Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51890
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑怡(Shu-I Lin)
dc.contributor.authorChia-Ying Leeen
dc.contributor.author李佳穎zh_TW
dc.date.accessioned2021-06-15T13:55:37Z-
dc.date.available2020-08-31
dc.date.copyright2015-08-31
dc.date.issued2015
dc.date.submitted2015-08-28
dc.identifier.citation陳正次. 2002. 番茄病蟲害與生理障礙的防治. 番茄品種特性與栽培技術全輯. 行政院農委會種苗改良繁殖場印行 56-78.
郭宏遠、何超然. 2010. 台灣番茄市場及品種簡介. 苗栗區農業專訊 50: 11-13.
陳葦玲、郭雅紋. 2012. 蔬菜作物缺硼症狀及其防治方法. 臺中區農情月刊 2-2.
行政院經濟部農委會農糧署農業統計年報資料. 2013. http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
Abdal, M. and M. Suleiman. 2004. Blossom end rot occurrence in calcareous soil of Kuwait. I International Symposium on Tomato Diseases 695:63-66.
Adams, P. 2002. Nutritional control in hydroponics. In: Savvas D, Passam H, eds. Hydroponic production of vegetables and ornamentals. Athens,Greece: Embryo Publications:211-261.
Adams, P. and A.M. El-Gizawy. 1988. Effect of calcium stress on the calcium status of tomatoes grown in NFT. Notes. 222:15-22.
Adams, P. and L.C. Ho. 1992. The susceptibility of modern tomato cultivars to blossom-end rot in relation to salinity. J. Hort. Sci. 67:827-839.
Bar-Tal, A. and E. Pressman. 1996. Root restriction and potassium and calcium solution concentrations affect dry-matter production, cation uptake, and blossom-end rot in greenhouse tomato. J. Amer. Soc. Hort. Sci. 121:649-655.
Beauchamp, E. and I. Hussain. 1974. Brown heart in rutabagas grown on southern Ontario soils. Can. J. Soil Sci. 54:171-178.
Beecher, G. R. 1998. Nutrient content of tomatoes and tomato products. Exp. Bio. Med. 218:98-100.
Borkowski, J. 1983. Study on the calcium uptake dynamic by tomato fruits and blossom-end rot control. Symposium on the Use of Fertilizers in Protected Vegetable Production 145: 222-229.
Bradfield, E. and C. Guttridge. 1984. Effects of night-time humidity and nutrient solution concentration on the calcium content of tomato fruit. Sci. Hort. 22:207-217.
Brown, P., N. Bellaloui, M. Wimmer, E. Bassil, J. Ruiz, H. Hu, H. Pfeffer, F. Dannel, and V. Römheld. 2002. Boron in plant biology. Plant Bio. 4:205-223.
Camacho-Cristobal, J.J., J. Rexach, and A. Gonzalez-Fontes. 2008. Boron in plants: deficiency and toxicity. J. Iintegra. Plant Bio. 50:1247-1255.
Collier, G. F., and Valerie C. Huntington. 1983. The relationship between leaf growth, calcium accumulation and distribution, and tipburn development in field-grown butterhead lettuce. Sci. Hort. 21(2): 123-128.
Demarty, M., C. Morvan, and M. Thellier. 1984. Calcium and the cell wall. Plant, Cell and Environment. 7:441-448.
Davis, J.M., D.C. Sanders, P.V. Nelson, L. Lengnick, and W.J. Sperry. 2003. Boron improves growth, yield, quality, and nutrient content of tomato. J. Amer. Soc. Hort. Sci. 128:441-446.
de Kreij, C., J. Janse, B. Van Goor, and J. Van Doesburg. 1992. The incidence of calcium oxalate crystals in fruit walls of tomato (Lycopersicon esculentum Mill.) as affected by humidity, phosphate and calcium supply. J. Hort. Sci. 67:45-50.
de Kreij, C. 1996. Interactive effects of air humidity, calcium and phosphate on blossom‐end rot, leaf deformation, production and nutrient contents of tomato. J. plant Nutri. 19:361-377.
de Freitas, S.T., K.A. Shackel, and E.J. Mitcham. 2011a. Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. J. Exp. Bot. 62:2645-56.
de Freitas, S.T., C.-Z. Jiang, and E.J. Mitcham. 2011b. Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins. J. Plant Gro. Reg. 31:221-234.
de Freitas, S.T., M. Padda, Q. Wu, S. Park, and E.J. Mitcham. 2011c. Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant Physiol. 156: 844-855.
de Freitas, S.T. and E.I. Mitcham. 2012. 3 factors involved in fruit calcium deficiency disorders. hort. reviews. 40:107-146.
Dorais, M., D.L. Ehret, and A.P. Papadopoulos. 2008. Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem. Reviews. 7:231-250.
Estabrooks, D.N. and H. Tiessen. 1972. Blossom-end rot and black seeds of tomatoes. Can. J. Plant Sci. 52:1076-1077.
FAO (Food and Agriculture Organization of the United Nations), 2014. FAOStat, production 2014. Available online: http://faostat3.fao.org/home/E
Fedrizzi, L., D. Lim, and E. Carafoli. 2008. Calcium and signal transduction. Biochem. Mol. Bio. Edu. 36:175-180.
Franco, H.C.J., J.L. Junior, A. de Oliveira, G.C.S. Matias, C.P. Cabral, and E. Malavolta. 2012. Optimum ratio of calcium and boron in the nutrient solution or in castor bean shoot for fruit yield and seed oil content. J. Plant Nutri. 35:413-427.
Geraldson, C.M. 1955. The use of calcium for control of blossom-end rot of tomatoes. Proc. Fla. State Hort. Soc. 68:197-202.
Gupta, U.C. 1993. Boron and its role in crop production. CRC press. 9-37.
Hajiboland, R., F. Farhanghi, and M. Aliasgharpour. 2012. Morphological and anatomical modifications in leaf, stem and roots of four plant species under boron deficiency conditions. Anales de Biología 34:15-29.
Hirschi, K.D. 1999. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell. 11:2113-2122.
Hirschi, K. 2001. Vacuolar H+/Ca 2+ transport: who's directing the traffic? Trends in plant science. 6:100-104.
Ho, L.C. 1996. The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. J. Exp. Bot. 47:1239-1243.
Ho, L.C. and P.J. White. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Annu. Bot. 95:571-581.
Ho, L., R. Belda, M. Brown, J. Andrews, and P. Adams. 1993. Uptake and transport of calcium and the possible causes of blossom-end rot in tomato. J. Exp. Bot. 44:509-518.
Kirkby, E. and D. Pilbeam. 1984. Calcium as a plant nutrient. Plant, Cell and Environment 7:397-405.
Kim, M.C., W.S. Chung, D.-J. Yun, and M.J. Cho. 2009. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol. Plant. 2:13.
Li, C., H. Pfeffer, F. Dannel, V. Römheld, and F. Bangerth. 2001. Effects of boron starvation on boron compartmentation, and possibly hormone‐mediated elongation growth and apical dominance of pea (Pisum sativum) plants. Physiol. Planta. 111:212-219.
Luan, S., J. Kudla, M. Rodriguez-Concepcion, S. Yalovsky, and W. Gruissem. 2002. Calmodulins and calcineurin B–like proteins calcium sensors for specific signal response coupling in plants. Plant Cell. 14:S389-S400.
Matoh, T. and M. Kobayashi. 1998. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 111:179-190.
Masarirambi, M.T., N. Mhazo, T.O. Oseni, and V.D. Shongwe. 2009. Common physiological disorders of tomato (Lycopersicon esculentum) fruit found in Swaziland. J Agric Soc Sci. 5:123-127.
Mills, H.A., J.B. Jones, and B. Wolf. 1996. Plant analysis handbook II: A practical sampling, preparation, analysis, and interpretation guide. MicroMacro Publishing Athens, GA. 366-367
Nonami, H., T. Fukuyama, M. Yamamoto, L. Yang, and Y. Hashimoto. 1994. Blossom-end rot of tomato plants may not be directly caused by calcium deficiency. Hydroponics and Transplant Production 396:107-114.
Navarro, J.M., P. Flores, M. Carvajal, and V. Martinez. 2005. Changes in quality and yield of tomato fruit with ammonium, bicarbonate and calcium fertilisation under saline conditions. J. Hort. Sci. Biotech. 80:351-357.
Nukaya, A., K. Goto, H. Jang, A. Kano, and K. Ohkawa. 1994a. Effect of K/Ca ratio in the nutrient solution on incidence of blossom-end rot and gold specks of tomato fruit grown in rockwool. Hydroponics and Transplant Production. 396:123-130.
Nukaya, A., K. Goto, H. Jang, A. Kano, and K. Ohkawa. 1994b. Effect of NH4+-N level in the nutrient solution on the incidence of blossom-end rot and gold specks on tomato fruit grown in rockwool. In “International Symposium on Growing Media Plant Nutrition in Horticulture 401”, pp. 381-388.
Ochoa, W.F., S. Corbalán-Garcia, R. Eritja, J.A. Rodrı́guez-Alfaro, J.C. Gómez-Fernández, I. Fita, and N. Verdaguer. 2002. Additional binding sites for anionic phospholipids and calcium ions in the crystal structures of complexes of the C2 domain of protein kinase Cα. J. Mol.Bio. 320:277-291.
Olle, M. and I. Bender. 2009. Causes and control of calcium deficiency disorders in vegetables: a review. J. Hort. Sci. Biotech. 84:577-584.
O'Neill, M.A., T. Ishii, P. Albersheim, and A.G. Darvill. 2004. Rhamnogalacturonan ii: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol. 55:109-139.
Oyewole, O.I. and E.A. Aduayi. 1992. Evaluation of the growth and quality of the “Ife Plum” tomato as affected by boron and calcium fertilization. J. Plant Nutri. 15:199-209.
Park, S., N.H. Cheng, J.K. Pittman, K.S. Yoo, J. Park, R.H. Smith, and K.D. Hirschi. 2005. Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol. 139:1194-206.
Peet, M.M. 2009. Physiological disorders in tomato fruit development. Acta Hort. 821:151-159.
Pesaresi, P., C. Mizzotti, M. Colombo, and S. Masiero. 2014. Genetic regulation and structural changes during tomato fruit development and ripening. Front. Plant Sci. 5(124):1-14.
Plieth, C. 2001. Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma. 218:1-23.
Raleigh, S.M. and J.A. Chucka. 1944. Effect of nutrient ratio and concentration on growth and composition of tomato plants and on the occurence of blossom-end rot of the fruit. Plant Physiol. 19: 671.
Saure, M.C. 2001. Blossom-end rot of tomato (Lycopersicon esculentum Mill.) — a calcium- or a stress-related disorder? Sci. Hort. 90:193-208.
Schmitz-Eiberger, M., R. Haefs, and G. Noga. 2002. Calcium deficiency - Influence on the antioxidative defense system in tomato plants. J. Plant Physiol. 159:733-742.
Spurr, A. 1959. Anatomical aspects of blossom-end rot in the tomato with special reference to calcium nutrition. Hilgardia. 28:269-295.
Story, E.N., R.E. Kopec, S.J. Schwartz, and G.K. Harris. 2010. An update on the health effects of tomato lycopene. Annual review of food science and technology 1. 1-24
Suzuki, K., M. Shono, and Y. Egawa. 2003. Localization of calcium in the pericarp cells of tomato fruits during the development of blossom-end rot. Protoplasma 222:149-56.
Tanksley, S.D. 2004. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. The Plant Cell 16:1040-4651.
Taylor, M.D. and S.J. Locascio. 2004. Blossom-End Rot: A Calcium Deficiency. J. Plant Nutri. 27:123-139.
Teixeira, G.H., J.F. Durigan, R.E. Alves, and T.J. O’Hare. 2008. Response of minimally processed carambola to chemical treatments and low-oxygen atmospheres. Postharvest Bio. Tech. 48:415-421.
White, P.J. and M.R. Broadley. 2003. Calcium in plants. Annu. Bot. 92:487-511.
Willumsen, J., K. Kaack, and K.K. Petersen. 1996. Yield and blossom-end rot of tomato as affected by salinity and cation activity ratios in the root zone. J. Hort. Sci. Biotech. 71:81-98.
Wimmer, M.A. and T. Eichert. 2013. Review: mechanisms for boron deficiency-mediated changes in plant water relations. Plant Sci. 203-204:25-32.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51890-
dc.description.abstract番茄 (Solanum lycopersicum L.) 為世界重要經濟作物,然而在番茄商業生產區常有缺鈣相關生理障害-尻腐病 (blossom-end rot, BER) 的發生並造成經濟損失。因此如何防治番茄果實遭遇尻腐病成為重要的任務。葉面噴撒 0.5% 氯化鈣溶液為常用的尻腐病防治對策但耗費人力。之前研究顯示調整水耕試驗中營養元素比例也可降低尻腐病發生率,但與臺灣現行番茄常用的介質耕方式有所差異。且少有研究探討營養元素處理可能造成不同品種間尻腐病發生率存在差異性。因此本研究針對不同商用大果番茄探討介質耕時養液鈣與硼濃度對尻腐病發生率與嚴重度、營養元素濃度、果實產量與品質的影響。
於2013年9月至2015年4月期間進行三次試驗,分別是試驗一:2013年冬作鈣試驗 (0.5mM、1.0mM、2.0mM) 、試驗二:2014年夏作硼試驗 (30.0μM、45.0μM 、67.5μM、101.0μM) 及試驗三:2014年冬作硼試驗 (25μM、50μM、100μM)。
試驗一結果顯示,十個番茄品種於不同鈣濃度養液處理下具有不同外部尻腐病發生率,藉此選出 ‘美惠’、‘種苗亞蔬15號’、‘金剛二號’、‘鐵娘’及‘CLN2460L’五個品種進行後續果實產量、品質及營養元素分析。養液中鈣濃度高低並不顯著影響五品種之細胞膜滲漏度、產量、可溶性固形物含量、可滴定酸含量、糖酸比、細胞間液之鈣濃度,但葉片與果實中的營養元素濃度則受番茄品種、養液鈣濃度等因素所影響。
試驗二結果顯示尻腐病發生率不受養液中硼濃度處理所影響,但‘CLN2460L’ 生長在45μM硼養液濃度下有顯著最低之外部尻腐病嚴重度與總尻腐病嚴重度。養液中硼濃度高低並不顯著影響各品種之硬度、抗壞血酸含量、單果重與總產量。‘種苗亞蔬15號’之果實鈣、硼元素濃度受到硼養液濃度影響,分別在67.5μM、101.0μM處理時濃度達最高,‘金剛二號’及‘CLN2460L’果實鉀、鎂、鈣、磷等濃度則都不受養液硼濃度所影響。
試驗三結果顯示,‘CLN2460L’ 在50μM硼濃度處理時,有顯著最低的總尻腐病嚴重度,此結果與試驗二的45μM硼濃度處理相似。養液中硼濃度高低並不顯著影響各品種之可溶性固形物含量、可滴定酸含量、糖酸比、抗壞血酸含量與總產量。提高養液硼濃度顯著增加‘美惠’、‘種苗亞蔬15號’與‘CLN2460L’葉片中硼濃度。‘種苗亞蔬15號’之果實硼濃度在100.0μM養液硼濃度處理時濃度最高,此點與試驗二該品種在101.0μM處理時有最高果實硼濃度結果相似。
綜合以上,本研究建立外部和內部尻腐病徵狀的分級標準,雖然無論哪種養液硼濃度處理都無法顯著降低尻腐病發生率,但45μM~50μM養液硼濃度處理的確可以顯著降低‘CLN2460L’尻腐病嚴重度。
zh_TW
dc.description.abstractAbstract
Tomato (Solanum lycopersicum L.) is an important economic crop worldwide. However, blossom-end rot (BER), a calcium-related physiological disorder, occurs frequently in tomato commercial production areas and causes financial loss. Therefore, figuring out the way to prevent tomato fruits from BER is an important task. Foliar spray of 0.5% CaCl2 is a common approach for preventing BER but laborious. Previous study also showed that adjusting the concentrations of mineral elements in hydroponic solution can lower the BER incidence. In Taiwan, however, we usually grow tomato plants by substrate culture rather than hydroponic culture. Furthermore, few researches discussed about the possible BER incidence difference among cultivars in response to mineral element treatments. Thus, this research studied on the effects of calcium and boron concentrations in nutrient solution on BER incidence, BER severity, concentrations of mineral elements, as well as fruit yield and quality of different commercial tomato cultivars grown by substrate culture.
During September 2014 to April 2015, three experiments were performed, including experiment I: calcium concentration (0.5mM/1.0mM/2.0mM) treatments during 2013 winter; experiment II: boron concentration (30.0μM/45.0μM/67.5μM/101.0μM) treatments during 2014 summer; experiment III: boron concentration (25μM/50μM/100μM) treatments during 2014 winter.
The results in experiment I showed that ten tomato cultivars displayed different external BER incidence when grown with nutrient solution containing different calcium concentrations. Accordingly, we selected ‘Mei Huei’, ‘Taiwan Seed ASVEG #15’, ‘King Kong 2’, ‘Tie Niang’ and ‘CLN2460L’ for further fruit yield, fruit quality and mineral element analyses. Calcium concentration in nutrient solution did not significantly affect the electrolyte leakage (EC), yield, total soluble solids content (TSS), titratable acidity, oBrix:acidity ratio, apoplastic calcium concentration in all the five cultivars, but leaf and fruit mineral elements concentrations varied depending on the tomato cultivar and the calcium concentration in nutrient solution.
The results in experiment II showed that BER incidence seemed to be independent of the boron concentration in nutrient solution, but ‘CLN2460L’ had lowest external BER severity and total BER severity when grown with nutrient solution containing 45μM boron. Boron concentration in nutrient solution did not significantly affect the firmness, ascorbic acid content, single fruit weight and total yield. ‘Taiwan Seed ASVEG #15’ had highest fruit calcium and boron concentrations when grown with nutrient solution containing 67.5μΜ and 101.0μΜ boron, respectively. However, fruit K, Mg, Ca, and P concentrations of ‘King Kong 2’ and ‘CLN2460L’ appeared to be independent of the boron concentration in nutrient solution.
The results in experiment III showed that ‘CLN2460L’ had lowest total BER severity when grown with nutrient solution containing 50μM boron, which is similar to the results in experiments II when ‘CLN2460L’ were grown with nutrient solution containing 45μM boron. Boron concentration in nutrient solution did not significantly affect the TSS, titratable acidity, oBrix:acidity ratio, ascorbic acid content and total yield. Leaf boron concentrations were significantly increased in ‘Mei Huei’, ‘Taiwan Seed ASVEG #15’ and ‘CLN2460L’ when boron concentration in nutrient solution was increased. ‘Taiwan Seed ASVEG #15’ had highest fruit boron concentration when grown with nutrient solution containing 100.0μM boron, which is similar to the results in experiments II when ‘Taiwan Seed ASVEG #15’ was grown with nutrient solution containing 101.0μM boron.
