請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51887
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張寶棣(Paoti Chang) | |
dc.contributor.author | Cheng-Wei Lin | en |
dc.contributor.author | 林承威 | zh_TW |
dc.date.accessioned | 2021-06-15T13:55:26Z | - |
dc.date.available | 2020-08-21 | |
dc.date.copyright | 2020-08-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-13 | |
dc.identifier.citation | [1] KEKB B-Factory Design Report, KEK-Report 95-7, 1995. [2] H. Koiso et al., Optimization of Beam Optics in the KEKB Rings, in 7th European Particle Accelerator Conference (EPAC 2000), pages 1519–1521, 2000. [3] Y. Funakoshi, Luminosity Tuning at KEKB, in Proceedings of eeFACT2016, pages 147–150, 2016. [4] A. Abashian et al., The Belle detector, Nucl. Instrum. Methods A 479, 117 (2002), Detectors for Asymmetric B-factories. [5] H. Aihara et al., Belle SVD2 vertex detector, Nucl. Instrum. Meth. A 568, 269 (2006). [6] B. Golob, Super KEKB/Belle II Project, Nuovo Cimento C 33, 319 (2010). [7] T. Abe et al., Belle II Technical Design Report, KEK-Report 2010-1, 2010. [8] C. Milardi et al., Crab waist collision at DAFNE, ICFA Beam Dyn. Newslett. 48, 23 (2009). [9] D. Cinabro and K. Korbiak, Observation of the Hourglass Effect and Measurement of CESR Beam Parameters with CLEO, (2000). [10] D.M.Beylin et al., Study of the radiation hardness of CsI(Tl) scintillation crystals, 2004. [11] K. Kazui et al., Study of the radiation hardness of CsI(Tl) crystals for the BELLE detector, Nucl. Instr. and Meth. A 394, 46 (1997). [12] K. Gurney, An Introduction to Neural Networks, Taylor Francis, Inc., USA, 1997. [13] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, Activation Functions: Comparison of trends in Practice and Research for Deep Learning, 2018. [14] D. Fonseca, D. Navaresse, and G. Moynihan, Simulation metamodeling through artificial neural networks, Engineering Applications of Artificial Intelligence 16, 177 (2003). [15] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61, 85–117 (2015). [16] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86, 2278 (1998). [17] M. Tamura, A Study of Electron-Photon Showers by the Monte Carlo Method, Progress of Theoretical Physics 34, 912 (1965). [18] T. Ferber and C. Hearty, Design of the ECL Software for Belle II (version 2.0), Belle II internal note BELLE2-NOTE-TE-2016-001. [19] C. Hearty, Energy calibration of individual ECL crystals using muon pairs, Belle II internal note BELLE2-NOTE-TE-2017-004. [20] C. Hearty, Energy calibration of ECL crystals using e+e →γγ events, Belle II internal note BELLE2-NOTE-TE-2018-001. [21] C. Hearty, Energy calibration of ECL crystals using Bhabhas, Belle II internal note BELLE2-NOTE-TE-2018-015. [22] S. Longo and J. M. Roney, Identifying Neutral Hadronic Showers with Pulse Shape Discrimination, Belle II internal note BELLE2-NOTE-TE-2018-008. [23] GEANT4 website, URL http://www.geant4.org/geant4/. [24] pytorch website, URL https://pytorch.org/. [25] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv e-prints, arXiv:1412.6980 (2014). [26] C. Szegedy et al., Going Deeper with Convolutions, CoRR abs/1409.4842 (2014). [27] A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, Neural Information Processing Systems 25 (2012). [28] Y. Jing and Y. Guanci, Modified Convolutional Neural Network Based on Dropout and the Stochastic Gradient Descent Optimizer, Algorithms 11, 28 (2018). [29] S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, CoRR abs/1502.03167 (2015). [30] V. Khachatryan et al., Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC, JHEP 09, 091 (2010). [31] G. Aad et al., Observation of Long-Range Elliptic Azimuthal Anisotropies in √s=13 and 2.76 TeV pp Collisions with the ATLAS Detector, Phys. Rev. Lett. 116, 172301 (2016). [32] S. Chatrchyan et al., Observation of long-range near-side angular correlations in proton-lead collisions at the LHC, Phys. Lett. B718, 795 (2013). [33] B. Abelev et al., Long-range angular correlations on the near and away side in p-Pb collisions at √sNN = 5.02 TeV , Phys. Lett. B719, 29 (2013). [34] G. Aad et al., Observation of Associated Near-Side and Away-Side Long-Range Correlations in √sNN=5.02 TeV Proton-Lead Collisions with the ATLAS Detector, Phys. Rev. Lett. 110, 182302 (2013). [35] A. Adare et al., Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central d+Au Collisions at √sNN =200 GeV , Phys. Rev. Lett. 111, 212301 (2013). [36] S. Chatrchyan et al., Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at √sNN = 2.76 TeV , Eur. Phys. J. C72, 2012 (2012). [37] R. Aaij et al., Measurements of long-range near-side angular correlations in √sNN = 5TeV proton-lead collisions in the forward region, Phys. Lett. B762, 473 (2016). [38] J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D46, 229 (1992). [39] B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C81, 054905 (2010). [40] Z. Citron et al., Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams, in HL/HE-LHC Workshop: Workshop on the Physics of HL-LHC, and Perspectives at HE-LHC Geneva, Switzerland, June 18-20, 2018, 2018. [41] K. Dusling, W. Li, and B. Schenke, Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions, Int. J. Mod. Phys. E25, 1630002 (2016). [42] J. L. Nagle and W. A. Zajc, Small System Collectivity in Relativistic Hadronic and Nuclear Collisions, Ann. Rev. Nucl. Part. Sci. 68, 211 (2018). [43] J. L. Nagle et al., Minimal conditions for collectivity in e+e− and p+ p collisions, Phys. Rev. C97, 024909 (2018). [44] A. Badea et al., Measurements of Two-Particle Correlations in e+e− Collisions at 91 GeV with ALEPH Archived Data, Phys. Rev. Lett. 123, 212002 (2019). [45] N. N. Ajitanand et al., Decomposition of harmonic and jet contributions to particlepair correlations at ultra-relativistic energies, Phys. Rev. C72, 011902 (2005). [46] B. Efron, Bootstrap Methods: Another Look at the Jackknife, Ann. Statist. 7, 1 (1979). [47] A. Ryd et al., EvtGen: A Monte Carlo Generator for B-Physics, (2005), EVTGENV00-11-07. [48] T. Sjostrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4, Comput. Phys. Commun. 82, 74 (1994). [49] R. Seuster, MC Generators @ Belle, Belle internal note BELLE-NOTE-578. [50] J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76, 196 (2016). [51] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02, 007 (2009). [52] A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184, 2803 (2013). [53] H. Albrecht et al., Inclusive production of charged pions, kaons and protons in upsilon (4S) decays, Z. Phys. C 58, 191 (1993). [54] H. Albrecht et al., Inclusive production of K∗(892), ρ0(770), and ω(783) mesons in the ϒ energy region, Z. Phys. C 61, 1 (1994). [55] J. Lees et al., Branching fraction measurement of B+ →ωℓ+ν decays, Phys. Rev. D 87, 032004 (2013). [56] J. Lees et al., Measurement of the D0 →π−e+νe differential decay branching fraction as a function of q2 and study of form factor parameterizations, Phys. Rev. D 91, 052022 (2015). [57] H. Ha et al., Measurement of the decay B0 →π−ℓ+ν and determination of |Vub|, Phys. Rev. D 83, 071101 (2011). [58] A. Sibidanov et al., Study of Exclusive B→Xuℓν Decays and Extraction of ∥Vub∥ using Full Reconstruction Tagging at the Belle Experiment, Phys. Rev. D 88, 032005 (2013). [59] R. Glattauer et al., Measurement of the decay B→Dℓνℓ in fully reconstructed events and determination of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb|, Phys. Rev. D 93, 032006 (2016). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51887 | - |
dc.description.abstract | 本論文包含兩個主題。在第一個主題中我們利用機器學習的方式去改進Belle II軟體中重疊光子射叢分離的方法,而第二個主題則是使用Belle探測器中正負電子對撞的資料來做雙粒子關聯性的測量。 在Belle II的電磁量能器中,粒子射叢能用5*5大小的CsI晶體組來表示。而在某些情況下,複數個射叢的晶體組可能會相互重疊。我們預期經由研究晶體能量的分布,卷積神經網路的圖形辨識能力可以很好的進行重疊光子射叢的分離,因此我們以電磁量能器的能量分佈訓練卷積神經網路。經由大量的模擬資料進行訓練,我們預期神經網路模型可以改善重疊光子射叢角位置的解析度。 在第二個主題中,我們測量了Belle探測器中正負電子對撞產生的帶電粒子之雙粒子關聯性,其中正負電子的質心能量為10.58 以及 10.52 GeV。關聯性函數測量了大範圍贋快度與完整範圍方位角,並以帶電粒子多樣性為函數。藉由同時比較不同事件產生器的模擬結果,這份研究揭露了測量結果與模擬的差異。 | zh_TW |
dc.description.abstract | In this thesis, two major topics are studied. The first topic is to correct the photon shower splitting algorithm in the Belle II software with machine learning method. The second topic is the study about two-particle correlation function performed with Belle e+e- collisions data. In the Belle II electromagnetic calorimeter (ECL), each particle shower can be described by a set of 5*5 CsI crystals. In some case, the crystal sets of several showers will be overlapped with each other. We expect that by studying the distribution of crystal energies, the photon shower splitting algorithm can be improved with the ability of pattern recognition in convolutional neural network (CNN). Therefore, we trained the CNN model with ECL crystal energies distribution as input image. With a large amount of simulation data, the model is expected to improve the resolution of shower angular position. In the second topic, we present the measurements of two-particle angular correlations for charged particles in e+e- collisions with the Belle detector at a center-of-mass energy of 10.58 and 10.52 GeV. The correlation functions are measured over a broad range of pseudorapidity and full range of azimuthal angle as a function of charged particle multiplicity. With comparing the results to the expectations of several event generators, it reveals the discrepancies between the measurements and predictions. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:55:26Z (GMT). No. of bitstreams: 1 U0001-0808202003431500.pdf: 15129047 bytes, checksum: c446c9745b4c13aa513a34e51813d811 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i Acknowledgements iii Abstract v 摘要vii Contents ix List of Figures xiii List of Tables xix 1 Introduction 1 1.1 KEKB Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Belle Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Beam Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Silicon Vertex Detector (SVD) . . . . . . . . . . . . . . . . . . . 4 1.2.3 Extreme Forward Calorimeter (EFC) . . . . . . . . . . . . . . . . 5 1.2.4 Central Drift Chamber (CDC) . . . . . . . . . . . . . . . . . . . . 6 1.2.5 Aerogel Cherenkov Counters (ACC) . . . . . . . . . . . . . . . . 9 1.2.6 Time of Flight (TOF) . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.7 Electromagnetic Calorimeter (ECL) . . . . . . . . . . . . . . . . . 12 1.2.8 KL and Muon Detector (KLM) . . . . . . . . . . . . . . . . . . . 15 1.3 SuperKEKB and Belle II . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.1 ECL in Belle II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Overlapped Shower Splitting in Belle II ECL with Convolutional Neural Network 23 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Basic about Convolutional Neural Network . . . . . . . . . . . . . . . . 24 2.3 Photon Showers in Belle II ECL . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1 Shower Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2 Overlapped Shower Splitting in ECL . . . . . . . . . . . . . . . . 28 2.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Setup for Convolutional Neural Network Model . . . . . . . . . . . . . . 31 2.5.1 Training Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.2 Inception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5.3 Overlapping Pooling . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.4 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5.5 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.6 Training Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 Measurements of Two-Particle Correlations in e+e− Collisions at Belle 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.1 Data and Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.3 Sample Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Two-Particle Correlation Function . . . . . . . . . . . . . . . . . 52 3.3.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.3 Event Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.1 Efficiency Correction . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 MC Re-weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.3 B(0,0) Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.4 Long-Range Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.5 Thrust Mixing Correction . . . . . . . . . . . . . . . . . . . . . . 65 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5.1 Correlation Functions for MC Sample . . . . . . . . . . . . . . . . 72 3.5.2 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.3 Ridge Yield Measurement . . . . . . . . . . . . . . . . . . . . . . 88 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 A Two-Particle Correlation: Event Generator Study 99 A.1 Monte Carlo Tuning Configurations . . . . . . . . . . . . . . . . . . . . 99 A.2 Generators Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . 101 Bibliography 105 | |
dc.language.iso | en | |
dc.title | 以卷積神經網路進行Belle II電磁量能器中重疊光子射叢之分離以及正負電子對撞實驗中雙粒子關聯性之測量 | zh_TW |
dc.title | Overlapped Shower Splitting in Belle II ECL with Convolutional Neural Network, and Measurements of Two-Particle Correlations in e+e- Collisions at Belle | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王名儒(Ming-Zu Wang),徐靜戈(Jing-Ge Shiu),張敏娟(Ming-Chuan Chang) | |
dc.subject.keyword | Belle實驗,Belle II實驗,電磁量能器,捲積神經網路,雙粒子關聯性, | zh_TW |
dc.subject.keyword | Belle,Belle II,ECL,convolution neural network,two-particle correlation, | en |
dc.relation.page | 110 | |
dc.identifier.doi | 10.6342/NTU202002675 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-13 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0808202003431500.pdf 目前未授權公開取用 | 14.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。