請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51761
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃美嬌 | |
dc.contributor.author | Chien-Chou Weng | en |
dc.contributor.author | 翁健洲 | zh_TW |
dc.date.accessioned | 2021-06-15T13:48:23Z | - |
dc.date.available | 2025-12-31 | |
dc.date.copyright | 2015-12-01 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-11-09 | |
dc.identifier.citation | 1.Y. Demirel, Energy : Production, Conversion, Storage, Conservation, and Coupling, Springer, 2012.
2.S. B. Riffat and X. Ma, Thermoelectrics: A Review of Present and Potential Applications, Applied Thermal Engineering, vol. 23, pp. 913-935, 2003. 3.K. M. Saqr and M. N. Musa, Critical Review of Thermoelectrics in Modern Power Generation Applications, Thermal Science, vol. 13, pp. 165-174, 2009. 4.X. F. Zheng, C. X. Liu, Y. Y. Yan, and Q. Wang, A review of thermoelectrics research- Recent developments and potentials for sustainable and renewable energy applications, Renewable and Sustainable Energy Reviews, vol. 32, pp. 486-503, 2014. 5.T. M. Tritt and M. A. Subramanian, Thermoelectric materials, phenomena, and applications: A bird’s eye view, MRS Bulletin, vol. 31, pp. 188-198, 2006. 6.R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, vol. 413, pp. 597-602, 2001. 7.T. C. Harman, M. P. Walsh, B. E. Laforge, and G. W. Turner, Nanostructured thermoelectric materials, Journal of Electronic Materials, vol. 34, pp. L19-L22, 2005. 8.T. Caillat, J. P. Fleurial, G. J. Snyder, and A. Borshchevsky, Development of high efficiency segmented thermoelectric unicouples, 20th International Conference on Thermoelectrics, Beijing, China, pp. 282-285, 2001. 9.K. McEnaney, D. Kraemer, Z. Ren, and G. Chen, Modeling of concentrating solar thermoelectric generators, Journal of Applied Physics, vol. 110, pp. 074502(1-6), 2011. 10.G. Min and D. M. Rowe, Ring-structured thermoelectric module, Semiconductor Science and Technology, vol. 22, pp. 880-883, 2007. 11.A. Schmitz, C. Stiewe, and E. Müller, Preparation of ring-shaped thermoelectric legs from PbTe powders for tubular thermoelectric modules, Journal of Electronic Materials, vol. 7, pp. 1702-1706, 2013. 12.S. E. Jo, M. K. Kim, M. S. Kim, and Y. J. Kim, Flexible thermoelectric generator for human body heat energy harvesting, Electronics Letters, vol. 48, pp. 1013-1015, 2012. 13.Z. Cao, E. Koukharenko, M. J. Tudor, R. N. Torah, and S. P. Beeby, Screen printed flexible Bi2Te3-Sb2Te3 based thermoelectric generator, Journal of Physics: Conference Series, vol. 476, pp. 012031(1-5), 2013. 14.N. S. Hudak and G. G. Amatucci , Small-scale Energy Harvesting through Thermoelectric, Vibration, and Radiofrequency Power Conversion, J. Appl. Phys., vol. 103, pp. 101301, 2008. 15.G. L. Bennett, J. J Lombardo, R. J. Hemler, G. Silverman, C. W. Whitmore, W. R. Amos, E. W. Johnson, A. Schock, R. W. Zocher, T. K. Keenan, J. C. Hagan, and R. W. Englehart, Mission of Daring: The General-Purpose Heat Source Radioisotope Thermoelectric Generator, 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), San Diego, California, AIAA 2006-4096, 2006. 16.J. Chen, Thermodynamic analysis of a solar-driven thermoelectric generator, Journal of Applied Physics, vol. 79, pp. 2717-2721, 1996. 17.D. Kraemer, B. Poudel, H. P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, High-performance flat-panel solar thermoelectric generators with high thermal concentration, Natural Materials, vol. 10, pp. 532-538, 2011. 18.G. Chen, Theoretical efficiency of solar thermoelectric energy generators, Journal of Applied Physics, vol. 109, pp. 104908(1-8), 2011. 19.C. Suter, Z. R. Jovanovic, and A. Steinfeld, A 1 kWe thermoelectric stack for geothermal power generation—Modeling and geometrical optimization, Applied Energy, vol. 99, pp. 379-385, 2012. 20.M. Kambe, A Concept of 500kWe Thermoelectric Power Conversion System to Make Use of Waste Heat of PWR Power Plant, Annual Research Report, Central Research Institute of Electric Power Industry, Japan, 2004. 21.D. Astrain, J. G. Vián, A. Martínez, and A. Rodríguez, Study of the influence of heat exchangers’ thermal resistances on a thermoelectric generation system, Energy, vol. 35, pp. 602-610, 2010. 22.M. Chen, H. Lund, L. A. Rosendahl, and T. J. Condra, Energy Efficiency Analysis and Impact Evaluation of the Application of Thermoelectric Power Cycle to Today’s CHP systems, Appl. Energy, vol. 87, pp. 1231–1238, 2010. 23.R. Y. Nuwayhid, A. Shihadeh, and N. Ghaddar, Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling, Energy Conversion and Management, vol. 46, pp. 1631-1643, 2005. 24.D. Champier, J. P. Bédécarrats, T. Kousksou, M. Rivaletto, F. Strub, and P. Pignolet, Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove, Energy, vol. 36, pp. 1518-1526, 2011. 25.L. E. Juanicó, F. Rinalde, E. Taglialavore, and M. Molina, Development of a portable thermogenerator for uncontrolled heat source, Journal of Electronic Materials, vol. 42, pp.1846-1854, 2013. 26.V. Leonov and R. J. M. Vullers, Thermoelectric generators on living beings, Proceeding of 5th European Conference on Thermoelectrics, Odessa, Ukraine, pp. 47-52, 2007. 27.V. Leonov and R. J. M. Vullers, Wearable Thermoelectric Generators for Body-Powered Devices, J. Electron. Mater. vol. 38, pp. 1491-1498, 2009. 28.V. Leonov, Z. Wang, P. Fiorini, and C. V. Hoof, Modeling of micromachined thermopiles powered from the human body for energy harvesting in wearable devices, Sensors & Transducers Journal, vol. 103, pp. 29-43, 2009. 29.V. Leonov, Thermoelectric energy harvesting of human body heat for wearable sensors, IEEE Sensors Journal, vol. 13, pp. 2284-2291, 2013. 30.M. Plissonnier, C. Salvi, T. Lanier, and D. Coulaux, Thermoelectric Structure and Use of the Thermoelectric Structure to Form a Textile Structure, US Patent 0029146A1, 2008. 31.M. Matsumiya, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama, and S. Kanzaki, Thermoelectric CO gas sensor using thin-film catalyst of Au and Co3O4, Journal of The Electrochemical Society, vol. 151, pp. H7-H10, 2004. 32.T. Xu, H. Huang, W. Luan, Y. Qi, and S. T. Tu, Thermoelectric carbon monoxide sensor using Co-Ce catalyst, Sensors and Actuators B, vol. 133, pp. 70-77, 2008. 33.Y. Meydbray, R. Singh, and A. Shakouri, Thermoelectric module construction for low temperature gradient power generation, IEEE 24th International Conference on Thermoelectrics, pp.348-351, 2005. 34.G. Petrecca, Energy conversion and management: principles and applications, Chapter 15, Springer, 2014. 35.J. Yang, Potential Applications of thermoelectric waste heat recovery in the automotive industry, Proceeding of 24th International Conference on Thermoelectrics, Clemsom, South Carolina, USA, pp. 170-174, 2005. 36.101年自用小客車使用狀況調查報告,交通部,2013。 37.Y.Y. Hsiao, W.C. Chang, and S.L. Chen, A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine, Energy, vol. 35, pp. 1447-1454, Dec. 2010. 38.J. LaGrandeur, D. Crane, and A. Eder, Vehicle fuel economy improvement through thermoelectric waste heat recovery, DEER Conference, Chicago, 2005. 39.S. Kwak, C. A. Willner, and G. Konstantakopoulos, Integrated thermoelectric power generator and catalytic converter, US Patent 0223919A1, 2003. 40.J. C. Bass, N. B. Elsner, and F. A. Leavitt, Performance of the 1kW thermoelectric generator for diesel engines, Hi-Z technology, Inc., 1994. 41.A. S. Kushch, J. C. Bass, S. Ghamaty, and N. B. Elsner, Thermoelectric development at Hi-Z technology, Proceeding of 20th International Conference on Thermoelectrics, Beijing, China, pp. 422-430, 2001. 42.D. T. Crane and J.W. Lagrandeur, Progress report on BSST-led US department of energy automotive waste heat recovery program, Journal of Electronic Materials, vol. 39, pp. 2142-2148, 2010. 43.M. A. Karri, E. F. Thacher, and B. T. Helenbrook, Exhaust energy conversion by thermoelectric generator: two case studies, Energy Conversion and Management, vol. 52, pp. 1596-1611, 2011. 44.C. T. Hsu, D. J. Yao, K. J. Ye, and B. Yu, Renewable energy of waste heat recovery System for automobiles, Journal of Renewable and Sustainable Energy, vol. 2, pp. 013105(1-12), 2010. 45.C. T. Hsu, G. Y. Huang, H. S. Chu, B. Yu, and D. J. Yao, Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators, Applied Energy, vol. 88, pp. 1291–1297, 2011. 46.C. K. Liu, W. K. Han, and H. C. Hsieh, Thermoelectric waste heat recovery for automotive, 9th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), pp. 57-60, 2014. 47.W. Sun, P. Hu, Z. Chen, and L. Jia, Performance of cryogenic thermoelectric generators in LNG cold energy utilization, Energy Conversion and Management, vol. 46, pp. 789-796, 2005. 48.S. Karabetoglu, A. Sisman, Z. F. Ozturk, and T. Sahin, Characterization of a thermoelectric generator at low temperatures, Energy Conversion and Management, vol. 62, pp. 47-50, 2012. 49.D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, CsBi4Te6: a high-performance thermoelectric material for low-temperature applications, Science, vol. 287, pp. 1024-1027, 2000. 50.S. Lal, S. Loo, D. Y. Chung, T. Kyratsi, M. G. Kanatzidis, C. Cauchy, and T. P. Hogan, Thermoelectric module for low temperature applications, Materials Research Society Symposia Proceedings, vol. 691, pp. G6.2.1-G6.2.9, 2002. 51.S. R. Harutyunyan, V. H. Vardanyan, A. S. Kuzanyan, V. R. Nikoghosyan, S. Kunii, K. Winzer, K. S. Wood, and A. M. Gulian, Laser-powered thermoelectric generators operating at cryogenic temperatures, Applied Physics Letters, vol. 87, pp. 194114(1-3), 2005. 52.M. Kambe, R. Morita, K. Omoto, Y. Koji, T. Yoshida, and K. Noishiki, Thermoelectric power conversion system combined with LNG vaporizer, Journal of Power and Energy Systems, vol. 2, pp. 1304-1319, 2008. 53.M. Kambe, R. Morita, K. Omoto, Y. Koji, T. Yoshida, and K. Noishiki, Thermoelectric module performance in cryogenic temperature, Journal of Power and Energy Systems, vol. 4, pp. 12-26, 2010. 54.A. Montecucco and A. R. Knox, Accurate simulation of thermoelectric power generating systems, Applied Energy, vol. 118, pp. 166-172, 2014. 55.G. W. Liang, J. M. Zhou, and X. Z. Huang, Output characteristics analysis of thermoelectric generator based on accurate numerical model, Proceeding of 2nd International Conference on Asia-Pacific Power and Energy Engineering, Chengdu, 2010. 56.G. W. Liang, J. M. Zhou, and X. Z. Huang, Analytical model of series semiconductor thermoelectric generators, Journal of Jiangsu University of Science and Technology, vol. 32, PP. 314-319, 2011. 57.G. W. Liang, J. M. Zhou, and X. Z. Huang, Analytical model of parallel thermoelectric generator, Applied Energy, vol. 88, pp. 5193-5199, 2011. 58.E. E. Antonova and D. C. Looman, Finite elements for thermoelectric device analysis in ANSYS, Proceeding of 24th International Conference on Thermoelectrics, Clemsom, South Carolina, USA, pp. 200-203, 2005. 59.M. Chen, L. A. Rosendahl, and T. Condra, A three-dimensional numerical model of thermoelectric generators in fluid power systems, International Journal of Heat and Mass Transfer, vol. 54, pp. 345-355, 2011. 60.N. J. Hoboken, Electrical Energy Efficiency: Technologies and Applications, Wiley, 2012. 61.International Energy Agency, Light’s Labour’s Lost. Policies for Energy-efficient Lighting. In support of the G8 Plan of Action, 2006. 62.International Energy Agency, Barriers to Technology Diffusion: The Case of Compact Fluorescent Lamps, 2006. 63.Y. X. Qin, D. Y. Lin, and S. Y. R. Hui, A simple method for comparative study on the thermal performance of light emitting diodes (LED) and fluorescent lamps, IEEE Transactions on Power Electronics, vol. 24, no. 7, pp. 1811–1818, 2009. 