Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5183
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorYun-Chen Chiuen
dc.contributor.author邱允辰zh_TW
dc.date.accessioned2021-05-15T17:53:08Z-
dc.date.available2014-08-08
dc.date.available2021-05-15T17:53:08Z-
dc.date.copyright2014-08-08
dc.date.issued2014
dc.date.submitted2014-08-05
dc.identifier.citation1. Raj PP. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain practice : the official journal of World Institute of Pain 2008;8:18-44.
2. Hadjipavlou AG, Tzermiadianos MN, Bogduk N, et al. The pathophysiology of disc degeneration: a critical review. The Journal of bone and joint surgery. British volume 2008;90:1261-70.
3. Kuo YW, Wang JL. Rheology of intervertebral disc: an ex vivo study on the effect of loading history, loading magnitude, fatigue loading, and disc degeneration. Spine (Phila Pa 1976) 2010;35:E743-52.
4. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 1999;24:755-62.
5. Mow VC, Kuei SC, Lai WM, et al. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. Journal of biomechanical engineering 1980;102:73-84.
6. Costi JJ, Stokes IA, Gardner-Morse MG, et al. Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions. Spine (Phila Pa 1976) 2008;33:1731-8.
7. Inoue N, Espinoza Orias AA. Biomechanics of intervertebral disk degeneration. The Orthopedic clinics of North America 2011;42:487-99, vii.
8. Yao H, Justiz M-A, Flagler D, et al. Effects of Swelling Pressure and Hydraulic Permeability on Dynamic Compressive Behavior of Lumbar Annulus Fibrosus. Annals of Biomedical Engineering 2002;30:1234-41.
9. O'Connell GD, Guerin HL, Elliott DM. Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. Journal of biomechanical engineering 2009;131:111007.
10. Sen S, Jacobs NT, Boxberger JI, et al. Human Annulus Fibrosus Dynamic Tensile Modulus Increases with Degeneration. Mechanics of materials : an international journal 2012;44:93-8.
11. Andersson GB. Epidemiological features of chronic low-back pain. Lancet 1999;354:581-5.
12. Luoma K, Riihimaki H, Luukkonen R, et al. Low back pain in relation to lumbar disc degeneration. Spine (Phila Pa 1976) 2000;25:487-92.
13. 中央健康保險局. 全民健康保險統計動向-2011年ed: 行政院衛生署中央健康保險局, 2013.
14. Bergknut N, Smolders LA, Grinwis GC, et al. Intervertebral disc degeneration in the dog. Part 1: Anatomy and physiology of the intervertebral disc and characteristics of intervertebral disc degeneration. Veterinary journal 2013;195:282-91.
15. Zhang Y, Drapeau S, An HS, et al. Histological features of the degenerating intervertebral disc in a goat disc-injury model. Spine (Phila Pa 1976) 2011;36:1519-27.
16. Pfirrmann CWA, Metzdorf A, Zanetti M, et al. Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration. Spine (Phila Pa 1976) 2001;26:1873-8.
17. Xu H, Mei Q, Xu B, et al. Expression of Matrix Metalloproteinases is Positively Related to the Severity of Disc Degeneration and Growing Age in the East Asian Lumbar Disc Herniation Patients. Cell biochemistry and biophysics 2014.
18. Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila Pa 1976) 2004;29:2691-9.
19. Boxberger JI, Auerbach JD, Sen S, et al. An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc. Spine (Phila Pa 1976) 2008;33:146-54.
20. Boxberger JI, Orlansky AS, Sen S, et al. Reduced nucleus pulposus glycosaminoglycan content alters intervertebral disc dynamic viscoelastic mechanics. Journal of biomechanics 2009;42:1941-6.
21. Sakuma M, Fujii N, Takahashi T, et al. Effect of chondroitinase ABC on matrix metalloproteinases and inflammatory mediators produced by intervertebral disc of rabbit in vitro. Spine (Phila Pa 1976) 2002;27:576-80.
22. Spencer DL, Miller JA, Schultz AB. The effects of chemonucleolysis on the mechanical properties of the canine lumbar disc. Spine (Phila Pa 1976) 1985;10:555-61.
23. Barbir A, Michalek AJ, Abbott RD, et al. Effects of enzymatic digestion on compressive properties of rat intervertebral discs. Journal of biomechanics 2010;43:1067-73.
24. Antoniou J, Mwale F, Demers CN, et al. Quantitative magnetic resonance imaging of enzymatically induced degradation of the nucleus pulposus of intervertebral discs. Spine (Phila Pa 1976) 2006;31:1547-54.
25. Ignatieva N, Zakharkina O, Andreeva I, et al. Effects of laser irradiation on collagen organization in chemically induced degenerative annulus fibrosus of lumbar intervertebral disc. Lasers in surgery and medicine 2008;40:422-32.
26. Kuo YW, Hsu YC, Chuang IT, et al. Spinal traction promotes molecular transportation in a simulated degenerative intervertebral disc model. Spine (Phila Pa 1976) 2014;39:E550-6.
27. 蔡志忠 陳. 生物體內梅納反應的化學與其抑制. CHEMISTRY (THE CHINESE CHEM. SOC.) 2002;60:335-49.
28. Illien-Junger S, Grosjean F, Laudier DM, et al. Combined anti-inflammatory and anti-AGE drug treatments have a protective effect on intervertebral discs in mice with diabetes. PloS one 2013;8:e64302.
29. Tsai TT, Ho NY, Lin YT, et al. Advanced glycation end products in degenerative nucleus pulposus with diabetes. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 2014;32:238-44.
30. Yoshida T, Park JS, Yokosuka K, et al. Up-regulation in receptor for advanced glycation end-products in inflammatory circumstances in bovine coccygeal intervertebral disc specimens in vitro. Spine (Phila Pa 1976) 2009;34:1544-8.
31. Yokosuka K, Park JS, Jimbo K, et al. Advanced glycation end-products downregulating intervertebral disc cell production of proteoglycans in vitro. Journal of neurosurgery. Spine 2006;5:324-9.
32. Jazini E, Sharan AD, Morse LJ, et al. Alterations in T2 relaxation magnetic resonance imaging of the ovine intervertebral disc due to nonenzymatic glycation. Spine (Phila Pa 1976) 2012;37:E209-15.
33. Sivan SS, Tsitron E, Wachtel E, et al. Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs. The Biochemical journal 2006;399:29-35.
34. Wagner DR, Reiser KM, Lotz JC. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions. Journal of biomechanics 2006;39:1021-9.
35. P.Menard K. Dynamic mechanical analysis-a practical introductioned: CRC Press LLC, 1999.
36. Chan SC, Burki A, Bonel HM, et al. Papain-induced in vitro disc degeneration model for the study of injectable nucleus pulposus therapy. The spine journal : official journal of the North American Spine Society 2013;13:273-83.
37. Race A, Broom ND, Robertson P. Effect of loading rate and hydration on the mechanical properties of the disc. Spine (Phila Pa 1976) 2000;25:662-9.
38. Leahy JC, Hukins DW. Viscoelastic properties of the nucleus pulposus of the intervertebral disk in compression. Journal of materials science. Materials in medicine 2001;12:689-92.
39. Izambert O, Mitton D, Thourot M, et al. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2003;12:562-6.
40. Gloria A, Causa F, De Santis R, et al. Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis. Journal of materials science. Materials in medicine 2007;18:2159-65.
41. Farndale RW, Sayers CA, Barrett AJ. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connective tissue research 1982;9:247-8.
42. Iatridis JC, ap Gwynn I. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. Journal of biomechanics 2004;37:1165-75.
43. Berg A, Singer T, Moser E. High-resolution diffusivity imaging at 3.0 T for the detection of degenerative changes: a trypsin-based arthritis model. Investigative radiology 2003;38:460-6.
44. Jim B, Steffen T, Moir J, et al. Development of an intact intervertebral disc organ culture system in which degeneration can be induced as a prelude to studying repair potential. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2011;20:1244-54.
45. Mwale F, Demers CN, Michalek AJ, et al. Evaluation of quantitative magnetic resonance imaging, biochemical and mechanical properties of trypsin-treated intervertebral discs under physiological compression loading. Journal of magnetic resonance imaging : JMRI 2008;27:563-73.
46. Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone 2007;40:1144-51.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5183-
dc.description.abstract目的:探討蛋白質變性作用及醣化作用產生之生物化學性質對於椎間盤動態生物力學性質之影響。
背景介紹:隨著人體年紀的增加,蛋白質變性作用及醣化作用對於椎間盤內部的傷害會逐漸累積,導致椎間盤退化程度增加。蛋白質變性作用主要造成細胞外間質的降解,醣化作用則會消耗蛋白質、增加有害物質醣化最終產物(Advanced glycation end-product, AGE)的累積,但二者對於椎間盤生物力學性質的直接影響仍少有證據直接支持。在所有研究材料黏彈性質的方法中,動態力學分析是ㄧ種相當具有敏感度的方法,可測得生化性質改變後椎間盤於黏彈性質上之細微變化。了解椎間盤退化要素中生物化學性質與生物力學性質之間的關聯,將有助於釐清椎間盤退化的機制,亦有助於未來人工椎間盤材料之選擇與設計開發。
材料與方法:本研究使用24個豬隻胸椎椎間盤,隨機分配至健康組(n=8)、蛋白質變性組(n=8)、與醣化組(n=8),經無菌處理取下試樣後,以全椎間盤培養系統培養一天,並進行壓縮(頻率0.031~10Hz,應力範圍0.45±0.35MPa)、旋轉(頻率0.01~1Hz,應變範圍0°±2°)、剪切(頻率0.031~3.1Hz,應力範圍0.25±0.15MPa)三個方向之動態力學測試,再依髓核、內側纖維環、外側纖維環三部分進行包括水分含量、醣化最終產物含量、醣胺聚醣含量、膠原蛋白含量之生化測試,最後利用染色切片與掃描式電子顯微鏡進行微觀結構觀察。統計部分,動態力學性質中,同組別不同頻率之測試採用單因子重覆變異數分析法分析;椎間盤於培養前後之高度變化採用學生t檢驗分析,事後檢定採用LSD法;不同組間的動態力學性質及生化性質採用單因子變異數分析,事後檢定採用LSD法。
結果:胰蛋白酶組相對於健康組在壓縮方向之勁度及儲存模數下降,髓核之水分與醣胺聚醣含量下降、外側纖維環之水分含量下降;以組內差異分析,可知勁度及儲存模數隨著頻率的增加而上升。結構觀察方面,胰蛋白酶組層與層間分界不明、結構較鬆散。醣化組相對於健康組在旋轉方向之儲存模數及損失模數上升、在剪切方向之儲存模數上升,內側纖維環的醣化最終產物含量上升、水分在內外側纖維環之含量均下降。結構觀察方面,髓核細胞外間質變緻密,層與層間分界清楚但距離增大、纖維環孔洞變大。
討論:胰蛋白酶能破壞主要位於髓核中的醣胺聚醣,及主要位於纖維環中的膠原蛋白。由於醣胺聚醣量下降,造成椎間盤髓核之澎潤壓下降,再加上纖維環變得較為鬆散,產生的環向應力下降,因此在壓縮方向的動態力學測試中勁度與儲存模數均下降;核糖能與纖維環內的膠原蛋白發生醣化作用,產生醣化最終產物,因此能讓纖維環變硬、變黏,在結構上使得層與層間之距離變大、孔洞變大,因此在旋轉及剪切方向的動態力學測試中,造成低頻的勁度及儲存模數上升。
結論:造成椎間盤退化的兩大成因─蛋白質變性作用與醣化作用,對於椎間盤的生化與生物力學性質作用機制並不相同。胰蛋白酶造成的蛋白質變性作用主要作用於髓核,造成椎間盤壓縮方向的勁度、儲存模數下降;而核糖溶液造成的醣化作用主要作用在纖維環,造成椎間盤於旋轉與剪切方向的低頻勁度、儲存模數上升。
zh_TW
dc.description.abstractPurpose: To investigate the biochemical influence of protein denaturation and glycation on the dynamic mechanical properties of intervertebral disc (IVD).
Introduction: With the increasing ageing population, the impact of protein denaturation and glycation, which may result in increased level of disc degeneration, are becoming an important field of intense interest. The protein denaturation is likely to lead to degradation of extracellular matrix, where as glycation would lead to consummation of protein as well as accumulation of advanced glycation end-product (AGE). Nevertheless, the relationship between these biochemical influences and the biomechanical change is still poorly understood. Among many mechanical testing methods, dynamical mechanical analysis (DMA) is a sensitive tool to investigate the minor changes in IVD with altered biochemical property. Understanding the relationship of biochemical and biomechanical in degenerated IVD is helpful for clarification of the mechanism of IVD degeneration, which can also be beneficial for the selection of appropriate material in the development of artificial disc in the future.
Material and method: 24 IVDs from porcine thoracic spine were randomly assigned to intact (n=8), trypsin (n=8), and glycation (n=8) groups. After a standard sterilization processing, the specimens were dissected and cultured in a whole organ culture system for 1 day. Dynamic mechanical analysis in compression (frequency 0.031~10Hz, stress control of 0.45±0.35MPa), rotation (frequency 0.01~1 Hz, strain control of 0°±2°), shear (frequency 0.031~3.1Hz, stress control of 0.25±0.15MPa) and biochemical tests of water, AGE, glycosaminoglycan (GAG), collagen content from nucleus pulposus (NP), inner anulus fibrosus (IAF), outer anulus fibrosus (OAF) as well as histological and scanning electron microscopic analysis were then subsequently conducted. One-way repeated ANOVA, student’s t-test and one-way ANOVA were used to calculate the differences in frequency of the dynamic mechanical tests, disc height, dynamical mechanical and biochemical properties, respectively. LSD test was used as the post-hoc analysis.
Results: In trypsin group, the stiffness and storage modulus decreased significantly in compression, with decreased water and GAG content in NP as well as decreased water content in OAF. As the frequency increased, the stiffness and storage modulus increased in within-group analysis of compression test. The boundary between lamella became less obvious and the structure became loose in histological analysis. In the glycation group, the IVD showed increased storage modulus and loss modulus in rotation, and increased storage modulus in shear. AGE content was increased in IAF, and water content was increased in both IAF and OAF. Gap boundary between lamella became more obvious with increased porosity in glycation group.
Discussion: The results of the current study demonstrated that Trypsin can potentially cleave the peptide bonding of the GAG in the NP and collagen structure in the AF. Subsequently, due to the decrease of GAG content and structure defect of the collagen, the swelling pressure in NP and hoop stress in AF decreased, which resulted in decreased stiffness and storage modulus in compression. Ribose can induce glycation by interacting with collagen, causing accumulation of AGEs in AF, which can lead to hardening and thickening as well as enlarged gap in lamella and increased porosity in AF. As the result, the storage modulus increased in rotation and shear.
Conclusion: There are two different patterns of degeneration mechanism in protein denaturation induced- and glycation induced- disc degeneration. The effect of protein denaturation from trypsin mainly reacted within NP, causing decreased stiffness and storage modulus in compression. In contrast, the effect of glycation mainly acted on AF, causing increased storage modulus in rotation and shear.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:53:08Z (GMT). No. of bitstreams: 1
ntu-103-R01548051-1.pdf: 3182071 bytes, checksum: 966bf5a639f1558041171c07544c347d (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract v
第一章 前言 1
1.1 椎間盤之基本構造 1
1.2 椎間盤之生化性質 1
1.3 椎間盤之力學性質 2
1.4退化性椎間盤 3
1.4.1 退化性椎間盤之特徵 4
1.4.2蛋白質變性作用 5
1.4.3 醣化作用 7
1.5動態力學分析對於椎間盤黏彈性質研究之應用 8
1.6 研究動機與目的 9
第二章 材料與方法 11
2.1 實驗儀器 11
2.1.1全椎間盤培養系統 11
2.1.2 動態材料測試機 14
2.2 試樣準備 17
2.3. 實驗流程 18
2.4 動態力學性質分析的數學模型 21
2.5 水份含量分析 22
2.6 醣胺聚醣定量分析 23
2.7 膠原蛋白定量分析 23
2.8 醣化最終產物定量分析 23
2.9 組織切片分析 24
2.10 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 24
2.11 數據統計分析 25
第三章 實驗結果 26
3.1 生物力學性質 26
3.1.1 椎間盤幾何形狀 26
3.1.2動態力學性質 27
3.2 生物化學性質 42
3.2.1 水分含量 42
3.2.2 醣化最終產物含量 43
3.2.3 醣胺聚醣含量 44
3.2.4 膠原蛋白含量 45
3.3 染色切片 45
3.4 掃描式電子顯微鏡 47
第四章 討論 48
4.1 動態力學性質參數之選擇 48
4.2 蛋白質變性作用對於椎間盤影響之討論 48
4.3 醣化作用對於椎間盤影響之討論 49
4.4 不同組別在生化性質及動態力學性質之表現及其關聯性 50
4.5 頻率對於動態力學性質之影響 51
4.6 實驗限制 52
第五章 結論與未來展望 53
5.1 結論 53
5.2 未來展望 53
參考文獻 54
dc.language.isozh-TW
dc.subject椎間盤生物力學zh_TW
dc.subject全椎間盤培養系統zh_TW
dc.subject椎間盤退化zh_TW
dc.subject胰蛋白?zh_TW
dc.subject醣化作用zh_TW
dc.subject動態力學分析zh_TW
dc.subjectdisc degeneration diseaseen
dc.subjectwhole organ culture systemen
dc.subjectdynamic mechanical analysisen
dc.subjectglycationen
dc.subjectbiomechanical property of intervertebral discen
dc.subjecttrypsinen
dc.title醣化作用與蛋白質變性作用的生化性質改變於椎間盤動態力學性質之影響zh_TW
dc.titleThe Influence of Glycation- and Protein Denaturation- induced Biochemical Changes on Dynamic Mechanical Properties of Intervertebral Discen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧文炳(Win-Ping Deng),陳文斌(Weng-Pin Chen)
dc.subject.keyword全椎間盤培養系統,椎間盤退化,胰蛋白?,醣化作用,動態力學分析,椎間盤生物力學,zh_TW
dc.subject.keywordwhole organ culture system,disc degeneration disease,trypsin,glycation,dynamic mechanical analysis,biomechanical property of intervertebral disc,en
dc.relation.page58
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf3.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved