請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51879完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一平 | |
| dc.contributor.author | Hao-Cheng Kao | en |
| dc.contributor.author | 高皓成 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:54:58Z | - |
| dc.date.available | 2018-08-31 | |
| dc.date.copyright | 2015-08-31 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-30 | |
| dc.identifier.citation | [1] Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. A new performance measure and
evaluation benchmark for road detection algorithms. In International Conference on Intelligent Transportation Systems (ITSC), 2013. [2] Sayanan Sivaraman and Mohan Manubhai Trivedi. Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis. Intelligent Transportation Systems, IEEE Transactions on, 14(4):1773–1795, 2013. [3] Joseph Tighe and Svetlana Lazebnik. Finding things: Image parsing with regions and per-exemplar detectors. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3001–3008. IEEE, 2013. [4] Rahul Mohan. Deep deconvolutional networks for scene parsing. arXiv preprint arXiv:1411.4101, 2014. [5] Wei Liu, XueZhi Wen, Bobo Duan, Huai Yuan, and Nan Wang. Rear vehicle detection and tracking for lane change assist. In Intelligent Vehicles Symposium, 2007 IEEE, pages 252–257. IEEE, 2007. [6] Zehang Sun, George Bebis, and Ronald Miller. On-road vehicle detection: A review. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(5):694–711, 2006. [7] Jasper RR Uijlings, Koen EA van de Sande, Theo Gevers, and Arnold WM Smeulders. Selective search for object recognition. International journal of computer vision, 104(2):154–171, 2013. 27 [8] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals from edges. In Computer Vision–ECCV 2014, pages 391–405. Springer, 2014. [9] Nicolas Simond and Michel Parent. Obstacle detection from ipm and superhomography. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages 4283–4288. IEEE, 2007. [10] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005. [11] Feng Han, Ying Shan, Ryan Cekander, Harpreet S Sawhney, and Rakesh Kumar. A two-stage approach to people and vehicle detection with hog-based svm. In Performance Metrics for Intelligent Systems 2006 Workshop, pages 133–140. Citeseer, 2006. [12] G. Bradski. opencv library. Dr. Dobb’s Journal of Software Tools, 2000. [13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http:// www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html. [14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jagannath Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 580–587. IEEE, 2014. [15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012. [16] Ross Girshick. Fast r-cnn. arXiv preprint arXiv:1504.08083, 2015. 28 [17] https://msdn.microsoft.com/en-us/library/bb895173.aspx. [Online; accessed 23-July-2015]. 29 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51879 | - |
| dc.description.abstract | 智慧運輸系統在近年來受到越來越多的關注。此系統的其中一個目的為保護用車人以及行人的安全。系統在進行高階的決策時,必須依賴許多較低階的資訊,駕駛附近的車輛狀態就是一個必要的輸入,其基本上構成了駕駛所面對外在環境的很大一部份。偵測車輛資訊從偵測輸入影像中的車輛區域,可以進一步應用到決定周邊車輛的位置、速度甚至於駕駛意圖。在本論文裡我們專注於單一影像中的車輛區域偵測。首先我們給出這個問題的科技發展現況,然後對最適合我們的模式:提案產生-車輛分類進行更進一步的演算法分析。對於分析中表現最好的演算法,我們實驗調整參數後對於速度及精確度的影響。最後我們提出在不同解析度下進行提案產生及車輛分類以改善執行效率的問題。 | zh_TW |
| dc.description.abstract | Intellectual transportation system is gaining more and more attentions in recent years. The system is designed to improve human safety for drivers, passengers and pedestrians. In order to have the ability of making high level decision the system needs to have some basic information. Detecting nearby vehicles is usually important because it provides the essential part of the driving context. Vehicle detection covers a wide range from detecting the bounding box of vehicles in the captured image to inferring the position, speed and even the intent of the vehicles detected. In this work we focus on the bounding box detection part for a single image. First we give an analyze of the state-of-the-art approaches related to this task. Then we further test some candidates of proposal generation and classification approach. And we show that the trade off between accuracy and speed can be done via adjusting parameters of these algorithms. Finally we show that by using different resolution image in proposal generation algorithm and classification algorithm can be a step toward realtime processing. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:54:58Z (GMT). No. of bitstreams: 1 ntu-104-R02922122-1.pdf: 2245202 bytes, checksum: 829bed04f159d25ec70b02c771157a85 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv Contents v List of Figures vii List of Tables viii 1 Introduction 1 2 Related Work 4 2.1 Scene Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Proposal Generation 7 3.1 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Method 1: Sliding Window . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Method 2: Selective Search . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Method 3: Edgeboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 v 3.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Improvement Of The Edgeboxes Method 13 4.1 Removal Of The Refinement Stage . . . . . . . . . . . . . . . . . . . . . 13 4.2 Choosing The Parameter setting Of Fast Edge Detection . . . . . . . . . 13 4.3 Reduction Of The Image Resolution . . . . . . . . . . . . . . . . . . . . 14 4.4 Reducing The Number Of Proposals . . . . . . . . . . . . . . . . . . . . 14 4.5 Filtering Based On Box Size . . . . . . . . . . . . . . . . . . . . . . . . 16 4.6 Decreasing The Value Of The Alpha Parameter . . . . . . . . . . . . . . 16 4.7 Removal Of The NMS Stage . . . . . . . . . . . . . . . . . . . . . . . . 17 4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 Classification 18 5.1 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.2 Method 1: HOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3 Method 2: RCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.4 Method 3: fast-RCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.5 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Conclusion And Future Work 24 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.2.1 Prior Knowledge Of Vehicle . . . . . . . . . . . . . . . . . . . . 25 6.2.2 Detection And Tracking . . . . . . . . . . . . . . . . . . . . . . 25 6.2.3 More Data On More Situations . . . . . . . . . . . . . . . . . . . 25 6.2.4 The Distance Of The Detected Vehicle . . . . . . . . . . . . . . . 25 6.2.5 Pyramid Of Image . . . . . . . . . . . . . . . . . . . . . . . . . 26 Bibliography 27 | |
| dc.language.iso | en | |
| dc.subject | 車輛分類 | zh_TW |
| dc.subject | 即時車輛偵測 | zh_TW |
| dc.subject | 提案產生 | zh_TW |
| dc.subject | vehicle classification | en |
| dc.subject | realtime vehicle detection | en |
| dc.subject | proposal generation | en |
| dc.title | 使用車載攝影機之即時車輛偵測 | zh_TW |
| dc.title | Realtime Vehicle Detection using Dashboard Camera | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 傅楸善,孫士韋,徐繼聖,林彥宇 | |
| dc.subject.keyword | 即時車輛偵測,提案產生,車輛分類, | zh_TW |
| dc.subject.keyword | realtime vehicle detection,proposal generation,vehicle classification, | en |
| dc.relation.page | 29 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
