Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51845
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄(Hao-Hsiung Lin)
dc.contributor.authorFerry Wiryo Pranotoen
dc.contributor.author黃于桓zh_TW
dc.date.accessioned2021-06-15T13:52:59Z-
dc.date.available2020-12-01
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-09-14
dc.identifier.citation[1] B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, 'Transient electron transport in wurtzite GaN, InN, and AlN,' Journal of Applied Physics, vol. 85, pp. 7727-7734, 1999.
[2] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, et al., 'Unusual properties of the fundamental band gap of InN,' Applied Physics Letters, vol. 80, pp. 3967-3969, 2002.
[3] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, et al., 'Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,' physica status solidi (b), vol. 229, pp. r1-r3, 2002.
[4] I. Wilke, R. Ascazubi, H. Lu, and W. J. Schaff, 'Terahertz emission from silicon and magnesium doped indium nitride,' Applied Physics Letters, vol. 93, pp. 221113, 2008.
[5] J.-S. Hwang, C.-H. Lee, F.-H. Yang, K.-H. Chen, L.-G. Hwa, Y.-J. Yang, et al., 'Resistive heated MOCVD deposition of InN films,' Materials Chemistry and Physics, vol. 72, pp. 290-295, 11/1/ 2001.
[6] X. Wang and A. Yoshikawa, 'Molecular beam epitaxy growth of GaN, AlN and InN,' Progress in Crystal Growth and Characterization of Materials, vol. 48–49, pp. 42-103, // 2004.
[7] P. Singh, P. Ruterana, M. Morales, F. Goubilleau, M. Wojdak, J. F. Carlin, et al., 'Structural and optical characterisation of InN layers grown by MOCVD,' Superlattices and Microstructures, vol. 36, pp. 537-545, 2004.
[8] W.-C. Chen, S.-Y. Kuo, F.-I. Lai, W.-T. Lin, and C.-N. Hsiao, 'Effect of substrate temperature on structural and optical properties of InN epilayer grown on GaN template,' Thin Solid Films, vol. 529, pp. 169-172, 2013.
[9] O. K. Semchinova, J. Aderhold, J. Graul, A. Filimonov, and H. Neff, 'Photoluminescence, depth profile, and lattice instability of hexagonal InN films,' Applied Physics Letters, vol. 83, pp. 5440-5442, 2003.
[10] I. J. Lee, J. W. Kim, Y.-H. Hwang, and H.-K. Kim, 'Synchrotron x-ray scattering study of lattice relaxation in InN epitaxial layers on sapphire(0001) during dc sputter growth,' Journal of Applied Physics, vol. 92, pp. 5814-5818, 2002.
[11] W. Paszkowicz, R. Černý, and S. Krukowski, 'Rietveld refinement for indium nitride in the 105–295 K range,' Powder Diffraction, vol. 18, pp. 114-121, 2003.
[12] Y. L. Chung, X. Peng, Y. C. Liao, L. C. Chen, K. H. Chen, and Z. C. Feng, 'Raman scattering and Rutherford backscattering studies on InN films grown by plasma-assisted molecular beam epitaxy,' Thin Solid Films, vol. 519, pp. 6778-6782, 2011.
[13] M. A. Moram and M. E. Vickers, 'X-ray diffraction of III-nitrides,' Reports on Progress in Physics, vol. 72, pp. 036502, 2009.
[14] G. Bunker, Introduction to XAFS. UK: Cambridge University Press, 2010.
[15] I. J. Lee, J. W. Kim, T.-B. Hur, Y.-H. Hwang, and H.-K. Kim, 'Synchrotron x-ray scattering study on the evolution of surface morphology of the InN/Al2O3(0001) system,' Applied Physics Letters, vol. 81, pp. 475-477, 2002.
[16] A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, 'First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory,' Physical Review B, vol. 64, pp. 045208, 2001.
[17] C. Stampfl and C. G. Van de Walle, 'Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation,' Physical Review B, vol. 59, pp. 5521-5535, 1999.
[18] A. F. Wright and J. S. Nelson, 'Consistent structural properties for AlN, GaN, and InN,' Physical Review B, vol. 51, pp. 7866-7869, 1995.
[19] K. Kim, W. R. L. Lambrecht, and B. Segall, 'Erratum: Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN ' Physical Review B, vol. 56, pp. 7018-7018, 1997.
[20] C.-Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, 'Zinc-blende wurtzite polytypism in semiconductors,' Physical Review B, vol. 46, pp. 10086-10097, 1992.
[21] V. W. L. Chin, T. L. Tansley, and T. Osotchan, 'Electron mobilities in gallium, indium, and aluminum nitrides,' Journal of Applied Physics, vol. 75, pp. 7365-7372, 1994.
[22] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, 'Indium nitride (InN): A review on growth, characterization, and properties,' Journal of Applied Physics, vol. 94, pp. 2779-2808, 2003.
[23] H. Lu, W. J. Schaff, J. Hwang, H. Wu, G. Koley, and L. F. Eastman, 'Effect of an AlN buffer layer on the epitaxial growth of InN by molecular-beam epitaxy,' Applied Physics Letters, vol. 79, pp. 1489-1491, 2001.
[24] V. A. Vilkotskii, D. S. Domanevskii, R. D. Kakanakov, V. V. Krasovskii, and V. D. Tkachev, 'Burstein-Moss effect and near-band-edge luminescence spectrum of highly doped indium arsenide,' physica status solidi (b), vol. 91, pp. 71-81, 1979.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51845-
dc.description.abstract本論文的研究主題是量測與分析氮化銦(InN)纖鋅礦晶格結構的晶格常數a,c,鍵結常數 (bond length) ,c/a,以及internal parameter u (b/c)。我們先應用X光繞射求出晶格常數a,c。之後我們再用X光吸收譜來求出纖鋅礦晶格的原子距離(bond length)。我們選擇In K-edge量測分析EXAFS(extended X-ray absorption fine structure),我們利用X光繞射求出來的晶格常數a,c當作EXAFS擬合的基本參數。
總合HR-XRD,EXAFS的結果,我們成功求出InN半導體的晶格參數a,c,銦-氮的建長,c/a,以及u。我們算出來的u擁有誤差小於10-3Å。
我們再利用photoluminescence量測氮化銦的發光波段.我們發現氮化銦的發光波段在於遠紅外(~ 0.7 eV).造成發光的機制是由導帶的電子躍遷到價帶上面的acceptor state。
zh_TW
dc.description.abstractThis master thesis is about studying crystal structure properties of wurtzite structure Indium Nitride using high resolution X-ray diffraction spectroscopy (HR-XRD), and In k-edge Extended X-ray Absorption Fine Structure (EXAFS). The result of HR-XRD does not suffice in resolution since lattice constant results from two different planes differ around 0.13%. We then apply mathematical model to correct the value of the measured lattice constant. The mathematical corrected result of our lattice constant a is ~ 3.53154 to 3.53204 Å, lattice constant c is ~ 5.70437 to 5.70565 Å. Our corrected HR-XRD measurement result has error bar under 10-8 Å. Lattice constant a and c of our samples show significant trend in which whenever the crystal is expanded in basal plane (elongate lattice constant a), the crystal structure will contract in its height (shown in shortened of lattice constant c) and vice versa.
We then establish crystal model of wurtzite InN to fit the In k-edge of EXAFS data using the corrected HR-XRD lattice constants. Using combination data from both HR-XRD and EXAFS we could complete the structural measurement of wurtzite InN. We succeed in measuring 1st nearest neighbor (bonds length between In and N), 2nd nearest neighbor (In – In), with these parameters we could then derive wurtzite crystal structure c/a is 1.6152, and internal parameter u (b/c) is 0.3765. We successfully demonstrate the capability of EXAFS and HR-XRD to measure the internal parameter u with error around 10-3A. We notice that despite the lattice different around sample to sample, internal parameter u result shows stability indicating there exists a bonding force to keep the unit tetragonal cell intact by altering their bonding angle.
Our study is continued with photoluminescence measurement of InN, with most sample has single peak at 0.68-0.7 eV that correspond to conduction band to acceptor transition.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:52:59Z (GMT). No. of bitstreams: 1
ntu-104-R02941103-1.pdf: 2232862 bytes, checksum: 07089bb5c8a2f5a7a44f67976a787d9f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 i
ABSTRACT ii
TABLE OF CONTENT iv
LIST OF FIGURES v
CHAPTER 1: INTRODUCTION 1
1.1 Indium Nitride Introduction 1
1.2 Motivation 2
CHAPTER 2: EXPERIMENT PROCEDURE 4
2.1 Sample Growth 4
2.2 HR XRD (High Resolution X-ray Diffraction Spectroscopy) 4
2.2.1 HR-XRD Experiment Setup 5
2.2.2 Lattice Constant Measurement and
Correction 8
2.3 XAS (X-ray Absorption Spectroscopy) 14
2.3.1 XAS Experimental Setup 15 2.3.2 Input X-ray Signal Calibration
(Rocking Curve) 16
2.3.3 Absorption Edge Calibration 17
2.3.4 XAS Experiment Procedure 17
2.3.5 Data Processing 18
2.4 Photoluminescence Spectroscopy 23
2.5 Hall Effect and Van Der Pauw Measurement 25
CHAPTER 3: RESULT AND DISCUSSION 29
CHAPTER 4: CONCLUSION 48
REFFERENCE 50
dc.language.isoen
dc.subjectX光繞射zh_TW
dc.subject氮化銦zh_TW
dc.subject銦-氮建長zh_TW
dc.subject晶格常數azh_TW
dc.subjectEXAFSzh_TW
dc.subjectb/czh_TW
dc.subjectEXAFSen
dc.subjectbond lengthen
dc.subjectwurtzite lattice constant aen
dc.subjectinternal parameter uen
dc.subjectHR-XRDen
dc.title"應用X光繞射,延伸X光吸收細微結構及光致發光量測與分析纖鋅礦結構的氮化銦材料之晶格與電子特性"zh_TW
dc.titleMeasurement and Analysis of Structural, Electronics Properties of Wurtzite Indium Nitride using X-ray Diffraction, Extended X-ray Absorption Fine Structure and Photoluminescenceen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee馮哲川(Zhe Chuan Feng),何清華(Ching-Hwa Ho)
dc.subject.keyword氮化銦,X光繞射,EXAFS,晶格常數a,c,銦-氮建長,b/c,zh_TW
dc.subject.keywordHR-XRD,EXAFS,wurtzite lattice constant a,c,bond length,internal parameter u,en
dc.relation.page51
dc.rights.note有償授權
dc.date.accepted2015-09-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved