請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51767完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文章(Wen-Chang Chen) | |
| dc.contributor.author | Liang-Nien Chen | en |
| dc.contributor.author | 陳亮年 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:48:43Z | - |
| dc.date.available | 2018-12-01 | |
| dc.date.copyright | 2015-12-01 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-11-02 | |
| dc.identifier.citation | 1. D. Roy, J. N. Cambre and B. S. Sumerlin. Prog. Polym. Sci. 2010, 35, 278.
2. M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov and S. Minko. Nat. Mater. 2010, 9, 101. 3. F. Liu and M. W. Urban. Prog. Polym. Sci. 2010, 35, 3. 4. P. Schattling, F. D. Jochuma and P. Theato. Polym. Chem. 2014, 5, 25. 5. M. Belz, W. J. O. Boyle, K. F. Klein and K. T. V. Grattan. Sens. Acruar. 1997, 38, 380. 6. B. Valeur and E. Bardez, Chem. Br. 1995, 31, 216. 7. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C .P. McCoy, J. T. Rademacher and T. E. Rice. Chem. Rev. 1997, 97, 1515. 8. L. Fabbrizzi and A. Poggi. Chem. Soc. Rev. 1995, 24, 197. 9. O. S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors, vols. I–II, CRC Press, Boca Raton, FL, 1991. 10. B. Valeur and I. Leray. Coord. Chem. Rev. 2000, 205, 3. 11. B. Valeur, Probe design and chemical sensing, in: J.R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Plenum, New York, 1994, 4, 21. 12. N. Zhang, S. Salzinger and B. Rieger. Macromolecules. 2012, 45, 9751. 13. D. E. Meyer, B. C. Shin, G. A. Kong, M. W. Dewhirst and A. Chilkoti. Proceeding of the International Symposium on Tumor Targeted Delivery Systems. 2001, 74, 213. 14. X. Y. Liu, F. Cheng, Y. Liu, H. J. Liu and Y. Chen. J. Mater. Chem. 2010, 20, 360. 15. B. Xue, L. Gao, Y. Hou, Z. Liu and L. Jiang. Adv. Mater. 2013, 25, 273. 16. F. D. Jochum, F. R. Forst and P. Theato. Macromol. Rapid Commun. 2010, 31, 1456. 17. P. Schattling, F. D. Jochum and P. Theato. Chem. Commun. 2011, 47, 8859. 18. H. G. Schild. Prog. Polym. Sci. 1992, 17, 163. 19. I. Dimitrov, B. Trzebicka, A. H. E. Muller, A. Dworak and C. B. Tsvetanov. Prog. Polym. Sci. 2007, 32, 1275. 20. O. Confortini and F. E. Du Prez. Macromol. Chem. Phys. 2007, 208, 1871. 21. R. Hoogenboom. Angew. Chem. Int. Ed. 2009, 48, 7978. 22. N. N. Shahidan, R. Liu, F. Cellesi, C. Alexander, K. M. Shakesheff and B. R. Saunders. Langmuir. 2011, 27, 13868. 23. K. N. Plunkett, X. Zhu, J. S. Moore and D. E. Leckband. Langmuir. 2006, 22, 4259. 24. Y. Katsumoto and N. Kubosaki. Macromolecules. 2008, 41, 5955. 25. H. Feil, Y. H. Bae, J. Feijen and S. W. Kim. Macromolecules. 1993, 26, 2496. 26. F. Meersman, J. Wang, Y. Wu and K. Heremans. Macromolecules. 2005, 38, 8923. 27. P. J. Roth, F. D. Jochum, F. R. Forst, R. Zentel and P. Theato. Macromolecules. 2010, 43, 4638. 28. G. Li, S. Song, L. Guo and S. Ma. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5028. 29. F. Liu and M. W. Urban. Macromolecules. 2008, 41, 6531. 30. D. Han, O. Boissiere, S. Kumar, X. Tong, L. Tremblay and Y. Zhao. Macromolecules. 2012, 45, 7440. 31. H. H. Lu, C. Y. Lin, Y. Y. Fang, T. C. Hsiao, K. C. Ho, D. Yang and C. W. Lin. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 3208. 32. K. B. Crawford, M. B. Goldfinger and T. M. Swager. J. Am. Chem. Soc. 1998, 120, 5187. 33. T. Yasuda, I. Yamaguchi and T. Yamamoto. Adv. Mater. 2003, 15, 293. 34. M. Zhang, P. Lu, Y. Ma and J. Shen. J. Phys. Chem. B. 2003, 107, 6535. 35. F. D. Jochum, L. Zur Borg, P. J. Roth and P. Theato. Macromolecules. 2009, 42, 7854. 36. D. Kungwatchakun and M. Irie. Makromol. Chem., Rapid Commun. 1988, 9, 243. 37. C. M. Schilli, M. Zhang, E. Rizzardo, S. H. Thang, Y. K. Chong, K. Edwards, G. Karlsson and A. H. E. Muller. Macromolecules. 2004, 37, 7861. 38. V. Butun, S. P. Armes and N. C. Billingham. Polymer. 2001, 42, 5993. 39. T. Liu, J. M. Hu, J. Yin, Y. F. Zhang, C. H. Li and S. Y. Liu. Chem. Mater. 2009, 21, 3439. 40. X. Tang, X. Liang, L. Gao, X. Fan and Q. Zhou. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2564. 41. K. Sumaru, M. Kameda, T. Kanamori and T. Shinbo. Macromolecules. 2004, 37, 4949. 42. D. S. Achilleos and M. Vamvakaki. Macromolecules. 2010, 43, 7073. 43. J. Zhang, H. J. Liu, Y. Yuan, S. Jiang, Y. Yao and Y. Chen. ACS Macro. Lett. 2013, 2, 67. 44. Y. Y. Yu, F. Tian, C. Wei and C. C. Wang. Polym. Sci., Part A: Polym. Chem. 2009, 47, 2763. 45. S. Uchiyama, N. Kawai, A. P. de Silva and K. Iwai. J. Am. Chem. Soc. 2004, 126, 3032. 46. G. Zhou, Y. X. Cheng, L. X. Wang, X. B. Jing and F. S. Wang. Macromolecules. 2005, 38, 2148. 47. J. Pei, X. L. Liu, W. Lin. Yu, Y. H. Lai, Y. H. Niu and Y. Cao. Macromolecules. 2002, 35, 7274. 48. S. W. Thomas III, G. D. Joly and T. M. Swager. Chem. Rev. 2007, 107, 1339. 49. K. D. Ley, C. E. Whittle, M. D. Bartberger and K. S. Schanzem. J. Am. Chem. Soc. 1997, 119, 3423. 50. B. Liu, W. L. Yu, S. Y Liu, Y. L. Lai and W. Huang. Macromolecules. 2001, 34, 7932. 51. M. Zhang, P. Lu, Y. G. Ma and J. C. Shen. J. Phys. Chem. B, 2003, 107, 6535. 52. D. L. Williams and A. Heller. J. Phys. Chem. 1970, 74, 4473. 53. L. M. Tolbert and K. M. Solntsev. Acc. Chem. Res. 2002, 35, 19. 54. A. S. Klymchenko and A. P. Demchenko. J. Am. Chem. Soc. 2002, 124, 12372. 55. M. M. Henary, Y. Wu and C. J. Fahrni. Chem. Eur. J. 2004, 10, 3015. 56. X. B. Zhang, J. P. Chun, L. He, G. L. Shen and R. Q. Yu. Anal. Chim. Acta. 2006, 567, 189. 57. W. Qin, S. O. Obare, C. J. Murphy and S. M. Angel. Anal. Chem. 2002, 74, 4757. 58. M. M. Henary, C. J. Fahrni. J. Phys. Chem. A. 2002, 106, 5210. 59. A. Sharma and S. G. Schulman. John Wiley & Sons: New York. 1999, 123. 60. S. H. Lee, J. Kumar and S. K. Tripathy. Langmuir. 2000, 16, 10482. 61. X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar and L. A. Samuelson. Nano Lett. 2002, 2, 1273. 62. J. M. Hu, C. H. Li and S. Y. Liu. Langmuir. 2010, 26, 724. 63. Z. Q. Guo, W. H. Zhu and H. Tian. Macromolecules. 2010, 43, 739. 64. T. Ondarcuhu and C. Joachim. Europhys. Lett. 1998, 42, 215. 65. C. R. Martin. Chem. Mater. 1996, 8, 1739. 66. P. X. Ma and R. Zhang. J. Biomed. Mat. Res. 1999, 46, 60. 67. G. M. Whitesides and B. Grzybowski. Science. 2002, 295, 2418. 68. H. Fong and D. H. Reneker. Electrospinning and formation of nanofibers. In: Salem DR, editor. Structure formation in polymeric fibers. Munich: Hanser; 2001. 225. 69. J. M. Deitzel, J. Kleinmeyer, J. K. Hirvonen and T. N. C. Beck. Polymer. 2001, 42, 8163. 70. X. Fang, D.H. Reneker. J. Macromolecular Sci-Phys. 1997, B36, 169. 71. G. I. Taylor. Proc. R. Soc. London, Ser A. 1969, 313, 453. 72. J. M. Deitzel, J. Kleinmeyer and N. C. B. Tan. Polymer. 2003, 49, 324. 73. G. Eda and S. J. Shivkumar. Appl. Polym. Sci. 2007, 106, 475. 74. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung and S. G. Lee. Polymer. 2003, 44, 4029. 75. Q. Yang, Z. Li, Y. Hong, Y. Zhao, S. Qiu, C. Wang and Y. Wei. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 3721. 76. H. Fong, I. Chun and D.H. Reneker. Polymer. 1999, 40, 4585. 77. A. Koski, K. Yim and S. Shivkumar. Mater. Lett. 2004, 58, 493. 78. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus and F. Ko. Polymer. 2003, 44, 5721. 79. J. S. Lee, K. H. Choi, H. D. Ghim, S. S. Kim, D. H. Chun, H. Y. Kim and W. S. Lyoo. J. Appl. Polym. Sci. 2004, 93, 1638. 80. D. H. Reneker and I. Chun. Nanotechnology. 1996, 7, 216. 81. C. Zhang, X. Yuan, L. Wu, Y. Han and J. Sheng. Eur. Polym. J. 2005. 41, 423. 82. X. Yuan, Y. Zhang, C. Dong and J. Sheng. Polym. Int. 2004, 53, 1704. 83. C. J. Buchko, L. C. Chen, Y. Shen and D. C. Martin. Polymer. 1999, 40, 7397. 84. C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um and Y. H. Park. Polymer. 2005, 46, 5094. 85. C. Mit-uppatham, M. Nithitanakul and P. Supaphol. Macromol. Chem. Phys. 2004, 205, 2327. 86. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase and J. F. Rabolt. Macromolecules. 2004, 37, 573. 87. Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna. Comp. Sci. and Tech. 2003, 63, 2223. 88. B. Ding, J. Kim, Y. Miyazaki, S. Shiratori. Sens. Actuat. B-Chem. 2004, 101, 373. 89. R. Luoh and H. T. Hahn. Comp. Sci. and Tech. 2006, 66, 2436. 90. J. S. Im, S. Kang, S. Lee and Y. Lee. Carbon. 2010, 48, 2573. 91. J. Y. Park, K. Asokan, S. W. Choi and S. S. Kim. Sens. Actuat. B-Chem. 2011, B152, 254. 92. C. Deng, P. Gong, Q. He, J. Cheng, C. He, L Shi, D. Zhu and T. Lin. Chem. Phy. Lett. 2009, 483, 219. 93. M. Nakao, S. Inoue, T. Yoshinobu and H. Iwasaki. Sens. Actuat. 1996, 34, 234. 94. S. Cao, B. Hu and H. Liu. Polym. Int. 2009, 58, 545. 95. C. C. Kuo, Y. C. Tung and W. C. Chen. Macromol. Rapid. Commun. 2010, 31, 65. 96. S. Adewuyi, D. A. Ondigo, R. Zugle, Z. Tshentu, T. Nyokong and N. Torto. Anal. Method. 2012, 4, 1729. 97. W. Wang, Q. Yang, L. Sun, H. Wang, C. Zhang, X. Fei, M. Sun and Y. Li. J. Hazard. Mater. 2011, 194, 185. 98. W. Wang, X. Wang, Q. Yang, X. Fei, M. Sun and Y. Song. Chem. Commun. 2013, 49, 4833. 99. X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar and L. A. Samuelson. Nano. Letters. 2002, 2, 1273. 100. J. H. Syu, Y. K. Cheng, W. Y. Hong, H. P. Wang, Y. C. Lin, H. F. Meng, H. W. Zan, S. F. Horng, G. F. Chang, C. H. Hung, Y. C. Chiu, W. C. Chen, M. J. Tsai and H. Cheng. Adv. Funct. Mater. 2013, 23, 1566. 101. H. Okuzaki, K. Kobayashi and H. Yan. Macromolecules. 2009, 42, 5916. 102. N. Wang, Y. Zhao and L. Jiang. Macromol. Rapid. Commun. 2008, 29, 485. 103. X. Xiao, Y. Q. Fu, J. J. Zhou, Z. S. Bo, L. Li and C. M. Chan. Macromol. Rapid. Commun. 2007, 28, 1003. 104. D. Wang, R. Miyamoto, Y. Shiraishi and T. Hirai. Langmuir. 2009, 25, 13176. 105. A. Muñoz-Bonilla, M. Fernandez-Garcia and D. M. Haddleton. Soft. Matter. 2007, 3, 725. 106. W. C. Wu, Y. Tian, C. Y. Chen, C. S. Lee, Y. J. Sheng, W. C. Chen and A. K. Y. Jen. Langmuir. 2007, 23, 2805. 107. W. Mingfeng, Z. Shan, G. Gerald, S. Lei, D. Kangquig, J. Marcus, C. W. Gilbert, D. S. Gregory and A. W. Mitchell. Macromolecules. 2008, 41, 6993. 108. C. C. Yang, Y. Tian, C. Y. Chen, A. K. Y. Jen, W. C. Chen. Macromol. Rapid. Commun. 2007, 28, 894. 109. J. Li, W. D. He, S. Han, X. Sun, L. Li and B. Zhang. J. Polym. Sci.; Polym. Chem. 2009, 47, 786. 110. S. T. Lin, K. Fuchise, Y. Chen, R. Sakai, T. Satoh, T. Kakuchi and W. C. Chen. Soft. Matter. 2009, 5, 3761. 111. S. T. Lin, Y. C. Tung and W. C. Chen. J. Mater. Chem. 2008, 18, 3985. 112. T. Jiang, J. B. Chang, C. Wang, Z. Ding, J. Chen, J. Zhang and E. T. Kang. Biomacromolecules. 2007, 8, 1951. 113. A. Nagai, K. Kokado, J. Miyake and Y. Cyujo. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 627. 114. C. S. Li, W. C. Wu, Y. J. Sheng and W. C. Chen. J. Chem. Phys. 2008, 128, 154908. 115. S. Lin, F. Du, Y. Wang, S. Ji, D. Liang, L. Yu and Z. Li. Biomacromolecules. 2008, 9, 109. 116. Z. Ma, L. Qiang, Z. Zheng, Y. Wang, Z. Zhang andW. Huang. J. Appl. Polym. Sci. 2008, 110, 18. 117. Y. C. Tung, W. C. Wu and W. C. Chen. Macromol. Rapid. Commun. 2006, 27,1838. 118. M. Nakayama and T. Okan. Macromolecules. 2008, 41, 504. 119. M. Grell, D. D. C. Bradley, M. Inbasekaran and E. P. Woo. Adv. Mater. 1997, 9, 798. 120. D. Neher. Macromol. Rapid. Commun. 2001, 22, 1365. 121. U. Schref and E. J. W. List. Adv. Mater. 2002, 14, 477. 122. R. M. J. Palmer, A. G. Ferrige and S. Moncada. Nature. 1987, 327, 524. 123. H. Kojima, N. Nakatsubo, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata and T. Nagano. Anal. Chem. 1998, 70, 2446. 124. M. Bru, M. I. Burguete, F. Galindo, S. V. Luis, M. J. Marin and L. Vigara. Tetrahedron. Lett. 2006, 47, 1787. 125. Y. C. Chao, S. D. Yeh, H. W. Zan, G. F. Chang, H. F. Meng, C. H. Hung, T. C. Meng, C. S. Hsu and S. F. Horng. Appl. Phys. Lett., 2010, 96, 223702. 126. M. I. Burguete, V. Fabregat, F. Galindo, M. A. Izquierdo and S. V. Luis. Euro. Polym. J. 2009, 45, 1516. 127. D. Li and Y. Xia. Adv. Mater. 2004, 16, 115. 128. S. K. Chae, H. Park, J. Yoon, C. H. Lee, D. J. Ahn and J. M. Kim. Adv. Mater. 2007, 19, 521. 129. C. C. Kuo, C. H. Lin and W. C. Chen. Macromolecules. 2007, 40, 6959. 130. C. C. Kuo, C. T. Wang and W. C. Chen. Macromol. Mater. Eng. 2008, 293, 999. 131. C. C. Kuo, Y. C. Tung, C. H. Chen and W. C. Chen, Macromol. Rapid. Commun. 2008, 29, 1711. 132. C. T. Wang, C. C. Kuo, H. C. Chen and W. C. Chen. Nanotechnology. 2009, 20, 37560. 133. P. Tzeng, C. C. Kuo, S. T. Lin, Y. C. Chiu and W. C. Chen. Macromol. Chem. Phys. 2010, 211, 1408. 134. Y. C. Chiu, C. C. Kuo, J. C. Hsu and W. C Chen. ACS Appl. Mater. Interfaces. 2010, 2, 3340. 135. Y. C. Chiu, Y. G. Chen, C. C. Kuo, S. H. Tung, T. Kakuchi and W. C. Chen. ACS Appl. Mater. Interfaces. 2012, 4, 3387. 136. J. Yoon, S. K. Chae and J. M. Kim. J. Am. Chem. Soc. 2007, 129, 3038. 137. E. S. Gil and S. M. Hudson. Prog. Polym. Sci. 2004, 29, 1173. 138. W. J. Chuang and W. Y. Chiu. Polymer. 2012, 53, 2829. 139. W. Zhang, N. Zhou, Z. Cheng, J. Zhu and X. Zhu. Polymer. 2008, 49, 4569. 140. S. Megelski, J. S. Stephens, D. B. Chase and J. F. Rabolt. Macromolecules. 2002, 35, 8456. 141. M. Isabel Burguete, V. Fabregat, F. Galindo, M. Angeles Izquierdo, S. V. Luis. Euro. Polym. J. 2009, 45, 1516. 142. E. M. Nolan and S. J. Lippard. Chem. Rev. 2008, 108, 3443. 143. C. G. Wu, H. C. Lu, L. N. Chen and Y. C Lin. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 1586. 144. S. S. Balamurugan, G. B. Bantchev, Y. Yang and R. L McCarley. Angew. Chem. Int. Ed. 2005, 44, 4872. 145. K. Iwai, Y. Matsumura, S. Uchiyama and A. P de Silva. J. Mater. Chem. 2005, 15, 2796. 146. J. M. Hu, L. Dai and S. Y Liu. Macromolecules. 2011, 44, 4699. 147. X. Q. Chen, T. Pradhan, F. Wang, J. S. Kim and J. Y Yoon. Chem. Rev. 2012, 112, 1910. 148. C. H. Li and S. Y Liu. J. Mater. Chem. 2010, 20, 10716. 149. T. Liu and S. Y Liu. Anal. Chem. 2011, 83, 2775. 150. T. V. Ohalloran. Science. 1993, 261, 715. 151. T. Koike, T. Watanabe, S. Aoki, E. Kimura and M. Shiro. J. Am. Chem. Soc. 1996, 118, 12696. 152. K. R. Gee, Z. L. Zhou, W. J. Qian and R. Kennedy. J. Am. Chem. Soc. 2002, 124, 776. 153. E. Tomat, E. M. Nolan, J. Jaworski and S. J. Lippard. J. Am. Chem. Soc. 2008, 130, 15776. 154. Z. C. Xu, K. H. Baek, H. N. Kim, J. N. Cui, X. H. Qian, D. R. Spring, I. Shin and J. Yoon. J. Am. Chem. Soc. 2010, 132, 601. 155. C. S. He, W. P. Zhu, Y. F. Xu, Y. Zhong, J. A. Zhou and X. H. Qian. J. Mater. Chem. 2010, 20, 10755. 156. B. P. Joshi, W. M. Cho, J. Kim, J. Yoon and K. H. Lee. Bioorg. Med. Chem. Lett. 2007, 17, 6425. 157. M. J. Ruedas-Rama and E. A. H. Hall. Anal. Chem. 2008, 80, 8260. 158. J. K. Lee, H. J. Kim, T. H. Kim, C. H. Lee, W. H. Park, J. Kim and T. S. Lee. Macromolecules. 2005, 38, 9427. 159. R. Tangirala, E. Baer, A. Hitner and C. Weder. Adv. Funct. Mater. 2004, 14, 595. 160. M. Taki, J. L. Wolford and T. V. O’Halloran. J. Am. Chem. Soc. 2004, 126, 712. 161. G. Masci, L. Giacomelli and V. Crescenzi. Macromol. Rapid. Commun. 2004, 25, 559. 162. C. Zheng, W. D. He, W. J. Liu, J. Li and J. F. Li. Macromol. Rapid. Commun. 2006, 27, 1229. 163. C. C. Yang, Y. Q. Tian, A. K. Y. Jen and W. C. Chen. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 5495. 164. F. Bougard, M. Jeusette, L. Mespouille, P. Dubois and R. Lazzaroni. Langmuir, 2007, 23, 2339. 165. J. Li, W. D. He, S. Han, X. Sun, L. Li and B. Zhang. J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 786. 166. M. Nakayama and T. Okano. Macromolecules. 2008, 41, 504. 167. A. G. MacDiarmid, W. E. Jr. Jones, I. D. Norris, J. Gao, A. T. Jr. Johnson, N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okusaki and M. Llaguno. Synth. Met. 2001, 119, 27. 168. H. Okusaki, T. Takahashi, N. Miyajima, Y. Suzuki and T. Kuwabara. Macromolecules. 2006, 39, 4276. 169. Y. C. Chiu, G. Chen, C. C. Kuo, S. H. Tung, T. Kakuchi and W. C. Chen. ACS Appl. Mater. Interfaces. 2012, 4, 3387. 170. L. N. Chen, Y. C. Chiu, J. J. Hung, C. C. Kuo and W. C. Chen. Macromol. Chem. Phys. 2014, 215, 286. 171. M. Nakayama, T. Okano and F. M. Winnik. Material. Matters. 2010, 5, 56. 172. F. H. Anka, J. Kenneth and Jr. Balkus. Ind. Eng. Chem. Res. 2013, 52, 3473. 173. J. K. Lee, H. J. Kim, T. H. Kim, C. H. Lee, W. H. Park, J Kim and T. S. Lee. Macromolecules. 2005, 38, 9427. 174. K. Kanata, T. Kumagi, H. Aoki, M. Deguchi and S. Iwata. J. Org. Chem. 2001, 66, 7328. 175. M. M. Henary and F C. J. ahrni. J. Phys. Chem. A. 2002, 106, 5210 176. X. J. Peng, J. J. Du, J. L. Fan, J. Y. Wang, Y. K. Wu, J. Z. Zhao, S. G. Sun and T. Xu. J. Am. Chem. Soc. 2007, 129, 1500. 177. X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar and L. A. Samuelson. Nano. Lett. 2002, 2, 1273. 178. K. Das, N. Sarkar, A. K. Ghosh, D. Majumdar, D. N. Nath and K. Bhattacharyya. J. Phys. Chem. 1994, 98, 9216. 179. O. S. Wolfbeis. J. Mater. Chem. 2005, 15, 2657. 180. A. M. Barrios. ACS Chem. Biol. 2006, 1, 67. 181. D. Wang, R. Miyamoto, Y. Shiraishi and T. Hirai. Langmuir. 2009, 25, 13176. 182. W. Hong, W. H. Li, X. B. Hu, B. Y. Zhao, F. Zhang and D. Zhang. J. Mater. Chem. 2011, 21, 17193. 183. B. Cekena, M. Kandazb and A. Kocaa. Synthetic. Metals. 2012, 162, 1524. 184. J. Li, W. D. He, S. Han, X. Sun, L. Li and B. Zhang. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 786. 185. C. Lodeiro and F. Pina. Coord. Chem. Rev. 2009, 253, 1353. 186. T. Jiang, J. B. Chang, C. Wang, Z. Ding, J. Chen, J. Zhang and E. T. Kang, Biomacromolecules. 2007, 8, 1951. 187. A. Nagai, K. Kokado, J. Miyake and Y. Cyujo. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 627. 188. S. A. Jenekhe and X. L. Chen. Science. 1998, 279, 1903. 189. S. W. III Thomas, G. D. Joly and T. M. Swager. Chem. Rev. 2007, 107, 1339. 190. D. T. McQuade, A. E. Pullen and T. M. Swager. Chem. Rev. 2000, 100, 2537. 191. J. S. Yang and T. M. Swager. J. Am. Chem. Soc. 1998, 120, 5321. 192. J. S. Yang and T. M. Swager. J. Am. Chem. Soc. 1998, 120, 11864. 193. F. T. Lu, X. L. Feng, H. W. Tang , L. B. Liu, Q. O. Yang and S. Wang. Adv. Funct. Mater. 2011, 21, 845. 194. N. M. Matsumoto, P. Prabhakaran, L. H. Rome and H. D. Maynard. ACS Nano. 2013, 7, 867. 195. K. Skrabania, J. Kristen, A. Laschewsky, O. Akdemir, A. Hoth and J. F. Lutz. Langmuir. 2007, 23, 84. 196. M. K. Jaiswal, S. Mehta, R. Banerjee and D. A. Bahadur. Colloid. Polym. Sci. 2012, 290, 607. 197. Z. Li, J. Shen, H. Ma, X. Lu, M. Shi, N. Li and M. Ye. Polym. Bull. 2012, 68 1153. 198. A. Baeza, E. Guisasola, E. Ruiz-Hernandez and M. Vallet-Regí. Chem. Mater. 2012, 24, 517. 199. D. Sivakumaran, D. Maitland and T. Hoare. Biomacromolecules. 2011, 12, 4112. 200. J. Yang, M. Yamato, T. Shimizu, H. Sekine, K. Ohashi, M. Kanzaki, T. Ohki, K. Nishida and T. Okano. Biomaterials. 2007, 28, 5033. 201. S. Kubo, I. Tan, R. J. White, M. Antonietti and M. M. Titirici. Chem. Mater. 2010, 22, 6590. 202. S. W. Hong, D. Y. Kim, J. U. Lee and W. H. Jo. Macromolecules. 2009, 42, 2756. 203. J. F. Lutz, O. Akdemir and A. Hoth. J. Am. Chem. Soc. 2006, 128, 13046. 204. J. F. Lutz, K. Weichenhan, O. Akdemir and A. Hoth. Macromolecules. 2007, 40, 2503. 205. G. M. Cockrell, G. Zhang, D. G. VanDerveer, R. P. Thummel and R. D. Hancock. J. Am. Chem. Soc. 2008, 130, 1420. 206. X. Q. Liu, X. Zhou, X. Shu and J. Zhu. Macromolecules. 2009, 42, 7634. 207. B. Wang and M. R. Wasielewski. J. Am. Chem. Soc. 1997, 119, 12. 208. K. Kanata, T. Kumagi, H. Aoki, M. Deguchi and S. Iwata. J. Org. Chem. 2001, 66, 7328. 209. D. Casarett, Toxicology: The Basic Science of Poisons. 5th ed.; MacGraw Hill: New York, 1996. 210. L. Friberg, C. G Elinder and T. C. Kjellstrom, World Health Organization: Geneve, 1992. 211. N. Ward, Trace Elem. Man Anim. 1993, 8, 872. 212. J. J. R. Fausto da Silva and R. J. P. Williams. The Biological Chemistry of the Elements; Oxford University Press: New York, 1992. 213. S. Y. Assaf and S. H. Chung. Nature. 1984, 308, 734. 214. P. D. Zalewski, I. J. Forbes, R. F. Seamark, R. Borlinghaus, W. H. Betts, S. F. Lincoln and A. D. Ward. Chem. Biol. 1994, 1, 153. 215. B. L. Vallee and K. H. Falchuk. Physiol. Rev. 1993, 73,79. 216. J. M. Berg and Y. Shi. Science. 1996, 271, 1081. 217. B. Liu, W. L. Yu, J. Pei, S. Y. Liu, Y. H. Lai and W. Huang. Macromolecules. 2001, 34, 7932. 218. A. W. Czarnik, Ed. Fluorescent Chemosensors for Ions and Molecule Recognition; ACS Symposium Series 538; American Chemical Society: Washington, DC, 1992. 219. J. P. Desvergne and A. W. Czarnik, Eds. Chemosensors for Ion and Molecule Recognition; Kluwer Academic Publishers: Dordrecht, The Netherlands,1997. 220. B. Valeur and I. Leray. Coord. Chem. Rev. 2000, 205, 3. 221. Y. Liu, N. Zhang, Y. Chen and L. H. Wang. Org. Lett. 2007, 9, 315. 222. Y. Mikata, M. Wakamatsu, A. Kawamura, N. Yamanaka, S. Yano, A. Odani, K. Morihiro and S. Tamotsu. Inorg. Chem. 2006, 45, 9262. 223. E. M. Nolan, J. Jaworski, M. E. Racine, M. Sheng and S. J. Lippard. Inorg. Chem. 2006, 45, 9748. 224. E. M. Nolan, J. Jaworski, K. I. Okamoto, Y. Hayashi, M. Sheng and S. J. Lippard. J. Am. Chem. Soc. 2005, 127, 16812. 225. E. M. Nolan, S. C. Burdette, J. H. Harvey, S. A. Hilderbrand and S. J. Lippard. Inorg. Chem. 2004, 43, 2624. 226. S. Aoki, S. Kaido, H. Fujioka and E. Kimura. Inorg. Chem. 2003, 42, 1023. 227. S. C. Burdette, G. K. Walkup, B. Spingler, R. Y. Tsien and S. J. Lippard. J. Am. Chem. Soc. 2001, 123, 7831. 228. G. K. Walkup, S. C. Burdette, S. J. Lippard and R. Y. Tsien. J. Am. Chem. Soc. 2000, 112, 5644. 229. E. U. Akkaya, M. E. Huston and A. W. Czarnik. J. Am. Chem. Soc. 1990, 112, 3590. 230. D. A. Pearce, N. Jotterand, I. S. Carrico and B. Imperiali. J. Am. Chem. Soc. 2001, 123, 5160. 231. G. K. Walkup and B. Imperiali. J. Am. Chem. Soc. 1997, 119, 3443. 232. J. D. Winkler, C. M. Bowen and V. Michelet. J. Am. Chem. Soc. 1998, 120, 3237. 233. G. Hennrich, H. Sonnenschein and U. Resch-Genger. J. Am. Chem. Soc. 1999, 121, 5073. 234. J. C. Payne, M. A. ter Horst and H. A. Godwin. J. Am. Chem. Soc. 1999, 121, 6850. 235. T. D. Chung, J. Park, J. Kim, H. Lim, M. J. Choi, J. R. Kim, S. K. Chang and H. Kim. Anal. Chem. 2001, 73, 3975. 236. N. Sakai and S. Matile. J. Am. Chem. Soc. 2002, 124, 1184. 237. J. Li, W. D. He, S. Han, X. Sun, L. Li and B. Zhang. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 786. 238. C. Lodeiro and F. Pina. Coord. Chem. Rev. 2009, 253, 1353. 239. T. Jiang, J. B. Chang, C. Wang, Z. Ding, J. Chen, J. Zhang and E. T. Kang. Biomacromolecules. 2007, 8, 1951. 240. A. Nagai, K. Kokado, J. Miyake and Y. Cyujo. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 627. 241. C. S. Li, W. C. Wu, Y. J. Sheng and W. C. Chen. J. Chem. Phys. 2008, 128, 154908. 242. S. A. Jenekhe and X. L. Chen, Science 1998, 279, 1903. 243. F. T. Lu, X. Feng, H. W. Tang, L. B. Liu, Q. Yang and S. Wang. Adv. Funct. Mater. 2011, 21, 845. 244. X. Y. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar and L. A. Samuelson. Nano Lett. 2002, 2, 1273. 245. L. N. Chen, C. C. Kuo, Y. C. Chiu and W. C. Chen. RSC Adv., 2014, 4, 45345. 246. N. M. Matsumoto, P. Prabhakaran, L. H. Rome and H. D. Maynard. ACS Nano 2013, 7, 867. 247. K. Skrabania, J. Kristen, A. Laschewsky, O. Akdemir, A. Hoth and J. F. Lutz. Langmuir. 2007, 23, 84. 248. M. K. Jaiswal, S. Mehta, R. Banerjee and D. A. Bahadur. Colloid. Polym. Sci. 2012, 290, 607. 249. Z. Li, J. Shen, H. Ma, X. Lu, M. Shi, N. Li and M.Ye. Polym. Bull. 2012, 68, 1153. 250. A. Baeza, E. Guisasola, E. Ruiz-Hernandez and M. Vallet-Regí. Chem. Mater. 2012, 24, 517. 251. D. Sivakumaran, D. Maitland and T. Hoare. Biomacromolecules. 2011, 12, 4112. 252. J. Yang, M. Yamato, T. Shimizu, H. Sekine, K.Ohashi, M. Kanzaki, T. Ohki, K. Nishida and T. Okano. Biomaterials. 2007, 28, 5033. 253. S. Kubo, I. Tan, R. J. White, M. Antonietti and M. M. Titirici. Chem. Mater. 2010, 22, 6590. 254. S. W. Hong, D. Y. Kim, J. U. Lee and W. H. Jo. Macromolecules. 2009, 42, 2756. 255. F. Wang, R. Nandhakumar, J. H. Moon, K. M. Kim, J. Y. Lee and J. Yoon. Inorg. Chem. 2011, 50, 2240. 256. Q. Dai, W. Liu, X. Zhuang, J. Wu, H. Zhang and P. Wang. Anal. Chem. 2011, 83, 6559. 257. L. Wang, M. Yu, Z. Liu, W. Zhao, Z. Li, Z. Ni, C. Lia and L. Wei. New J. Chem. 2012, 36, 2176. 258. G. Sivaraman, T. Anand and D. Chellappa. RSC Adv. 2012, 2, 10605. 259. L. N. Chen, N. K. Weng, W. C. Wu and W. C. Chen. Mater. Chem. Phys. 2015, 163, 63. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51767 | - |
| dc.description.abstract | 靜電紡絲技術因其具備了便宜、易使用,且可簡單地將可控制的高分子結構製備成奈米尺度的纖維,所以近年來已廣泛地被研究討論。多功能性刺激應答型靜電紡絲奈米纖維,可藉由與曝露在外在的氣體、酸鹼值、溫度以及金屬離子等反應,來改變一個或多種的特性,如表面型態、光致發光及潤濕性等。然而大部份先前的文獻還是以溶液及薄膜的形態為主,而非奈米纖維。具備著高比表面積優點的靜電紡絲奈米纖維對於不一樣的刺激應答皆可達到高的感測靈敏性。在本論文中,我們設計且製備出多種不一樣結構的多功能性共聚物且將其製備成靜電紡絲奈米纖維,並探討其在多種感測元件上的應用,其結果詳述如下。
在本文的第一部份(第二章),我們成功製備出由DAQ混摻P(NIPAAm-co-NMA)高分子之靜電紡絲奈米纖維。實驗結果顯示出此具非孔洞性且整齊的P(NIAAm:NMA)(100:20)/1.5wt% DAQ靜電紡絲奈米纖維具有最快的感測NO(g) 特性。原因為高分子中最佳化比例的NMA可以有效的維持住纖維在水中的表面型態。另一方面,因為NIPAAm基團具有低臨界流體溫度的特性,當溫度介於25至50℃時,可以發現其感測NO(g)時的吸收光譜會有明顯的”開/關”交換現象。 本文的第二個部份(第三章),我們經由自由基聚合反應以及靜電紡絲技術製備出不規則共聚物poly(HPBO-co-NIPAAm-co-SA)多功能性靜電紡絲奈米纖維。 HPBO、NIPAAm和SA部份分別是設計成用來當作鋅離子(Zn2+)和酸鹼的感測、溫度感測以及物理交聯化合物。而由此共聚物(組成比例為HPBO:NIPAAm:SA = 1:93:6)所製備出的靜電紡絲奈米纖維展現出對於鋅離子的卓越偵測靈敏性(濃度可低至10-8 M)。因為在與鋅離子感測鍵結之後其經由光致發光產生的最大發散波長會有75 nm的藍位移發生,且其發光強度也增加了2.5倍。此外,此奈米纖維也展現出在10 °C與 40 °C的溫度循環變化中大量的體積(或是親-疏水性)變化。將這個奈米纖維置於感測鋅離子或鹼性的條件下時,我們發現隨著不一樣的溫度變化將會有個明顯的”開-關”光致發光現象產生。 本文的第三個部份(第四章),我們利用單軸靜電紡絲技術成功的製備出不規則共聚物poly(FBPY-co-NIPAAm-co-SA)螢光靜電紡絲奈米纖維。由共聚物(NIPAAm:SA:FBPY = 1:93:6)所製備出的平滑奈米纖維因具有較高的比表面積,所以對於鋅離子的感測擁有較佳的靈敏性(最低可至10-5M),而相同高分子所製成的薄膜其感測靈敏性則只有10-3M。為了更進一步提升感測上的表現,我們也另外製備出了多孔洞性的奈米纖維並且於針對鋅離子的感測上得到了比三種狀態中更好的靈敏性-10-6 M (高分子於THF溶液中的靈敏度約為10-5 M)。另外當溫度由40℃降低至10℃時,由於 NIPAAm基團疏水與親水間的特性轉換,這些奈米纖維也展示了有趣的”開/關”行為。 本文的第四個部分(第五章),我們成功經由靜電紡絲技術把不規則共聚高分子poly(BPYP-co-NIPAAm-co-SA)製備出新穎性且具光滑和多孔洞性的纖維。由高分子 (BPYP:NIPAAm:SA = 1:93:6)所製備出的多孔性奈米纖維因具有較高的比表面積,所以對於鋅離子的感測擁有優越的表現(濃度最低可至10-8M),而相同高分子所製成的薄膜與平滑性的奈米纖維其感測靈敏性為10-6M與10-7M。而因鎘離子對於BPYP感測基團的形成常數比鋅離子高,多孔性奈米纖維在感測鎘離子時展現出最佳的靈敏性表現為10-10M。另外當溫度由40℃ 降低至10 ℃時,這些奈米纖維在螢光光譜中也同樣展示出了有趣的”開/關”行為。 綜上所述,可發現這些具有高比表面積的靜電紡絲奈米纖維與其薄膜態比較起來偵測靈敏性皆有明顯的提升,顯示出其在於超高感測元件的應用上深具潛力。 | zh_TW |
| dc.description.abstract | Electrospinning technique has been extensively studied because it is inexpensive, facile, and enables nanometer-scaled fibers with controllable structures. Multifunctional stimulus-responsive electrospun (ES) nanofibers could change one or more properties, such as morphology, photoluminescence and wettability upon exposure to external signals such as gas, pH, temperature or metal ions. However, most aforementioned studies were based on solutions or thin films, but not on nanofibers. ES nanofibers with the advantage of high surface-to-volume ratio could achieve high sensitivity toward different stimuli. In this thesis, we design and prepare ES nanofibers with different structures using multifunctional copolymers for various sensory applications, as described in the following.
In the first part of this thesis (Chapter 2), multifunctional ES nanofibers were successfully prepared from the poly((N-isopropylacrylamide)-co-(N-hydroxymethyl acrylamide)) (poly(NIPAAm-co-NMA)) blending with 1,2-diaminoanthraquinone (DAQ). The experimental results show that non-porous and uniform P(NIPAAm:NMA) (100:20)/1.5wt% DAQ ES nanofibers exhibit the fastest NO(g) sensing characteristic due to the optimized NMA content for maintaining the fiber morphology in water. On the other hand, a significant on/off switching of the UV-vis absorption spectra on detecting the NO(g) were observed during 25 and 50℃ due to the low critical solution temperature (LCST) characteristic of the NIPAAm moiety. In the second part (Chapter 3), multifunctional ES nanofibers were prepared from random copolymers of poly{2-{2-hydroxyl-4-[5-(acryloxy)hexyloxy]phenyl} benzoxazole}-co-(N-isopropylacrylamide)-co-(stearyl acrylate)} (poly(HPBO-co- NIPAAm-co-SA)) using free-radical polymerization and followed by electrospinning. The moieties of HPBO, NIPAAm, and SA were designed to exhibit zinc ion (Zn2+) and pH sensing, thermoresponsiveness, and physical cross-linking, respectively. The ES nanofibers prepared from the copolymer (1:93:6 composition ratio for HPBO/NIPAAm/SA), showed ultrasensitivity to Zn2+ (as low as 10-8 M) because its photoluminescence emission maximum underwent a blue shift of 75 nm, and the emission intensity was enhanced 2.5-fold after detecting Zn2+ ion. Furthermore, the nanofibers exhibited a substantial volume (or hydrophilic–hydrophobic) change during the heating and cooling cycle between 10 °C and 40 °C. Such a temperature-dependent variation of the prepared nanofibers under a Zn2+ or basic condition led to a distinct on–off switching of photoluminescence. In the third part (Chapter 4), fluorescent ES nanofibers prepared from random copolymers of poly{[9,9-dihexylfluorene-2-bipyridine-7-(4-vinylphenyl)]-co- (N-isopropylacrylamide)-co-(stearylacid)} (poly(FBPY-co-NIPAAm-co-SA) were successfully prepared from the electrospinning technique with a single-capillary spinneret. The smooth nanofibers prepared from the copolymer (FBPY:NIPAAm:SA = 1:93:6) demonstrated superior sensitivity as low as 10-5 M in sensing zinc ions as compared to polymer films (10-3 M) due to the high specific surface area of nanofibers. The porous nanofibers were also manufactured to further enhance sensing performance and got the best sensitivity (10-6 M) among three states when sensing with zinc ions (sensitivity of polymer solution in THF was about 10-5 M). These nanofibers also exhibited an interesting “on/off” switch behavior with decreasing temperature from 40 to 10 ℃ due to the hydrophobic-hydrophilic transition of NIPAAm moiety. In the fourth part (Chapter 5), multifunctional electrospun porous fibers prepared from random copolymers of poly{2-{6-[5-(pyrene-3-yl)pyridine-2-yl] pyridine-3-yl-amino} ethylacrylate-co-(N-isopropylacrylamide)-co-(stearylacrylate)]} (poly(BPYP-co-NIPAAm-co-SA) were successfully prepared from the electrospinning technique with a single-capillary spinneret. The polymer porous fibers prepared from 1:93:6 composition ratios for BPYP/NIPAAm/SA showed a superior performance (10-8 M) in sensing zinc ions as compared to polymer films (10-6 M) and smooth fibers (10-7 M) due to the higher specific surface area than those of films and smooth fibers. Cadmium ion, with the higher formation constant than zinc ion with the BPYP probe, showed the best performance in 10-10 M by porous fibers. These fibers also exhibit an off/on switch behavior as the temperature decreased from 40 to 10 oC due to the hydrophobic-hydrophilic transition of NIPAAm moieties which cause the gradual swelling of fibers. The high surface-to-volume ratio of the above ES nanofibers significantly enhanced their sensitivity compared to that of thin films, which have the potentials in ultrahigh sensory device applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:48:43Z (GMT). No. of bitstreams: 1 ntu-104-D99549008-1.pdf: 9217205 bytes, checksum: cf9366aaf7a9f4c4deb201a781654b19 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii Abstract ………………………………………………………………….iii 中文摘要……………………………………………………………..……vi Table of Contents …………...………………………………………...….viii List of Figures ……………………………………………………………xii List of Tables……………………………………………………………xviii 1. Introduction 1 1.1 Introduction to Sensory Materials 1 1.2 Stimuli-Responsive Copolymers 4 1.2.1 Stimuli-Responsive Moiety 4 1.2.2 Double Stimuli-Responsive Copolymers 7 1.2.3 Multiple Stimuli-Responsive Copolymers 10 1.3 Metal Ion Sensors Using Fluorescent Copolymers …………………………..15 1.3.1 Pyridine Based Fluorescent Copolymers 16 1.3.2 HPBO Based Fluorescent Copolymers 17 1.3.3 Pyrene Based Fluorescent Copolymers 18 1.3.4 Multi-Functional Fluorescent Copolymers for Metal Ion Sensor 19 1.4 Introduction to Electrospun Nanofibers 21 1.4.1 Principle of Electrospun Nanofibers 21 1.4.2 The Processing of Electrospinning 22 1.4.2.1 Fundamental Aspect .22 1.4.2.2 Morphology of Electrospun Nanofibers .23 1.5 Electrospun Polymer Nanofibers for Sensory Applications ……..29 1.5.1 Gas Sensor 31 1.5.2 pH Sensor 32 1.5.3 Metal Ion Sensor 32 1.5.4 Thermo-Responsive Senor 35 1.6 Research Objectives 36 2. Multifunctional Electrospun Nanofibers Prepared from Poly((N-isopropyl- acrylamide)-co-(N-hydroxymethylacrylamide)) and Their Blends with 1,2-Diaminoanthraquinone for NO Gas Detection 38 2.1 Introduction 38 2.2 Experimental 40 2.2.1 Materials 40 2.2.2 Synthesis of Poly(NIPAAm-co-NMA) Random Copolymer 40 2.2.3 Preparation of Electrospun Nanofibers and Drop-cast Films 42 2.2.4 Characterization 43 2.3 Results and Discussion 44 2.3.1 Characterization of Poly(NIPAAm-co-NMA) 44 2.3.2 Morphology of Poly(NIPAAm-co-NMA) Electrospun Nanofibers 50 2.3.3 NO(g)-Tunable Sensing Property of Electrospun Nanofibers and Thin Films 53 2.3.4 The Effect of Thermo-responsive Property on Variation of NO(g) Sensing 57 2.4 Conclusion 59 3. Ultra Metal Ions and pH Sensing Characteristics of Thermoresponsive Luminescent Electrospun Nanofibers Prepared from Poly(HPBO-co- NIPAAm-co-SA) 60 3.1 Introduction 60 3.2 Experimental 61 3.2.1 Materials 61 3.2.2 Synthesis of 2-(2-hydroxyphenyl)benzoxazole Monomer 62 3.2.3 Synthesis of Poly(HPBO-co-NIPAAm-co-SA) Terpolymers 65 3.2.4 Processing of Electrospun Fibers and Drop-Cast Films 68 3.2.5 Characterization 69 3.3 Results and Discussion 70 3.3.1 Characterization of Poly(HPBO-co-NIPAAm-co-SA) 70 3.3.2 Morphology of Poly(HPBO-co-NIPAAm-co-SA) Electrospun Fibers 74 3.3.3 Metal ion sensing of Poly(HPBO-co-NIPAAm-co-SA) 77 3.3.4 Temperature and pH Sensing of Poly(HPBO-co-NIPAAm-co-SA) 82 3.4 Conclusion 86 4. Electrospun Polymer Nanofibers of P(FBPY-co-NIPAAm-co-SA): Preparation, Structural Control, Metal Ion Sensing and Thermoresponsive Characteristics 87 4.1 Introduction 87 4.2 Experimental 89 4.2.1 Materials 89 4.2.2 Synthesis of Sensing Moiety Precursors 90 4.2.3 Synthesis of Poly(FBPY) Homopolymer and Poly(FBPY-co- NIPAAm-co-SA) Terpolymers 92 4.2.4 Process of Electrospun Fiber and Drop-Casting Film 94 4.2.5 Characterization 94 4.3 Results and Discussion 95 4.3.1 Synthesis and Characterization of Poly(FBPY-co-NIPAAm-co-SA) 95 4.3.2 Morphology of Poly(FBPY-co-NIPAAm-co-SA) Electrospun Nanofibers 99 4.3.3 Metal Ion Sensing of Poly(FBPY-co-NIPAAm-co-SA) 102 4.3.4 Effects of Temperature on the Zinc-Ion Sensing of Poly(FBPY-co- NIPAAm-co-SA) 107 4.4 Conclusion 109 5. Ultrasensitive Metal Ion Probe by Multifunctional Electrospun Fibers Prepared from Poly(BPYP-co-NIPAAm-co-SA) 110 5.1 Introduction 110 5.2 Experimental 113 5.2.1 Materials 113 5.2.2 Synthesis of Sensing Moiety Precursors 113 5.2.3 Synthesis of Poly(BPYP) and Poly(BPYP-co-NIPAAm-co-SA) 116 5.2.4 Process of Electrospun Fibers and Drop-Casting Films 118 5.2.5 Characterization 118 5.3 Results and Discussion 119 5.3.1 Synthesis and Characterization of Poly(BPYP-co-NIPAAm-co-SA) 119 5.3.2 Morphology of Poly(BPYP-co-NIPAAm-co-SA) Electrospun Fibers .123 5.3.3 Fluorescence and Metal Ion Sensing of Poly(BPYP-co-NIPAAm-co-SA) 125 5.3.4 Effects of Temperature on the Zinc-Ion Sensing of Poly(BPYP-co-NIPAAm-co-SA) 130 5.4 Conclusion 132 6. Conclusions 134 Autobiography 137 Publication List 138 References 139 | |
| dc.language.iso | en | |
| dc.subject | 感測器 | zh_TW |
| dc.subject | 靜電紡絲奈米纖維 | zh_TW |
| dc.subject | 熱感應 | zh_TW |
| dc.subject | 鋅離子 | zh_TW |
| dc.subject | electrospun nanofibers | en |
| dc.subject | sensor | en |
| dc.subject | zinc ion | en |
| dc.subject | thermoresponsive | en |
| dc.title | 刺激應答靜電紡絲奈米纖維之製備、結構分析及感測應用 | zh_TW |
| dc.title | Stimulus-responsive Electrospun Nanofibers:
Preparation, Structure Analysis and Sensing Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭如忠(Ru-Jong Jeng),童世煌(Shih-Huang Tung),吳文中(Wen-Chung Wu),郭霽慶(Chi-Ching Kuo) | |
| dc.subject.keyword | 靜電紡絲奈米纖維,熱感應,鋅離子,感測器, | zh_TW |
| dc.subject.keyword | electrospun nanofibers,thermoresponsive,zinc ion,sensor, | en |
| dc.relation.page | 154 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-11-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
