請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5181
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳其誠(Ki-Seng Tan) | |
dc.contributor.author | Yun-Xiang Lin | en |
dc.contributor.author | 林運翔 | zh_TW |
dc.date.accessioned | 2021-05-15T17:53:06Z | - |
dc.date.available | 2014-08-08 | |
dc.date.available | 2021-05-15T17:53:06Z | - |
dc.date.copyright | 2014-08-08 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-05 | |
dc.identifier.citation | [Bor] Z. I. Borevich, I. R. Shafarevich, Number Theory, Academic Press Inc, 1966.
[Lan] S. Lang, Algebraic Number Theory, second edition, Springer Verlag New York, 1994. [Ser] J.-P. Serre, A Course in Arithmetic, Graduate texts in Mathematics, 7, Springer Verlag New York, 1973. [Wel] A, Weil, Basic Number THeory, Springer Verlag Berlin, Heidelberg, 1971. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5181 | - |
dc.description.abstract | 本論文主要不只是探討四元素環在有理數上的分類情況,也描述由他們所形成的Brauer群結構。
有理數上的四元素環大致可分為2乘2矩陣與可除環情況,而我們可以用quadratic form討論其同構狀況。由於2乘2矩陣均同構,故只需考慮可除環的情況,其可更進一步分為不同的同構狀況。 在局部域的情況,可說明其可除環均同構,並使用希爾伯特符號來分類其為2乘2矩陣或是可除環。 最後我們使用Brauer群來描述其分類,並且闡述其群運算方式,透過Hasse-Minkowski定理我們可以觀察在不同的地方做四元素環局部域的分類,則可以完全決定其在有理數上的分類。 | zh_TW |
dc.description.abstract | This thesis not only classify all quaternion algebras over rational number field but also describe the group structure of the Brauer group formed by them.
The quaternion algebra over rational number field can be roughly classified into two types: the 2 by 2 matrix algebra and division rings. Since all 2 by 2 matrices are isomorphic, we only need to classify division rings into non-isomorphic classes. We study the group of norms and the local Hilbert symbols and show that there are exactly two isomorphic classes of quaternion algebras over the local field unless the field is complex number field. Finally, we classify the quaternion algebras over rational number field and define explicitly the group operation of the Brauer group. By Hasse-Minkowski theorem, a quaternion algebra over the rational number field determines a set of local data and such data determines the quaternion algebra. | en |
dc.description.provenance | Made available in DSpace on 2021-05-15T17:53:06Z (GMT). No. of bitstreams: 1 ntu-103-R01221021-1.pdf: 803069 bytes, checksum: 8dfd5281a858c86bd423732e5d722562 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 1 Introduction 1
2 Quaternion Algebras over a Field of Characteristic 6= 2 3 2.1 The fundamental theorem . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Basic properties of the cyclic algebra H(a; b) . . . . . . . . . . . . . . 5 2.3 Isomorphic classes of cyclic algebras . . . . . . . . . . . . . . . . . . . 8 2.4 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 The quadratic form P(a;b)(x; y; z) . . . . . . . . . . . . . . . . . . . . . 14 3 Quaternion Algebras over Local Fields 16 3.1 The group of local norms . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 The Hilbert symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Quaternion algebras over local elds . . . . . . . . . . . . . . . . . . . 18 3.4 The Herbrand quotient . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 The proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.6 Non-archimedean places . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Quaternion Algebras over Q 26 4.1 The local-global relation . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 The Brauer group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 References 31 | |
dc.language.iso | en | |
dc.title | 有理數上的四元素環 | zh_TW |
dc.title | Quaternion Algebra over Rational Number Field | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳君明,陳榮凱,謝銘倫 | |
dc.subject.keyword | 漢彌爾頓四元素環,希爾伯特符號,Brauer群,Hasse-Minkowski定理, | zh_TW |
dc.subject.keyword | Hamiltonian quaternion,group of norms,Hilbert symbol,Brauer group,Hasse-Minkowski theorem, | en |
dc.relation.page | 31 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2014-08-06 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf | 784.25 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。