In conclusion, this research developed a standard for rating the external and internal BER symptoms. Even though treatment of tomato plant with nutrient solution containing any one of the given boron concentrations cannot significantly reduce BER incidence, ‘CLN2460L’ had significantly lower BER severity when grown with nutrient solution containing 45~50μM boron.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:55:37Z (GMT). No. of bitstreams: 1
ntu-104-R99628141-1.pdf: 6188837 bytes, checksum: 39f612d00e337860f1ddd5d8466ca0a2 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 II
摘要 IV
Abstract VI
表目錄 XII
圖目錄 XIII
前言 1
前人研究 2
一、番茄的重要性 2
二、尻腐病生理及防治對策 2
三、鈣與尻腐病間的關係 5
四、硼的重要性及與鈣之間的交感作用 7
材料與方法 9
一、栽培方式 9
(一) 種子消毒及催芽 9
(二) 育苗 9
(三) 定植及整枝 10
(四) 肥液滴灌 (trickle fertigation) 10
二、試驗設計與植物材料 11
(一) 2013年冬作鈣處理 11
1. 商業大果品種篩選 11
2. 鈣對大果番茄果實品質及產量之影響 12
(二) 2014年夏作硼處理 13
(三) 2014年冬作硼處理 13
三、調查項目及方法 15
(一) 番茄植株外部缺硼徵狀之調查 15
(二) 尻腐病分級、發生率之計算及果實產量 15
1. 外部尻腐病分級及發生率之計算 15
2. 內部尻腐病黑籽徵狀分級及發生率計算 16
3. 尻腐病嚴重程度之計算 16
4. 果實產量 16
(三) 果實品質分析 17
1. 果實硬度 17
2. 抗壞血酸含量測定 17
3. 總可溶性固性物測定 17
4. 可滴定酸含量測定 18
5. 糖酸比之計算 18
(四) 抽取細胞間液 18
(五) 細胞膜滲漏度 18
(六) 營養元素分析 19
1. 樣本消化前處理 19
2. 微波消化 20
3. 過濾濃縮液 20
4. 稀釋及上樣 20
四、統計分析 21
試驗結果 33
一、2013年冬作鈣處理 33
(一) 鈣濃度對十商業大果番茄品種尻腐病發生率與產量之影響 33
(二) 鈣濃度對五商業大果番茄品種果實品質及產量之影響 34
(三) 鈣濃度對五商業大果番茄品種營養營養元素濃度之影響 35
二、2014年夏作硼處理 44
(一) 硼濃度對夏作大果番茄缺硼植株徵狀及果實尻腐病發生率之影響 44
(二) 硼濃度對夏作大果番茄果實產量與品質之影響 44
(三) 硼濃度對夏作大果番茄果實營養元素濃度之影響 45
三、2014年冬作硼處理 49
(一) 硼濃度對冬作大果番茄植株缺硼徵狀及果實尻腐病發生率之影響 49
(二) 硼濃度對冬作大果番茄果實產量與品質之影響 49
(三) 硼濃度對冬作大果番茄葉片及果實營養元素濃度之影響 50
討論 56
結論 60
參考文獻 61
dc.language.isozh-TW
dc.subject硼zh_TW
dc.subject番茄zh_TW
dc.subject尻腐病zh_TW
dc.subject鈣zh_TW
dc.subjecttomatoen
dc.subjectboronen
dc.subjectcalciumen
dc.subjectblossom-end roten
dc.title鈣與硼對番茄果實品質之影響zh_TW
dc.titleEffects of Calcium and Boron on the Quality of Tomato (Solanum lycopersicum L.) Fruitsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅筱鳳(Hsiao-Feng Lo),楊雯如(Wen-Ju Yang)
dc.subject.keyword番茄,尻腐病,鈣,硼,zh_TW
dc.subject.keywordtomato,blossom-end rot,calcium,boron,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2015-08-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved