Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51777
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor龔源成(Yuancheng Gung)
dc.contributor.authorTzu-Ying Huangen
dc.contributor.author黃梓殷zh_TW
dc.date.accessioned2021-06-15T13:49:15Z-
dc.date.available2016-12-01
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-10-26
dc.identifier.citation[1] Huang, T. Y., Gung, Y., Liang, W. T., Chiao, L. Y., & Teng, L. S. (2012). Broad‐band Rayleigh wave tomography of Taiwan and its implications on gravity anomalies. Geophysical Research Letters, 39(5).
[2] Huang, T. Y., Gung, Y., Kuo, B. Y., Chiao, L. Y., & Chen, Y. N. (2015). Layered deformation in the Taiwan orogen. Science, 349(6249), 720-723.
[3] Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41-59.
[4] Lee, Y. H., Byrne, T., Wang, W. H., Lo, W., Rau, R. J., & Lu, H. Y. (2015). Simultaneous mountain building in the Taiwan orogenic belt. Geology, 43(5), 451-454.
[5] Yamato, P., Mouthereau, F., & Burov, E. (2009). Taiwan mountain building: insights from 2-D thermomechanical modelling of a rheologically stratified lithosphere. Geophysical Journal International, 176(1), 307-326
[6] Ho, C.S., (1999), An Introduction to the Geology of Taiwan (Taiwan: Central Geological Survey),192 pp,
[7] Yen, T. P. (1954). The gneisses of Taiwan. Bull. Geol. Survey Taiwan, 5, 1-99.
[8] Teng, L.S. (1987). Stratigraphic records of the late cenozoic Penglai Orogeny of Taiwan. Acta Geol. Taiwanica (NTU), 25: 205-224.
[9] Covey, M. (1984) Sedimentary and tectonic evolution of the western Taiwan foredeep. Unpublished Ph.D. thesis (Princeton University), 152 pp.
[10] Chen, W. S., Ridgway, K. D., Horng, C. S., Chen, Y. G., Shea, K. S., & Yeh, M. G. (2001). Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan. Geological Society of America Bulletin, 113(10), 1249-1271.
[11] Castelltort, S., Nagel, S., Mouthereau, F., Lin, A. T. S., Wetzel, A., Kaus, B., ... & Chiu, W. Y. (2011). Sedimentology of early Pliocene sandstones in the south-western Taiwan foreland: Implications for basin physiography in the early stages of collision. Journal of Asian Earth Sciences, 40(1), 52-71.
[12] Angelier, J., Barrier, E., & Chu, H.-T. (1986). Plate collision and paleostress trajectories in a fold-thrust belt: The foothills of Taiwan. Tectonophysics, 125, 161-178.
[13] Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4(6).
[14] Wu, F.T., Rau, R.J., & Salzberg, D. (1997). Taiwan orogeny: thin-skinned or lithospheric collision?. Tectonophysics, 274, pp.191-220.
[15] Lin, C.H. (2000). Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophysics, 324, 189–201.
[16] Simoes, M., Avouac, J. P., Beyssac, O., Goffé, B., Farley, K. A., & Chen, Y. G. (2007). Mountain building in Taiwan: A thermokinematic model. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B11).
[17] Kim, K. H., Chiu, J. M., Pujol, J., Chen, K. C., Huang, B. S., Yeh, Y. H., & Shen, P. (2005). Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region. Geophysical Journal International, 162(1), 204-220.
[18] Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., & Avouac, J. P. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B8).
[19] Kuo‐Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three‐dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth (1978–2012), 117(B6).
[20] Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Kuo‐Chen, H., & Lee, S. J. (2014). Investigating the lithospheric velocity structures beneath the Taiwan region by nonlinear joint inversion of local and teleseismic P wave data: Slab continuity and deflection. Geophysical Research Letters, 41(18), 6350-6357
[21] Wang, H. L., Zhu, L., & Chen, H. W. (2010). Moho depth variation in Taiwan from teleseismic receiver functions. Journal of Asian Earth Sciences, 37(3), 286-291.
[22] Wang, H. L., Chen, H. W., & Zhu, L. (2010). Constraints on average Taiwan Reference Moho Discontinuity Model—receiver function analysis using BATS data. Geophysical Journal International, 183(1), 1-19.
[23] Hwang, R. D., & Yu, G. K. (2005). Shear‐wave velocity structure of upper mantle under Taiwan from the array analysis of surface waves. Geophysical research letters, 32(7).
[24] Yen, H. Y., & Hsieh, H. H. (2010). Study on the Compatibility of 3-D Seismic Velocity Structures with Gravity Data of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 21(6), 897-904.
[25] Upton, P., Mueller, K., & Chen, Y. G. (2009). Three‐dimensional numerical models with varied material properties and erosion rates: Implications for the mechanics and kinematics of compressive wedges. Journal of Geophysical Research: Solid Earth (1978–2012), 114(B4).
[26] Rau, R. J., & Wu, F. T. (1995). Tomographic imaging of lithospheric structures under Taiwan. Earth and Planetary Science Letters, 133(3), 517-532.
[27] Ma, K. F., Wang, J. H., & Zhao, D. (1996). Three-Dimensional Seismic Velocity Structure of the Crust and Uppermost Mantle beneath Taiwan. Journal of Physics of the Earth, 44(2), 85-105.
[28] Weaver, R. L., & Lobkis, O. I. (2001). Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies. Physical Review Letters, 87(13), 134301.
[29] Weaver, R., & Lobkis, O. (2002). On the emergence of the Green's function in the correlations of a diffuse field: pulse-echo using thermal phonons. Ultrasonics, 40(1), 435-439.
[30] Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7).
[31] Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615-1618.
[32] Brenguier, F., Shapiro, N. M., Campillo, M., Nercessian, A., & Ferrazzini, V. (2007). 3‐D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophysical research letters, 34(2).
[33] Yang, Y., Ritzwoller, M. H., Levshin, A. L., & Shapiro, N. M. (2007). Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1), 259-274.
[34] Nishida, K., Kawakatsu, H., & Obara, K. (2008). Three‐dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi‐net tiltmeters. Journal of Geophysical Research: Solid Earth (1978–2012), 113(B10).
[35] Liang, C., & Langston, C. A. (2008). Ambient seismic noise tomography and structure of eastern North America. Journal of Geophysical Research: Solid Earth (1978–2012), 113(B3).
[36] Saygin, E., & Kennett, B. L. (2010). Ambient seismic noise tomography of Australian continent. Tectonophysics, 481(1), 116-125.
[37] Porritt, R. W., Allen, R. M., Boyarko, D. C., & Brudzinski, M. R. (2011). Investigation of Cascadia segmentation with ambient noise tomography. Earth and Planetary Science Letters, 309(1), 67-76.
[38] Huang, Y. C., Yao, H., Huang, B. S., van der Hilst, R. D., Wen, K. L., Huang, W. G., & Chen, C. H. (2010). Phase velocity variation at periods of 0.5–3 seconds in the Taipei Basin of Taiwan from correlation of ambient seismic noise. Bulletin of the Seismological Society of America, 100(5A), 2250-2263.
[39] You, S. H., Gung, Y., Chiao, L. Y., Chen, Y. N., Lin, C. H., Liang, W. T., & Chen, Y. L. (2010). Multiscale ambient noise tomography of short-period Rayleigh waves across northern Taiwan. Bulletin of the Seismological Society of America, 100(6), 3165-3173.
[40] Crampin, S. (1987). Geological and industrial implications of extensive-dilatancy anisotropy. Nature, 328, 491-496.
[41] Rau, R. J., Liang, W. T., Kao, H., & Huang, B. S. (2000). Shear wave anisotropy beneath the Taiwan orogen. Earth and Planetary Science Letters, 177(3), 177-192.
[42] Huang, B. S., Huang, W. G., Liang, W. T., Rau, R. J., & Hirata, N. (2006). Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations. Geophysical research letters, 33(24).
[43] Kuo‐Chen, H., Wu, F. T., Okaya, D., Huang, B. S., & Liang, W. T. (2009). SKS/SKKS splitting and Taiwan orogeny. Geophysical Research Letters, 36(12).
[44] Chang, E. T., Liang, W. T., & Tsai, Y. B. (2009). Seismic shear wave splitting in upper crust characterized by Taiwan tectonic convergence. Geophysical Journal International, 177(3), 1256-1264.
[45] Chang, C. P., Chang, T. Y., Angelier, J., Kao, H., Lee, J. C., & Yu, S. B. (2003). Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data. Earth and Planetary Science Letters, 214(1), 115-127.
[46] Chao, K., & Peng, Z. (2009). Temporal changes of seismic velocity and anisotropy in the shallow crust induced by the 1999 October 22 M6. 4 Chia-Yi, Taiwan earthquake. Geophysical Journal International, 179(3), 1800-1816.
[47] Liu, Y., Teng, T. L., & Ben-Zion, Y. (2004). Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan, earthquake: shallow crustal anisotropy and lack of precursory variations. Bulletin of the Seismological Society of America, 94(6), 2330-2347
[48] Babuska, V., & Cara, M. (1991). Seismic-wave propagation in anisotropic media. In Seismic Anisotropy in the Earth (Springer Netherlands),. pp. 5-38
[49] Kuo-Chen, H., Sroda, P., Wu, F., Wang, C. Y., & Kuo, Y. W. (2013). Seismic Anisotropy of the Upper Crust in the Mountain Ranges of Taiwan from the TAIGER Explosion Experiment. Terrestrial, Atmospheric and Oceanic Sciences, 24(6), 963-970.
[50] Chen, C. H., Chen, Y. H., Yen, H. Y., & Yu, G. K. (2003). Lateral variations of P n velocity and anisotropy in Taiwan from travel-time tomography. Earth, Planets and Space, 55(5), 223-230.
[51] Lai, Y. C., B.S. Huang, H.Y. Yen (2009), Azimuthal anisotropy beneath the Central Taiwan from array analysis of fundamental-mode Rayleigh waves, Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract T33D-1906
[52] Priestley, K., & Brune, J. (1978). Surface waves and the structure of the Great Basin of Nevada and western Utah. Journal of Geophysical Research: Solid Earth (1978–2012), 83(B5), 2265-2272.
[53] Okaya, D., Wu, F., Wang, C. Y., Yen, H. Y., Huang, B. S., Brown, L., & Liang, W. T. (2009). Joint passive/controlled source seismic experiment across Taiwan. Eos, Transactions American Geophysical Union, 90(34), 289-290.
[54] Wu, F. T., Kuo-Chen, H., & McIntosh, K. D. (2014). Subsurface imaging, TAIGER experiments and tectonic models of Taiwan. Journal of Asian Earth Sciences, 90, 173-208.
[55] Chen, Y. N., Gung, Y., You, S. H., Hung, S. H., Chiao, L. Y., Huang, T. Y., ... & Jan, S. (2011). Characteristics of short period secondary microseisms (SPSM) in Taiwan: The influence of shallow ocean strait on SPSM. Geophysical Research Letters, 38(4).
[56] Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547-549.
[57] Bensen, G. D., Ritzwoller, M. H., & Shapiro, N. M. (2008). Broadband ambient noise surface wave tomography across the United States. Journal of Geophysical Research: Solid Earth (1978–2012), 113(B5).
[58] Larose, E., Derode, A., Campillo, M., & Fink, M. (2004). Imaging from one-bit correlations of wideband diffuse wave fields. Journal of Applied Physics, 95(12), 8393-8399.
[59] Lukac, M., Davis, P., Clayton, R., & Estrin, D. (2009, April). Recovering temporal integrity with data driven time synchronization. In Proceedings of the 2009 International Conference on Information Processing in Sensor Networks (pp. 61-72). IEEE Computer Society.
[60] Stehly, L., Campillo, M., & Shapiro, N. M. (2007). Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts. Geophysical Journal International, 171(1), 223-230.
[61] Levshin, A. L., Yanovskaya, Y. B., Lander, A. V., Bukchin, B. G., Barmin, M. P., Ratnikova, L. I., and Its E. N. (1989). Seismic surface waves in a laterally inhomogeneous Earth, ed. Keilis-Borok, V.I., Kluwer, Norwell, Mass.
[62] Dahlen, F., & Tromp, J. (1998). Theoretical global seismology. Princeton university press.
[63] Yao, H., van Der Hilst, R. D., & Maarten, V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophysical Journal International, 166(2), 732-744.
[64] Lawson, C. L., and Hanson R. J. (1974). Solving Least Squares Problems, Prentice-Hall, Upper Saddle River, New Jersey, 340 pp.
[65] Sweldens, W. (1996). The lifting scheme: A custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3, 186–200.
[66] Smith, M. L., & Dahlen, F. A. (1973). The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78(17), 3321-3333.
[67] Montagner, J. P., & Nataf, H. C. (1986). A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research: Solid Earth (1978–2012), 91(B1), 511-520.
[68] Chiao, L.Y. & Kuo, B.Y. (2001). Multiscale Seismic Tomography, Geophysics Journal International. 145, 517-527.
[69] Chiao, L. Y., Lin, J. R., & Gung, Y. C. (2006). Crustal magnetization equivalent source model of Mars constructed from a hierarchical multiresolution inversion of the Mars Global Surveyor data. Journal of Geophysical Research: Planets (1991–2012), 111(E12).
[70] Gung, Y., Hsu, Y. T., Chiao, L. Y., & Obayashi, M. (2009). Multiscale waveform tomography with two‐step model parameterization. Journal of Geophysical Research: Solid Earth (1978–2012), 114(B11).
[71] Chiao, L. Y., Fang, H. Y., Gung, Y. C., Chang, Y. H., & Hung, S. H. (2010). Comparative appraisal of linear inverse models constructed via distinctive parameterizations (comparing distinctly inverted models). Journal of Geophysical Research: Solid Earth (1978–2012), 115(B7).
[72] Chou, J.T. (1980). Stratigraphy and sedimentology of the Miocene in western Taiwan, Petroleum Geology of Taiwan, v. 17, p. 33–52
[73] Shaw, C.L. (1996). Stratigraphic correlation and isopachs maps of the Western Taiwan Basin, Terrestrial Atmospheric Ocean, v. 7, no. 3, p. 333–360.
[74] Mouthereau, F., Deffontaines, B., Lacombe, O., & Angelier, J. (2002). Variations along the strike of the Taiwan thrust belt: Basement control on structural style, wedge geometry, and kinematics. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, 31-54.
[75] Lin, Y. P., Zhao, L., & Hung, S. H. (2011). Assessment of tomography models of Taiwan using first-arrival times from the TAIGER active-source experiment. Bulletin of the Seismological Society of America, 101(2), 866-880.
[76] Yen, H. Y., Yeh, Y. H., Lin, C. H., Yu, G. K., & Tsai, Y. B. (1990). Free-air gravity map of Taiwan and its applications. Terrestrial, Atmospheric and Oceanic Sciences, 1(2), 143-155.
[77] Hwang, C., Hsiao, Y. S., Shih, H. C., Yang, M., Chen, K. H., Forsberg, R., & Olesen, A. V. (2007). Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B4).
[78] Yen, H. Y., Yeh, Y. H., & Wu, F. T. (1998). Two‐dimensional crustal structures of Taiwan from gravity data. Tectonics, 17(1), 104-111.
[79] Hsieh, S. H. (1970). Geology and gravity anomalies of the Pingtung plain, Taiwan, Proc. Geol. China 13, 76-89
[80] Suppe, J. (1987). The active Taiwan mountain belt, in The Anatomy of Mountain Ranges, pp. 277–293, eds Schaer, J.P. & Rogers, J., Princeton Univ. Press, New Jersey.
[81] Schulte-Pelkum, V., Monsalve, G., Sheehan, A., Pandey, M. R., Sapkota, S., Bilham, R., & Wu, F. (2005). Imaging the Indian subcontinent beneath the Himalaya. Nature, 435(7046), 1222-1225.
[82] Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., ... & Huang, B. S. (2009). Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946), 1371-1374.
[83] Beaumont, C., Jamieson, R. A., Nguyen, M. H., & Medvedev, S. (2004). Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan‐Tibetan orogen. Journal of Geophysical Research: Solid Earth (1978–2012), 109(B6).
[84] Byrne, T., Chan, Y.-Y., Rau, R.-J., Lu, C.-Y., Lee, Y.-H. &. Wang, Y.-J. (2011). The arc-continent collision in Taiwan, in Arc-continent collision, frontiers in earth sciences, D. Brown, P. Ryan, Eds. (Springer-Verlag, Berlin), pp. 213-245, DOI:10.1007/978-3-540-88558-0_8.
[85] Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold-and-thrust belts and accretionary wedges. J. geophys. Res, 88(B2), 1153-1172.
[86] Carena, S., Suppe, J., & Kao, H. (2002). Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography. Geology, 30(10), 935-938.
[87] Bertrand, E. A., Unsworth, M. J., Chiang, C. W., Chen, C. S., Chen, C. C., Wu, F. T., ... & Hill, G. J. (2012). Magnetotelluric imaging beneath the Taiwan orogen: An arc‐continent collision. Journal of Geophysical Research: Solid Earth (1978–2012), 117(B1).
[88] Silver, P. G. (1996). Seismic anisotropy beneath the continents: probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24, 385-432.
[89] Huang, W. C., Ni, J. F., Tilmann, F., Nelson, D., Guo, J., Zhao, W., ... & Hearn, T. M. (2000). Seismic polarization anisotropy beneath the central Tibetan Plateau. Journal of Geophysical Research: Solid Earth (1978–2012), 105(B12), 27979-27989.
[90] Rousset, B., Barbot, S., Avouac, J. P., & Hsu, Y. J. (2012). Postseismic deformation following the 1999 Chi‐Chi earthquake, Taiwan: Implication for lower‐crust rheology. Journal of Geophysical Research: Solid Earth (1978–2012), 117(B12).
[91] Rudnick, R. L. & Gao, S. (2014). Composition of the continental crust, in Treatise of geochemistry 2nd ed. http://dx.doi.org/10.1016/B978-0-08-095975-7.00301-6
[92] Tatham, D. J., Lloyd, G. E., Butler, R. W. H., & Casey, M. (2008). Amphibole and lower crustal seismic properties. Earth and Planetary Science Letters, 267(1), 118-128.
[93] Mainprice, D., & Nicolas, A. (1989). Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. Journal of Structural Geology, 11(1), 175-189.
[94] Kuo‐Chen, H., Wu, F. T., Jenkins, D. M., Mechie, J., Roecker, S. W., Wang, C. Y., & Huang, B. S. (2012). Seismic evidence for the α‐β quartz transition beneath Taiwan from Vp/Vs tomography. Geophysical Research Letters, 39(22).
[95] Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1), 4-18..
[96] Ernst, W. G. (1983). Mineral parageneses in metamorphic rocks exposed along Tailuko Gorge, Central Mountain Range, Taiwan. Journal of Metamorphic Geology, 1(4), 305-329.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51777-
dc.description.abstract藉由計算兩測站連續噪訊紀錄的交相關函數,可以得到波傳路徑間的經驗格林函數是二十一世紀初期地震學的重要發現之一。在過去十年來,這種顛覆過往認知,以表面波為主的新型資料被廣泛地應用於各種傳統地震學無法做到的研究,包含超高解析的地殼層析成像及偵測地底構造在時間上的細微變化等。得利於島上密布的測站及環海的豐富噪訊源,此法被應用於台灣的地震觀測網,並成功地導得高品質的短週期至中長週期(2-25秒)表面波。這些資料除了被用來建立高解析的表面波速度模型,探索因地震產生的構造變動,也被用以研究噪訊源特性。
本研究利用噪訊法擷取基頻表面波訊號,測量其群速度與相速度頻散曲線,並透過多尺度小波反演,建立了速度分佈圖。群速度反演結果顯示短週期波速與地表構造高度相關,在沿海與盆地區域呈現低速構造,而山區則為高速。與布蓋重力異常比較,可發現屏東重力低區與群速度中穩定呈現於多個週期的低速區吻合,皆反映了高屏地區厚層沉積物。然而,布蓋重力異常中最顯著的台中-埔里低區則未見於速度模型內,此結果顯示造成台中-埔里重力異常的來源可能在極淺或者深處,亦同時暗示可能有山根的存在。
本研究更進一步利用相速度資料反演震波的方位非均向性,研究結果顯示台灣地殼的方位非均向性隨著深度增加呈現顯著變化:淺層10公里內的快軸方向主要為東北-西南,平行台灣山脈走向;而下部地殼(>20公里)的快軸方向轉為東西向,平行板塊聚合方向,顯示在此深度受到高溫影響,岩石強度下降並反映隱沒板塊所造成的塑性剪切變形。此非均向性由淺至深漸變,約在十公里深處達到非均向性轉換邊界,暗示著地殼雖為分層變形,但上下層相互耦合,下部地殼對造山行為亦有貢獻。
zh_TW
dc.description.abstractWe apply the ambient noise tomography (ANT) to Taiwan. In ANT, the path coverage is directly provided by the available inter-station paths. The high-density seismic stations in Taiwan thus offer a great opportunity for high resolution tomography with ANT. Besides two major seismic networks, Central Weather Bureau Seismic Network (CWBSN), and Broadband Array in Taiwan for Seismology (BATS), we have also incorporated the continuous broad-band data from three east-west linear arrays of the TAiwan Integrated GEodynamics Research (TAIGER) project. With above permanent and temporary seismic networks, we have achieved unprecedented path coverage of surface wave study in Taiwan. In particular, the unique geometry of TAIGER arrays allows us to largely improve the lateral resolution of the NNE-SSW Taiwan tectonic trend.
We construct 2-D surface wave velocity maps form 4 to 20 sec using a wavelet-based multi-scale inversion technique. Patterns of lateral variations of our shorter period (<10 seconds) model demonstrate very good correlation with the surficial geology, whereas the overall structure, albeit with much better resolution in the shallow depth, is generally consistent with previously established body wave models. The absence of the source of Bouguer gravity anomaly in our model implying that it is likely caused by a deeper mountain root.
We also investigate the crustal azimuthal anisotropy of Taiwan using seismic ambient noises. The reliability of the pattern of the resulting anisotropy is supported by the synthetic test and experiments of various azimuthal weighting schemes in 2-D. With iterative approaches, we then report 3-D seismic anisotropic tomography of Taiwan that shows a nearly 90° rotation of anisotropic fabrics across 10-20 km depth consistent with the presence of two layers of deformation. The upper crust is dominated by collision-related compressional deformation, whereas the lower crust, or the crust of the subducted Eurasian plate, is dominated by convergence-parallel shear deformation. This lower crustal shearing is interpreted as driven by the continuous sinking of the Eurasian mantle lithosphere when the surface of the plate is coupled with the orogen. The two-layer deformation redefines the role of subduction in the formation of the Taiwan mountain belt.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:49:15Z (GMT). No. of bitstreams: 1
ntu-104-F96224205-1.pdf: 11967235 bytes, checksum: d9886f42d39caace1f2e52b2d07a4cc8 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xix
Chapter 1 Introduction 1
1.1 Geologic setting of Taiwan 1
1.2 Earlier studies in Taiwan 4
1.2.1 Isotropic velocity models 4
1.2.2 Seismic anisotropy in Taiwan 7
1.3 Surface-wave dispersions of Taiwan using Two-station method 13
Chapter 2 Data and Methods 20
2.1 Continuous data 21
2.2 Ambient Noise Technique (ANT) 26
2.2.1 Data processing 26
2.2.2 Temporal variation of Cross-Correlation Functions 32
2.2.3 Constrain the internal clock errors by CCFs 35
2.3 Group & Phase velocity dispersions 37
2.3.1 Group velocity 38
2.3.2 Phase velocity 41
2.4 Multi-scale wavelet inversion 45
2.5 Preliminary results of radial anisotropy 48
2.6 Azimuthal anisotropic components 53
2.7 2-D anisotropic phase velocity maps 54
2.7.1 Azimuthal damping 57
2.7.2 Azimuthal weighting 58
2.7.3 Synthetic test 61
2.8 3-D iterative anisotropic models 62
Chapter 3 Broad-band Rayleigh wave tomography of Taiwan and its implication on gravity anomalies 68
3.1 Introduction 69
3.2 Data and data processing 71
3.3 Wavelet-based multi-scale Inversion 73
3.4 Results and discussions 74
3.5 Supplementary materials 81
3.5.1 Trade-off curve 81
3.5.2 Group velocity models calculated from body wave models 82
3.5.3 Evaluation of Model Reliability 83
Chapter 4 Layered deformation in the Taiwan orogen 86
4.1 Introduction 87
4.2 3-D Vs and azimuthal crustal anisotropy 90
4.3 Anisotropy Transition Boundary (ATB) 92
4.4 Orogenic models 96
4.5 Supplementary materials 97
4.5.1 Fitting of ATB and CPA 97
4.5.2 Assessment of model reliability 98
4.5.3 Predicted shear wave delay time 109
REFERENCE 112
dc.language.isoen
dc.title利用噪訊法分析台灣造山帶之非均向地殼構造zh_TW
dc.titleAnisotropic Crustal Structure of Taiwan Orogen
Constrained by Ambient Seismic Noises
en
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.oralexamcommittee洪淑蕙(Shu-Huei Hung),喬凌雲(Ling-Yun Chiao),郭本垣(Ban-Yuan Kuo),梁文宗(Wen-Tzong Liang)
dc.subject.keyword週遭噪訊法,表面波層析成像,台灣地殼速度,布蓋重力異常,地殼非均向性,造山運動,耦合分層變形,zh_TW
dc.subject.keywordambient noise tomography,surface wave,wavelet-based multi-scale inversion,Bouguer gravity anomaly,crustal seismic anisotropy,Taiwan orogen,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2015-10-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
11.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved