Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51880
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰(Ruey-Feng Chang)
dc.contributor.authorMing-Yang Yangen
dc.contributor.author楊名揚zh_TW
dc.date.accessioned2021-06-15T13:55:02Z-
dc.date.available2015-08-31
dc.date.copyright2015-08-31
dc.date.issued2015
dc.date.submitted2015-08-30
dc.identifier.citation[1] R. Siegel, J. Ma, Z. Zou, and A. Jemal, 'Cancer statistics, 2014,' CA: a cancer journal for clinicians, vol. 64, pp. 9-29, 2014.
[2] C. Mathers, D. M. Fat, and J. T. Boerma, The global burden of disease: 2004 update: World Health Organization, 2008.
[3] T. Murakami, Y. Imai, M. Okada, T. Hyodo, W.-J. Lee, M.-J. Kim, et al., 'Ultrasonography, computed tomography and magnetic resonance imaging of hepatocellular carcinoma: toward improved treatment decisions,' Oncology, vol. 81, pp. 86-99, 2011.
[4] K. Mitsuzaki, Y. Yamashita, I. Ogata, T. Nishiharu, J. Urata, and M. Takahashi, 'Multiple-phase helical CT of the liver for detecting small hepatomas in patients with liver cirrhosis: contrast-injection protocol and optimal timing,' AJR. American journal of roentgenology, vol. 167, pp. 753-757, 1996.
[5] E. Chen, P.-C. Chung, C.-L. Chen, H.-M. Tsai, and C.-I. Chang, 'An automatic diagnostic system for CT liver image classification,' Biomedical Engineering, IEEE Transactions on, vol. 45, pp. 783-794, 1998.
[6] X. Zhang, H. Fujita, T. Qin, J. Zhao, M. Kanematsu, T. Hara, et al., 'CAD on liver using CT and MRI,' in Medical Imaging and Informatics, ed: Springer, 2008, pp. 367-376.
[7] M. Gletsos, S. G. Mougiakakou, G. K. Matsopoulos, K. S. Nikita, A. S. Nikita, and D. Kelekis, 'A computer-aided diagnostic system to characterize CT focal liver lesions: design and optimization of a neural network classifier,' Information Technology in Biomedicine, IEEE Transactions on, vol. 7, pp. 153-162, 2003.
[8] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, 'Textural features for image classification,' Systems, Man and Cybernetics, IEEE Transactions on, pp. 610-621, 1973.
[9] C.-M. Wu, Y.-C. Chen, and K.-S. Hsieh, 'Texture features for classification of ultrasonic liver images,' Medical Imaging, IEEE Transactions on, vol. 11, pp. 141-152, 1992.
[10] H. Park, P. H. Bland, and C. R. Meyer, 'Construction of an abdominal probabilistic atlas and its application in segmentation,' Medical Imaging, IEEE Transactions on, vol. 22, pp. 483-492, 2003.
[11] K. Holli, A.-L. Lääperi, L. Harrison, T. Luukkaala, T. Toivonen, P. Ryymin, et al., 'Characterization of breast cancer types by texture analysis of magnetic resonance images,' Academic radiology, vol. 17, pp. 135-141, 2010.
[12] A. Karahaliou, K. Vassiou, S. Skiadopoulos, T. Kanavou, A. Yiakoumelos, and L. Costaridou, 'Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis,' Journal of Instrumentation, vol. 4, p. P07014, 2009.
[13] D. Newell, K. Nie, J.-H. Chen, C.-C. Hsu, J. Y. Hon, O. Nalcioglu, et al., 'Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement,' European radiology, vol. 20, pp. 771-781, 2010.
[14] K. Nie, J.-H. Chen, J. Y. Hon, Y. Chu, O. Nalcioglu, and M.-Y. Su, 'Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI,' Academic radiology, vol. 15, pp. 1513-1525, 2008.
[15] L. A. Meinel, A. H. Stolpen, K. S. Berbaum, L. L. Fajardo, and J. M. Reinhardt, 'Breast MRI lesion classification: Improved performance of human readers with a backpropagation neural network computer‐aided diagnosis (CAD) system,' Journal of magnetic resonance imaging, vol. 25, pp. 89-95, 2007.
[16] W. K. Moon, Y.-W. Shen, C.-S. Huang, L.-R. Chiang, and R.-F. Chang, 'Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images,' Ultrasound in medicine & biology, vol. 37, pp. 539-548, 2011.
[17] K. F. Mulchrone and K. R. Choudhury, 'Fitting an ellipse to an arbitrary shape: implications for strain analysis,' Journal of structural Geology, vol. 26, pp. 143-153, 2004.
[18] Q. Zhu and L.-k. Poh, 'A transformation-invariant recursive subdivision method for shape analysis,' in Pattern Recognition, 1988., 9th International Conference on, 1988, pp. 833-835.
[19] D. Violon, 'Kinetics of intravenous radiographic contrast medium injections as used on CT: simulation with time delay differential equations in a basic human cardiovascular multicompartment model,' The British journal of radiology, 2014.
[20] W. Chen, M. L. Giger, U. Bick, and G. M. Newstead, 'Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI,' Medical Physics, vol. 33, pp. 2878-2887, 2006.
[21] W. Chen, M. L. Giger, and U. Bick, 'A Fuzzy C-Means (FCM)-Based Approach for Computerized Segmentation of Breast Lesions in Dynamic Contrast-Enhanced MR Images 1,' Academic radiology, vol. 13, pp. 63-72, 2006.
[22] Z. Q. P. Lay-Kheng, 'A transformation-invariant recursive subdivision method for shape analysis,' Pattern Recognition, 1988.
[23] W. Chen, M. L. Giger, L. Lan, and U. Bick, 'Computerized interpretation of breast MRI: investigation of enhancement-variance dynamics,' Medical physics, vol. 31, pp. 1076-1082, 2004.
[24] T. Piekos, 'Confidence Connected Segmentation using ITK,' The Insight Journal, 2007.
[25] R. H. Chan, C.-W. Ho, and M. Nikolova, 'Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization,' Image Processing, IEEE Transactions on, vol. 14, pp. 1479-1485, 2005.
[26] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, 'Image selective smoothing and edge detection by nonlinear diffusion,' SIAM Journal on Numerical analysis, vol. 29, pp. 182-193, 1992.
[27] E. Day, J. Betler, D. Parda, B. Reitz, A. Kirichenko, S. Mohammadi, et al., 'A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients,' Medical physics, vol. 36, pp. 4349-4358, 2009.
[28] R. C. Gonzalez and R. E. Woods, 'Digital image processing,' Prentice Hall, pp. 132-134, 2002.
[29] S. Ma, K. W. Chan, L. Hu, T. K. W. Lee, J. Y. H. Wo, I. O. L. Ng, et al., 'Identification and characterization of tumorigenic liver cancer stem/progenitor cells,' Gastroenterology, vol. 132, pp. 2542-2556, 2007.
[30] E. Bribiesca, 'An easy measure of compactness for 2D and 3D shapes,' Pattern Recognition, vol. 41, pp. 543-554, 2008.
[31] A. Field, Discovering statistics using SPSS: Sage publications, 2009.
[32] Y. Xiao, J. Hua, and E. R. Dougherty, 'Quantification of the impact of feature selection on the variance of cross-validation error estimation,' EURASIP Journal on Bioinformatics and Systems Biology, vol. 2007, pp. 1-1, 2007.
[33] R. Kohavi and G. H. John, 'Wrappers for feature subset selection,' Artificial intelligence, vol. 97, pp. 273-324, 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51880-
dc.description.abstract在美國,由於肝癌是近年來排名第十的常見癌症,因此對病患來說,及早的診斷和治療是非常重要的。在眾多醫學檢測儀器中,電腦斷層掃描是非常常見的一種方式用來檢查和掃描肝臟組織,經由注射顯影劑,電腦斷層掃描會在不同時間點掃描整顆肝臟並記錄。本篇論文的目標是以電腦斷層掃描的影像做肝臟腫瘤的良惡性診斷。本篇論文中有兩種不同的實驗資料,一種是四個時間點的電腦斷層掃描影像,另一個是三個時間點的電腦斷層掃描影像。這兩種實驗資料將會各別分開做完全相同的實驗。在這個電腦輔助診斷系統中,使用者標記出腫瘤後將採用類區域生長演算法切割。切割完畢後,三種特徵包括紋路、形狀和動力曲線特徵將會從腫瘤中擷取出來。紋路特徵是根據灰階值共生矩陣來定義三維空間中腫瘤的紋理特性。緊實度、邊緣變化和橢圓模型是形狀特徵中用來描述三維空間中的腫瘤形狀。最後一個動力曲線特徵則是擷取各個時間的腫瘤影像,並分析它們之間的亮度值變化。我們根據這三種特徵對兩種實驗資料做了兩組實驗。其中四個時間點的電腦斷層掃描影像實驗中,有40顆腫瘤包含29顆良性11顆惡性做為實驗資料,實驗結果達到準確性77.5% (31/40) 、敏感性72.73% (8/11) 、專一性79.31% (23/29)與AZ值0.7791。另外,在三個時間點的電腦斷層掃描影像實驗中,有71顆腫瘤包含49顆良性22顆惡性做為實驗資料,實驗結果達到準確性81.69% (58/71) 、敏感性81.82% (18/22) 、專一性81.63% (40/49)和AZ 值0.8713。由實驗結果可知,準確性、敏感性、專一性和AZ 值,三個時間點的電腦斷層掃描影像實驗的結果都勝於三個時間點的電腦斷層掃描影像實驗的結果。zh_TW
dc.description.abstractLiver cancer is the tenth most common cancer in the recent years in USA. Therefore, early detection and well treatment are very important for the patient. Computed tomography (CT) is one of the most common and robust imaging techniques for the detection of liver. CT scanners allow multiple-phase sequential scans of the whole liver to be obtained during the injection of contrast material. In this paper, the main purpose is to build a computer-aided diagnosis (CAD) system to extracted features from tumors and diagnose the liver tumor in multiple-phase CT. There are two kinds of data in this paper, one is the four phase CT images and the other is three phase CT images. The experiment of two kinds of data will do in the same way but separately. In the proposed CT computer-aided diagnosis (CAD) system, the tumor was indicated by user and the tumor was segmented by a region growing algorithm. After tumor segmentation, three kinds of features were extracted from the tumor including texture features, shape features, and kinetic curve features. The texture features quantify 3 dimensions (3-D) texture information of tumor based on the grey level co-occurrence matrix. Compactness, margin and elliptic model were used to describe the 3-D shape information of tumor in the shape features. The last kind of features is the kinetic curve features which was extracted from each phase of tumor and represent the intensity variation between each phase. By analyzing the three kinds of features in the three phase and four phase CT images, we have two experiment results. In the experiment of four phase CT images, 40 tumors with 29 benign and 11 malignant tumors were used in this CAD system to evaluate the performance. The accuracy, sensitivity, specificity, and AZ were up to 77.5% (31/40), 72.73% (8/11), 79.31% (23/29), and 0.7791, respectively. In the experiment of three phase CT images, 71 tumors with 49 benign and 22 malignant tumors were used in this CAD system to evaluate the performance. The accuracy, sensitivity, specificity, and AZ are up to 81.69% (58/71), 81.82% (18/22), 81.63% (40/49), and 0.8713. As a result, the accuracy, sensitivity, specificity, and AZ are better in the experiment of three phase CT images than four phase CT images.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:55:02Z (GMT). No. of bitstreams: 1
ntu-104-R02944041-1.pdf: 3673156 bytes, checksum: 6ccb665ac6cacd7322f784d5f9ab7b49 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsAcknowledgements ii
摘要 iii
ABSTRACT v
Table of contents vii
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Material 4
2.1 CT-Scan 4
2.2 Patients and Lesion Characters 5
Chapter 3 The proposed Method 7
3.1 Tumor segmentation 9
3.2 Feature Extraction 13
3.2.1 Texture feature 13
3.2.2 Shape Features 14
3.2.3Kinetic Curve Features 18
Chapter 4 Experiments and Results 22
4.1 Classification 22
4.2 Statistics Analysis 23
4.3 Experimental Results 24
4.4 Discussion 37
Chapter 5 Conclusion and Future Works 40
Reference 42
dc.language.isoen
dc.title以電腦斷層掃描影像做電腦輔助肝臟腫瘤診斷zh_TW
dc.titleComputer-Aided Diagnosis of Liver Tumor in CT Imageen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳啟禎(QI-ZHEN CHEN),羅崇銘(CHONG-MING LUO)
dc.subject.keyword電腦斷層掃描,肝臟,診斷,灰階共生矩陣,橢圓模型,動力曲線,zh_TW
dc.subject.keywordcomputed tomography,liver,diagnosis,grey level co-occurrence matrix,elliptic model,kinetic curve,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2015-08-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
3.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved