Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51864
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹魁元(Kuei-Yuan Chan)
dc.contributor.authorShih-Che Hsuen
dc.contributor.author徐世哲zh_TW
dc.date.accessioned2021-06-15T13:54:07Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citation[1] M. Pecht and J. Gu, “Physics-of-failure-based prognostics for electronic products,” Transactions of the Institute of Measurement and Control, vol. 31, no. 3-4, pp. 309–322, 2009.
[2] K. Upadhyayula and A. Dasgupta, “Guidelines for physics-of-failure based accelerated stress testing,” in Annual Reliability and Maintainability Symposium.1998 Proceedings. International Symposium on Product Quality and Integrity, pp. 345–357, IEEE, 1998.
[3] “Consumer electronics market size by product (audio video equipment [personal,professional], major household appliance, small household appliance, digital photo equipment [personal, professional]), industry analysis report, regional outlook (u.s.,canada, uk, germany, france, italy, russia, china, japan, south korea, india, brazil, mexico, saudi arabia, uae, south africa), growth potential, price trends, competitive and scape forecast, 2017–2024,” tech. rep., Jan 2018.
[4] “Electric vehicles (on road) market (by type: Electric cars, electric buses, electric bikes and scooters, and others; by geography: North america, europe, asia-pacific,row) global scenario market size, outlook, trend and forecast, 2015 –2024,” tech. rep., Oct 2017.
[5] S. Hsu and K. Chan, “Simulation-based vibration analysis for reliability improvement of motor drive controllers,” International Workshop on Reliability for Advanced Technology, Taipei, Taiwan, Feb 16, 2017.
[6] D. Kececioglu, Reliability Engineering Handbook. No. v. 1 in Reliability Engineering Handbook, Prentice-Hall, 1991.
[7] M. Miner, “Cumulative damage in fatigue, trans of the asme, 67,” Journal of applied mechanics, vol. 12, pp. A159–A164, 1945.
[8] U. S. A. G. on Reliability of Electronic Equipment, Reliability of Military Electronic Equipment: Report. U.S. Government Printing Office, 1957.
[9] D. Chorafas, Statistical Processes and Reliability Engineering. Princeton, 1960.
[10] R. A. Amy, G. S. Aglietti, and G. Richardson, “Reliability analysis of electronic equipment subjected to shock and vibration–a review,” Shock and Vibration, vol. 16, no. 1, pp. 45–59, 2009.
[11] M. Pecht and A. Dasgupta, “Physics-of-failure: an approach to reliable product development,” in IEEE 1995 International Integrated Reliability Workshop. Final Report, pp. 1–4, Oct 1995.
[12] G. H. Ebel, “Reliability physics in electronics: a historical view,” IEEE Transactions on Reliability, vol. 47, pp. SP379–SP389, Sep 1998.
[13] W. B. Nelson, “A bibliography of accelerated test plans,” IEEE Transactions on Reliability, vol. 54, no. 2, pp. 194–197, 2005.
[14] X. Liu and W. S. Qiu, “Modeling and planning of step-stress accelerated life tests with independent competing risks,” IEEE Transactions on Reliability, vol. 60, no. 4, pp. 712–720, 2011.
[15] M. Musallam, C. Yin, C. Bailey, and C. M. Johnson, “Application of coupled electrothermal and physics-of-failure-based analysis to the design of accelerated life tests for power modules,” Microelectronics Reliability, vol. 54, no. 1, pp. 172–181, 2014.
[16] 汤巍, 景博, 黄以锋, 盛增津, and 胡家兴, “温度与振动耦合条件下的电路板级焊点失效模式与疲劳寿命分析,” 电子学报, vol. 45, no. 7, pp. 1613–1619, 2016.
[17] J. Sethuraman and N. D. Singpurwalla, “Testing of hypotheses for distributions in accelerated life tests,” Journal of the American Statistical Association, vol. 77, no. 377, pp. 204–208, 1982.
[18] L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Statistical Science, vol. 21, no. 4, pp. 552–577, 2006.
[19] J. A. Clark, U. S. Garganese, and R. S. Swarz, “An approach to designing accelerated life-testing experiments,” in Annual Reliability and Maintainability Symposium, pp. 242–248, IEEE, 1997.
[20] F. Pascual, W. Meeker, and L. Escobar, Accelerated Life Test Models and Data Analysis, pp. 397–426. London: Springer London, 2006.
[21] W. B. Nelson, Accelerated testing: statistical models, test plans, and data analysis, vol. 344. John Wiley Sons, 2009.
[22] H. Qi, M. Osterman, and M. Pecht, “Modeling of combined temperature cycling and vibration loading on pbga solder joints using an incremental damage superposition approach,” IEEE Transactions on Advanced packaging, vol. 31, no. 3, pp. 463–472, 2008.
[23] N. E. Dowling, Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Pearson, 2012.
[24] M. Mirgkizoudi, C. Liu, P. P. Conway, and S. Riches, “Mechanical and electrical characterisation of au wire interconnects in electronic packages under the combined vibration and thermal testing conditions,” Microelectronics Reliability, vol. 55, no. 6, pp. 952–960, 2015.
[25] E. A. Elsayed, “Overview of reliability testing,” IEEE Transactions on Reliability, vol. 61, no. 2, pp. 282–291, 2012.
[26] G. Yang, “Optimum constant-stress accelerated life-test plans,” IEEE transactions on reliability, vol. 43, no. 4, pp. 575–581, 1994.
[27] H. Ma and W. Q. Meeker, “Optimum step-stress accelerated life test plans for log-location-scale distributions,” Naval Research Logistics (NRL), vol. 55, no. 6,pp. 551–562, 2008.
[28] M. Shooman, Probabilistic reliability: an engineering approach. Electrical Engineering Series, McGraw-Hill, 1968.
[29] N. D. Singpurwalla, “Survival in dynamic environments,” Statistical Science, vol. 10, no. 1, pp. 86–103, 1995.
[30] C. J. Lu and W. Q. Meeker, “Using degradation measures to estimate a time-to-failure distribution,” Technometrics, vol. 35, no. 2, pp. 161–174, 1993.
[31] O. H. Basquin, “The exponential law of endurance tests,” American Society for Testing and Materials Proceedings, vol. 10, pp. 625–630, 1910.
[32] W. Lee, L. Nguyen, and G. Selvaduray, “Solder joint fatigue models: review and applicability to chip scale packages,” Microelectronics Reliability, vol. 40, no. 2, pp. 231 – 244, 2000.
[33] Y. Garud, “A new approach to the evaluation of fatigue under multiaxial loadings,” Journal of Engineering Materials and Technology, vol. 103, no. 2, pp. 118–125, 1981.
[34] 曾穗卿, “利用有限元素與田口方法探討fccsp 構裝無鉛錫球之最佳化疲勞壽命,” 成功大學工程科學系博士論文, pp. 1–161, 2006.
[35] E. Stowell, “A study of the energy criterion for fatigue,” Nuclear Engineering and Design, vol. 3, no. 1, pp. 32 – 40, 1966.
[36] M. W. Brown and K. J. Miller, “A theory for fatigue failure under multiaxial stressstrain conditions,” Proceedings of the Institution of Mechanical Engineers, vol. 187, no. 1, pp. 745–755, 1973.
[37] C. Park and W. J. Padgett, “Stochastic degradation models with several accelerating variables,” IEEE Transactions on Reliability, vol. 55, pp. 379–390, June 2006.
[38] J. Kohout, “Temperature dependence of stress–lifetime fatigue curves,” Fatigue Fracture of Engineering Materials Structures, vol. 23, no. 12, pp. 969–977, 2000.
[39] D. Tchankov and K. Vesselinov, “Fatigue life prediction under random loading using total hysteresis energy,” International journal of pressure vessels and piping, vol. 75, no. 13, pp. 955–960, 1998.
[40] X. Wang, V. Crupi, X. Guo, and Y. Zhao, “Quantitative thermographic methodology for fatigue assessment and stress measurement,” International Journal of Fatigue, vol. 32, no. 12, pp. 1970 – 1976, 2010.
[41] A. M. Korsunsky, D. Dini, F. P. Dunne, and M. J. Walsh, “Comparative assessment of dissipated energy and other fatigue criteria,” International Journal of Fatigue,vol. 29, no. 9, pp. 1990 – 1995, 2007. Fatigue Damage of Structural Materials VI.
[42] C. Kanchanomai and Y. Mutoh, “Low-cycle fatigue prediction model for pb-free solder 96.5 sn-3.5 ag,” Journal of Electronic Materials, vol. 33, no. 4, pp. 329–333, 2004.
[43] M. Harada and R. Satoh, “Mechanical characteristics of 96.5 sn/3.5 ag solder in micro bonding,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 13, no. 4, pp. 736–742, 1990.
[44] N. R. Bhavsar, H. Shinde, and M. Bhat, “Determination of mechanical properties of pcb,” International Journal on Mechanical Engineering and Robotics, vol. 2, no. 4,pp. 23–27, 2014.
[45] 洪子頡, “多目標最佳設計與公差配置於單層與多層系統之整合,” 成功大學機械工程學系碩士論文, pp. 1–65, 2010.
[46] 林有玉, “電子構裝之力學分析與量化可靠度評估,” 臺灣大學機械工程學研究所碩士論文, pp. 1–87, 2005.
[47] B. Ayyub, Uncertainty Modeling and Analysis in Civil Engineering. Civil engineering: Applied mathematics, Taylor Francis, 1997.
[48] W. Nelson, “Accelerated life testing-step-stress models and data analyses,” IEEE transactions on reliability, vol. 29, no. 2, pp. 103–108, 1980.
[49] J. W. Simons and D. A. Shockey, “Prognostics modeling of solder joints in electronic components,” in 2006 IEEE Aerospace Conference, pp. 6–pp, IEEE, 2006.
[50] L. Nasser and M. Curtin, “Electronics reliability prognosis through material modeling and simulation,” in 2006 IEEE Aerospace Conference, pp. 7–pp, IEEE,2006.
[51] R. MacIntosh, “Review of sampling and extrapolation methodologies, early and periodic screening, diagnosis and treatment claims audits,” 2006.
[52] W. Q. Meeker and G. J. Hahn, How to plan an accelerated life test: Some practical guidelines. ASQC Statistics Division, 1985.
[53] J. H. Lau and S.-W. Lee, “Modeling and analysis of 96.5 sn-3.5 ag lead-free solder joints of wafer level chip scale package on buildup microvia printed circuit board,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 25, no. 1, pp. 51–58, 2002.
[54] J. H. Pang, A. Yeo, T. Low, and F. Che, “Lead-free 96.5 sn-3.5 ag flip chip solder joint reliability analysis,” in The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No. 04CH37543), vol. 2, pp. 160–164, IEEE, 2004.
[55] G. Masing, “Eigenspannungen und verfestigung beim messing,” in Proceedings, second international congress of applied mechanics, pp. 332–335, 1926.
[56] P. Jayakumar, “Modeling and identification in structural dynamics,” 1987.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51864-
dc.description.abstract加速壽命測試為提升電子產品可靠度之重要技術,但部分測試參數依賴經驗判斷與類似產品資料,加上電子產品之零件種類繁多,誤差來源多元,使測試參數之制定缺乏完整量化方法。本論文旨在提出一個加速壽命測試之參數制定方法,以電路板焊接錫球之疲勞壽命評估為例,考量電路板模型之幾何不確定因素及測試極限,結合蒙地卡羅方法與失效物理學模型,使用商用數學軟體MATLAB 與商用有限元素模擬軟體ANSYS 實現虛擬電路板模型之加速壽命測試模擬,並以此模型進行虛擬實驗,透過虛擬二因子實驗設計方法計算測試參數之影響趨勢,快速提供初步參數制定建議;若模擬預算充足,進一步透過柏拉圖估算方法,以情境制定方法與比較候選參數解之變異程度,選定柏拉圖集合上之最佳解,提供最終參數制定建議。本論文之方法提供進行真實加速壽命測試前之參數制定建議,輔助決策者選用測試參數,確保加速壽命測試能依照實際工程考量做調整。zh_TW
dc.description.abstractParameters in accelerated Life Test(ALT) are often defined by rules of thumb or similar product experiences. With an increase in electronic product complexity, the uncertainties in predicting reliability increases. This study proposes a methodology for ALT parameters setting under uncertainties and applies the fatigue life reliability assessment of solder joints on printed circuit boards(PCBs). The geometry uncertainties and testing limits of PCBs were considered. Monte Carlo simulation with physics of failure(PoF) models is first developed in MATLAB that integrates the finite element simulation software ANSYS, to create a virtual PCBs model implementation for ALT simulation. Two factors design of experiment (DOE) method is then applied to the model for preliminary parameters setting suggestions. A Pareto set with candidates variances is provided for the optimal setting. This study presents ALT parameters setting suggestion before implementing the actual ALT, helping the designer to choose testing parameters and ensures that the parameters are adjusted to the actual engineering consideration.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:54:07Z (GMT). No. of bitstreams: 1
U0001-0808202009355200.pdf: 7045741 bytes, checksum: 3f8fdc163ab624ad6697c57c04c1e185 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents第一章緒論... 1
1.1 前言... 1
1.1.1 發展初期(傳統可靠度評估)... 2
1.1.2 發展中期(失效物理學興起) ...2
1.1.3 發展後期(提升評估準確度與測試效率) ... 3
1.1.4 加速壽命測試簡介... 4
1.2 研究動機與研究目標... 7
1.3 本文架構... 9
第二章文獻回顧... 11
2.1 加速壽命測試... 12
2.1.1 加速壽命測試介紹... 13
2.1.2 常見模型... 14
2.1.3 計畫設計與最佳化... 16
2.1.4 破壞式測試... 19
2.2 失效物理學... 20
2.2.1 失效類型分類與肇因...20
2.2.2 疲勞破壞... 22
2.2.3 應變疲勞模型... 25
2.2.4 能量疲勞模型... 26
2.2.5 結合失效物理學與加速壽命測試...29
2.3 不確定因素... 31
2.4 文獻總結... 33
第三章研究方法... 35
3.1 量化不確定因素/估算測試極限... 37
3.1.1 量化不確定因素... 37
3.1.2 估算測試極限... 37
3.2 訂定ALT 參數... 39
3.2.1 測試樣本數之影響... 39
3.2.2 測試應力水準之影響... 41
3.2.3 測試時間之影響... 42
3.2.4 參數制定方法... 44
3.3 建立模擬環境... 51
3.4 進行虛擬實驗/計算ALT 參數解集合/提供最終參數制定建議... 53
3.4.1 方法一:虛擬二因子實驗設計... 54
3.4.2 方法二:演算柏拉圖集合... 56
3.5 數值範例:平面十桿桁架之二應力三水準ALT 之參數制定... 63
3.5.1 模型說明與問題定義... 64
3.5.2 量化不確定因素/估算測試極限...68
3.5.3 訂定ALT 參數... 69
3.5.4 方法一:虛擬二因子實驗設計... 70
3.5.5 方法二:演算柏拉圖集合... 74
第四章印刷電路板焊接錫球案例... 79
4.1 評估樣本... 80
4.1.1 電路板模型與環境說明... 80
4.1.2 PoF 失效判斷...81
4.2 測試前處理... 83
4.2.1 量化不確定因素與估算測試極限... 83
4.2.2 訂定ALT 參數... 85
4.2.3 建立模擬環境... 85
4.2.4 方法一:虛擬二因子實驗設計... 90
4.2.5 方法二:演算柏拉圖集合... 95
4.3 工程範例小結... 100
第五章結論與未來展望...102
5.1 結論... 102
5.2 未來研究方向與建議... 103
附錄A Masing behaviour 與Bauschinger effect ...105
附錄B 卡方機率表...108
附錄C 印刷電路板模型之元件規格...109
參考文獻...113
dc.language.isozh-TW
dc.subject雙目標最佳化zh_TW
dc.subject不確定因素zh_TW
dc.subject加速壽命測試zh_TW
dc.subject失效物理學zh_TW
dc.subject焊接錫球疲勞壽命zh_TW
dc.subject有限元素模擬zh_TW
dc.subject蒙地卡羅方法zh_TW
dc.subjectAccelerated Life Testen
dc.subjectMonte Carlo Simulationen
dc.subjectFinite Element Simulationen
dc.subjectFatigue Life for Solder Jointsen
dc.subjectPhysics of Failureen
dc.subjectUncertaintyen
dc.subjectMulti Objective Optimizationen
dc.title一個提供加速壽命測試之參數制定方法: 以印刷電路板焊接錫球之疲勞壽命評估為例zh_TW
dc.titleAccelerated Life Test Parameters Setting under Uncertainty: An Example of Fatigue Life of Solder Joints on Printed Circuit Boarden
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文方(Wen-Fang Wu),蘇偉儁(Wei-Jiun Su)
dc.subject.keyword不確定因素,加速壽命測試,失效物理學,焊接錫球疲勞壽命,有限元素模擬,蒙地卡羅方法,雙目標最佳化,zh_TW
dc.subject.keywordUncertainty,Accelerated Life Test,Physics of Failure,Fatigue Life for Solder Joints,Finite Element Simulation,Monte Carlo Simulation,Multi Objective Optimization,en
dc.relation.page118
dc.identifier.doi10.6342/NTU202002678
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0808202009355200.pdf
  未授權公開取用
6.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved