Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51839
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorChih-Ken Chuen
dc.contributor.author鞠之耕zh_TW
dc.date.accessioned2021-06-15T13:52:39Z-
dc.date.available2020-12-01
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-09-15
dc.identifier.citation[1] M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yen, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7, 5330-5442 (2013).
[2] A. Jurranz, P. Jaen, F. S. Rodriguez, J. Cuevas, and S. Gonzalez, “Photodynamic therapy of cancer. Basic principles and applications,” Clin. Transl. Oncl. 10, 148-154 (2008).
[3] S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, “Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy,” J. Am. Chem. Soc. 129, 2669-2675 (2007).
[4] I. Yoon, J. Z. Li and Y. K. Shim, “Advance in photosensitizers and light delivery for photodynamic therapy,” Clin. Endosc. 46, 7-23 (2013).
[5] N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nature Med. 18, 1580-1585 (2012).
[6] C. Wang, H. Tao, L. Cheng, and Z. Liu, “Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles,” Biomaterials 32, 6145-6154 (2011).
[7] C. Wang, L. Cheng, and Z. Liu, “Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics,” Theranostics 3, 317-330 (2013).
[8] M. E. Lim, Y. L. Lee, Y. Zhang, and J. J. H. Chu, “Photodynamic inactivation of viruses using upconversion nanoparticles,” Biomaterials 33, 1912-1920 (2011).
[9] S. S. Lucky, N. M. Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, “Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy,” ACS Nano 9, 191-205 (2015).
[10] D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, “Nanoparticles for two-photon photodynamic therapy in living cells,” Nano Lett. 6, 2383-2386 (2006).
[11] M. Balaz, H. A. Collins, E. Dahlstdet, and H. L. Anderson, “Synthesis of hydrophilic conjugated porphyrin dimers for one-photon and two-photon photodynamic therapy at NIR wavelengths,” Org. Biomol. Chem. 7, 874-888 (2009).
[12] K. S. Samkoe and D. T. Cramb, “Application of an ex vivo chicken chorioallantoic membrane model for two-photon excitation photodynamic therapy of age-related macular degeneration,” J. Biomed. Opt. 8, 410-417 (2003).
[13] K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, “Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: Implications for treatment of wet age-related macular degeneration,” J. Biomed. Opt. 12, 034025 (2007).
[14] P. K. Frederiksen, M. J?rgensen, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen,” J. Am. Chem. Soc. 123, 1215-1221 (2001).
[15] P. K. Frederiksen, S. P. Mcllroy, C. B. Nielsen, L. Nikojasen, E. Skovson, M. J?rgensen, K. V. Mikkelsen, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen in water,” J. Am. Chem. Soc. 127, 255-269 (2005).
[16] K. Ogawa, H. Hasegawa, Y. Inaba, Y. Kobuke, H. Inouye, Y. Kanemitsu, E. Kohno, T. Hirano, S. Ogura, and I. Okura, “Water-soluble bis(imidazolylporphyrin) self-assemblies with large two-photon absorption,” J. Med. Chem. 49, 2276-2283 (2006).
[17] J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy cross sections as potential agents for photodynamic therapy,” Photochem. Photobio. 68, 156-164 (2002).
[18] S. P. McIlroy, E. Clo, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-photon photosensitized production of singlet oxygen: Sensitizers with phenylene-ethynylene-based chromophores,” J. Org. Chem. 70, 1134-1146 (2005).
[19] A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, “Enhancement of two-photon absorption in tetrapyrrolic compounds,” J. Opt. Soc. Am. B 20, 321-332 (2003).
[20] A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, “Efficient singlet oxygen generation upon two-photon excitation of new porphyrin with enhanced nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 7, 971-975 (2001).
[21] W. G. Fisher, W. P. Partridge, Jr., C. Dees, and E.A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobio. 66, 141-155 (1997).
[22] C. J. Murph, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: Beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721-1730 (2008).
[23] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1, 325-327 (2005).
[24] X. D. Zhang, D. Wu, X. Shen, P. X. Liu, N. Yang, B. Zhao, H. Zhang, Y. M. Sun, L. A. Zhang, and F. Y. Fan, “Size-dependent in vivo toxicity of PEG-coated gold nanoparticles,” Nanomedicine 6, 2071-2081 (2011).
[25] W. S. Cho, M. Cho, J. Jeong, M. Choi, H. Y. Cho, B. S. Han, S. H. Kim, H. O. Kim, Y. T. Lim, B. H. Chung, and J. Jeong, “Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles,” Toxicology and Applied Pharmacology 236, 16-24 (2009).
[26] E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. E. Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. E. Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mic,” Cancer Lett. 269, 57-66 (2008).
[27] S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars,” Adv. Mater. 25, 3055-3061 (2013).
[28] B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi, “Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS Nano 5, 1086-1094 (2011).
[29] Y. K. Xu, S. Hwang, S. Kim, and J. Y. Chen, “Two Orders of Magnitude Fluorescence Enhancement of aluminum phthalocyanines by gold nanocubes: A remarkable improvement for cancer cell imaging and detection,” ACS Appl. Mater. 6, 5619-5628 (2014).
[30] T. Zhao, K. Yu, L. Li, T. Zhang, Z. Guan, N. Gao, P. Yuan, S. Li, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy,” ACS Appl. Mater. 6, 2700-2708 (2014).
[31] M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293-346 (2004).
[32] A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. 110, 35-44 (2006).
[33] J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1, 686-695 (2010).
[34] M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9, 287-291 (2009).
[35] W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, “Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,” ACS Nano 5, 1995-2003 (2011).
[36] G. Maltzahn , J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,” Cancer Res. 69, 3892-3900 (2009).
[37] A. M. Gobin, J. J. Moon, and J. L. West, “EphrinA1-targeted nanoshells for photothermal ablation of prostate cancer cells,” Internal J. Nanomed. 3, 351-358 (2008).
[38] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929-1934 (2007).
[39] L. B. Carpin, L. R. Bickford, G. Agollah, T. K. Yu, R. Schiff, Y. Li, and R. A. Drezek, “Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,” Breast Cancer Res. Treat 125, 27-34 (2011).
[40] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318-1322 (2007).
[41] J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5, 473-477 (2005).
[42] J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small 6, 811-817 (2010).
[43] S. Y. Wu, W. M. Chang, H. Y. Tseng, C. K. Lee, T. T. Chi, J. Y. Wang, Y. W. Kiang, and C. C. Yang, “Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,” Plasmonics 6, 547-555 (2011).
[44] H. Y. Tseng, C. W. Huang, C. K. Lee, T. T. Chi, S. Y. Wu, J. Y. Wang, Y. W. Kiang, C. C. Yang, and M. T. Tsai, “Localized surface plasmon resonance behaviors of Au nanorings and their biomedical applications,” Biomed. Optics Express 1, 1060-1074 (2010).
[45] H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24, 065102 (2013).
[46] C. K. Chu, Y. C. Tu, Y. W. Chang, C. K. Chu, S. Y. Chen, T. T. Chi, Y. W. Kiang, and C. C. Yang, “Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation,” Nanotechnology 26, 075102 (2015).
[47] Y. P. Meshalkin and S. S. Chunosova, “Two-photon absorption cross section of aluminium phthalocyanine excited by a femtosecond Ti:sapphire laser,” Biophys. J. 35, 527-530 (2005).
[48] R. L. Goyan and D. T. Cramb, “Near-infrared two-photon excitation of protoporphyrin IX: Photodynamics and photoproduct generation,” Photochem. Photobiol. 72, 821-827 (2000).
[49] E. C. Cho, J. Xie, P. A. Wurm, and Y. Xia, “Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant,” Nano Lett. 9, 1080-1084 (2009).
[50] T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P, Yuan, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy,” Nanoscale 4, 7712-7719 (2012).
[51] A. K. D. Cavalcante, G. R. Martinez, P. D. Mascio, C. F. M. Menck, and L. F. A. Lima “Cytotoxicity and mutagenesis induced by singlet oxygen in wild type and DNA repair deficient Escherichia coli strains,” DNA Repair 1, 1051-1056 (2002).
[52] C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. 84, 4023-4032 (2003).
[53] V. P. Zharov, V. Galitovsky, and M. Viegas, “Photothermal detection of local thermal effects during selective nanophotothermolysis,” Appl. Phys. Lett. 83, 4897-4899 (2003).
[54] C. P. Yao, R. Rahmanzadeh, E. Endl, Z. X. Zhang, J. Gerdes, and G. J. Hüttmann, “Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,” Biomed. Opt. 10, 064012 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51839-
dc.description.abstract在本論文中,利用透過飛秒雷射激發侷域表電漿子共振波長為1064 nm 附近的金奈米環,結合光熱療法與光動力療法來滅活SAS口腔癌細胞,得到相較於單獨光熱或光動力療法更顯著的癌細胞滅活效果。光熱效應係由金奈米環表面電漿子共振的增強吸收所產生的熱能。光動力療法則由金奈米環吸附光敏劑磺化鋁酞菁(AlPcS)達到增強AlPcS雙光子激發效率,以增加單態氧的產量。細胞滅活的臨界飛秒雷射強度在鍵結金奈米環與AlPcS時明顯低於金奈米環未鍵接AlPcS的情況。比較使用中心波長同為1064 nm且平均功率相同的連續波雷射與飛秒雷射照射癌細胞結果,可以確認在飛秒雷射激發下雙光子吸收對於產生光動力療法的關鍵作用。zh_TW
dc.description.abstractThe more effective inactivation of oral cancer cell SAS through the combination the photothermal therapy (PTT) and photodynamic therapy (PDT) effects based on the localized surface plasmon resonance (LSPR) around 1064 nm in wavelength of Au nanoring (NRI) under femtosecond (fs) laser illumination is demonstrated. The PTT effect is caused by the LSPR-enhanced absorption of Au NRI. The PDT effect is generated by linking Au NRI with the photosensitizer of AlPcS for producing singlet oxygen through the LSPR-enhanced two-photon absorption (TPA) excitation of AlPcS. The laser threshold intensity for cancer cell inactivation with the applied Au NRI linked with AlPcS is significantly lower, when compared to that with the Au NRI not linked with AlPcS. The comparison of inactivation threshold intensity between the cases of fs and continuous laser illuminations at the same wavelength and with the same average power confirms the crucial factor of TPA under fs laser illumination for producing the PDT effect.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:52:39Z (GMT). No. of bitstreams: 1
ntu-104-R02941090-1.pdf: 941159 bytes, checksum: e3d9a14d5867e035d2b92aff5c6c23e8 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要: III
Abstract: IV
Content: V
Chapter 1 Introduction: 1
1.1 Research backgrounds: 1
1.2 Research motivations: 5
1.3 Thesis organization: 6
Chapter 2 Sample Preparation: 7
2.1 Fabrication of Sulfonated Aluminum Phthalocyanines-conjugated Au Nanorings: 7
2.2 Cell experiment preparation: 9
2.3 Singlet oxygen measurement: 11
Chapter 3 Cancer Cell Inactivation: 20
3.1 Inactivation experiments: 20
3.2 Inactivation results: 23
Chapter 4 Discussions: 40
4.1 Cell uptake behaviors: 40
Chapter 5: 47
References: 48
dc.language.isoen
dc.subject磺化鋁?菁zh_TW
dc.subject光敏劑zh_TW
dc.subject金奈米環zh_TW
dc.subject光熱療法zh_TW
dc.subject光動力療法zh_TW
dc.subjectPhotosensitizeren
dc.subjectSulfonated Aluminum Phthalocyaninesen
dc.subjectPhotothermal therapyen
dc.subjectPhotodynamic therapyen
dc.subjectGold nanoringsen
dc.title以金奈米環表面電漿子共振結合光熱與光動力滅活癌細胞效果zh_TW
dc.titleCombination of Photothermal and Photodynamic Inactivation of Cancer Cell through Surface Plasmon Resonance of Gold Nanoringen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉(Yean-Woei Kiang),林啟萬(Chii-Wann Lin),張家靖(Chia-Ching Chang)
dc.subject.keyword光敏劑,金奈米環,光熱療法,光動力療法,磺化鋁?菁,zh_TW
dc.subject.keywordPhotosensitizer,Gold nanorings,Photodynamic therapy,Photothermal therapy,Sulfonated Aluminum Phthalocyanines,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2015-09-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
919.1 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved