cell Differentiation 64 4.2.2. Micron level Cellular Photovoltaic Unit (MCPU) 67 4.2.3. The Universal Cell Polarization Principle 68 Reference 69 | |
dc.language.iso | en | |
dc.title | 在大腸桿菌中構建基於細胞極性蛋白質支架的合成生物學平臺 | zh_TW |
dc.title | A Synthetic Biology Platform for Polarized Protein Scaffold in Escherichia coli | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊啟伸(Chii-Shen Yang),史有伶(Yu-Ling Shih),江介宏(Jie-Hong Jiang),朱家瑩(Chia-Ying Chu) | |
dc.subject.keyword | 合成生物學,細胞極化,蛋白質支架,PopZ,SpmX,細菌視紫紅質, | zh_TW |
dc.subject.keyword | Synthetic Biology,Cell Polarization,Protein Scaffold,PopZ,SpmX,Bacteriorhodopsin, | en |
dc.relation.page | 113 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-28 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 9.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。