64.M. F. Rubén, Recovery system of the heat dissipated by luminaires, lamps and led devices, European Patent Application EP 2549179A2, 2013. 65.D. L. Simon, J. Ivey, and J. R. Scapa, LED light with thermoelectric generator, US Patent 0234107A1, 2011. 66.T. Kajikawa and T. Onishi, Development for advanced thermoelectric conversion systems, Proceeding of 26th International Conference on Thermoelectrics, Jeju, Korea, pp. 322-330, 2007. 67.M. C. Lin, C. Wang, M. H. Tsai, F. T. Chung, M. S. Yeh, T. T. Yang, M. H. Chang, and L. H. Chang, Suppression of thermal oscillation induced by liquid-nitrogen in the CESR-type SRF module, IEEE Transactions on Applied Superconductivity, vol. 19, pp. 1427-1431, 2009. 68.Z. Luo, A simple method to estimate the physical characteristics of a thermoelectric cooler from vendor datasheets, Electronics Cooling, vol. 22, pp. 22-27, 2008. 69.T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flow, Computers Fluids, vol.24, pp. 227-238, 1995. 70.ANSYS, Inc., ANSYS FLUENT 12.0 Theory Guide, 2009. 71.http://www.micforg.co.jp/en/c_s2090e.html 72.Y. A. Cengel, Heat and Mass Transfer: A Practical Approach, 3rd ed., McGraw-Hill, New York, 2006. 73.ANSYS, Inc., ANSYS FLUENT 12.0 User’s Guide, 2009. 74.C. T. Hsu, G. Y. Huang, H. S. Chu, B. Yu, and D. J. Yao, An Effective Seebeck Coeffieient Obtained by Experimental Results of a Thermoelectric Generator Module, Applied Energy, vol. 88, pp. 5173–5179, 2011. 75.http://www.thrashercharged.com/tech_htm/exhaust.shtm 76.C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, D.J. Yao, An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module, Applied Energy, vol. 88, pp. 5173-5179, 2011. 77.http://www.kryotherm.com/index2b57.html?tid=81 78.http://www.matbase.com/material-categories/ 79.S. Narasimhan and J. Majdalani, Characterization of compact heat sink models in natural convection, IEEE Transactions on Component Packaging Technologies, vol. 25, pp. 78-86, 2002. 80.S. Narasimhan and J. Majdalani, Compact heat sink simulations in both forced and natural convection flows, Proceeding of 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, St Louis, MO, 2002. 81.K. A. Brucker and J. Majdalani, Equivalent thermal conductivity for compact heat sink models based on the Churchill and Chu correlation, IEEE Transactions on Component Packaging Technologies, vol. 26, pp. 158-164, 2003. 82.K. A. Brucker and J. Majdalani, Effective thermal conductivity of common geometric shapes, International Journal of Heat Mass Transfer, vol. 48, pp. 4779-4796, 2005. 83.H. Ye, S. Koh, H. van Zeijl, A. W. J. Gielen, and G. Q. Zhang, A review of passive thermal management of LED module, Journal of Semiconductors, vol. 32, pp. 014008(1-4), 2011. 84.C. S. Chang, J. K. Liu, C. H. Wang, and H. S. Pei, LED lamp cooling apparatus with pulsating heat pipe, US patent 7547124B2, 2009. 85.http://www.peacesoftware.de/einigewerte/stickstoff_e.html 86.http://www.enzotech.com/heat-sinks-with-fan/mwf/mwf-42-5-42-5.html 87.http://www.tande.com.tw/te-tecoolmodule.htm 88.http://www.lairdtech.com/products/category/646 89.http://www.ferrotec.com.cn/mostlyproduct/index?id=002005 90.Adrian Bejan, Convection heat transfer, 3rd ed., John Wiley & Sons, Inc., 2004 91.P. W. Dittus and L. M. K. Boelter, Heat transfer in automobile radiator of the tubular type, International Communications in Heat and Mass Transfer, vol. 12, pp. 3-22, 1985. 92.V. V. Klimenko, Heat transfer intensity at forced flow boiling of cryogenic liquids in tubes, Cryogenics, vol. 22, pp. 569-576, 1982. 93.V. V. Klimenko, A generalized correlation for two-phase forced flow heat transfer- second assessment, International Journal of Heat and Mass Transfer, vol. 33, pp. 2073-2088, 1990. 94.M.M. Shah, Prediction of heat transfer during boiling of cryogenics fluids flowing in tubes, Cryogenics, vol. 24, pp. 231-236, 1984. 95.S. G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, Journal of Heat Transfer, vol. 112, pp. 219-228, 1990. 96.B. Stephan, Supplement of Worksheets and Useful Datas, Short course in cryogenics at SRRC﹐1999. 97.http://www.cryogenics.nist.gov/MPropsMAY/materialproperties.htm | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51761 | - |
dc.description.abstract | 本論文針對三種不同的熱電發電器應用實例,分別提出適合的分析方法來進行探究,並對回收系統建立熱阻模型,對模型近似解的準確性進行探討。
第一個應用實例是汽車廢熱回收。我們建立一個從汽車排氣管抽取廢熱的熱電發電器廢熱回收系統數值模型,並以套裝軟體FLUENT模擬研究熱電偶數量及熱電偶覆蓋率對此廢熱回收系統效率的影響。我們發現較多的熱電偶並不一定能產生較多的電力,因為貼附在下游熱電偶的熱沉會從上游的熱交換器抽取熱能,導致上游熱電偶的發電力下降。此外,當熱電偶數量固定的時候,下游未貼附熱電偶的熱交換器有助於提升發電力。這是因為未貼附熱電偶的區域有較高的溫度,熱會藉由牆壁從下游傳至上游的熱電偶,進而增加上游熱電偶的溫差及發電功率。 第二個應用實例是從桌燈廢熱回收。我們將熱電模組與桌燈結合並使用自然對流鰭片進行散熱,同時進行模擬及實驗研究。在模擬中使用Compact heat sink 模型取代真實鰭片的模擬。為了節省計算量且正確評估發電力功率,我們先模擬開迴路系統得開路溫差,再提出熱電發電器熱阻模型預測閉迴路發電功率;另一方面為求驗證,我們也直接進行同時考慮熱電效應之閉迴路系統模擬。結果顯示,前者預測出來的結果與後者的結果相近,但兩者與量測結果相比卻有較高的最大發電力率及較低的最佳匹配負載。我們將此歸因於電路上寄生電阻的影響,而這同時也是為何將熱電模組並聯所得到的電力會比串聯低的原因。最後,從分析結果可知,燈管與熱電模組熱端間的高熱阻是低廢熱回收率的主要原因之一。 最後一個應用實例是低溫氮系統廢冷回收。針對低溫氮排放系統,我們研究如何利用此低溫氮與室溫之溫差來發電。我們先使用熱電發電器熱阻模型來預測,再以實驗來進行驗證。模型預測及實驗量測結果皆顯示,使用堆疊式熱電模組可利用更大的溫差且能獲得較多的電力;當使用四片雙層熱電模組時,我們可以從3.6g/s之低溫氮中得到0.93W的電力。然而,實驗得到的電力卻低於模型預測的結果,未考慮系統表面結冰之影響是造成預測失準的原因。另一方面,我們也探討了熱電模組數量對發電力的影響,且在實驗中發現了最佳熱電模組數量的存在。 最後,熱電應用常使用的熱電發電器數學模型常需要搭配數值方法才能求解;為求方便,我們推導此模型的最大發電力及最佳匹配負載的的近似解,並探討它們的適用性及準確性。結果指出,此近似解對具有較高冷熱端熱阻或相近冷熱端熱阻的熱電發電器能源回收系統,以及高操作溫度和低溫差的應用有較好的準確性。 | zh_TW |
dc.description.abstract | In this thesis, the proper analysis methods were proposed for three thermoelectric power generator (TEG) applications; relevant thermal-resistance model was carefully built and the accuracy of the approximate solution for this model was discussed.
The first TEG application is associated with the automotive waste heat recovery. The influences of the number and the coverage rate on the surface of the heat-exchanger of the thermoelectric couples (TE couples) were explored via FLUENT simulation. It was found that implementing more TE couples does not necessarily generate more power because the heat sinks attached to the downstream TE couples loot heat from the upstream hotter wall, resulting in a performance degradation of the upstream TE couples. Furthermore, for a given number of TE couples, the performance is better when a portion of the heat exchanger is uncovered with TE couples at the downstream side, because the uncovered part becomes hotter and consequently transfers heat from the downstream wall to the upstream TE couples. The second application is to recover waste heat from a table lamp. The table lamp integrated with TEG modules and cooled by a natural convection heat sink was investigated experimentally as well as numerically. In the simulation, the heat sink was not truly simulated but modeled by the so-called compact heat sink model. To reduce the computational amount and still accurately estimate the power generation, the open-circuit system was first simulated and a TEG thermal-resistance model was built for predicting the power generation rate based on the open-circuit temperature difference. For verifying, closed-circuit simulation which properly takes Peltier and Joule’s heats into consideration was also performed. The investigation shows the prediction from the TEG thermal-resistance model is in a good agreement with the closed-circuit simulation result; the maximum power generation rate is slightly larger and the optimal electric load is slightly smaller than the experimental measurements however. We attribute these differences to the effect of the parasitic electric resistances in the system. A same reason is employed to explain a lower maximum power generation rate observed in the parallel network than in the series network. Finally, it was concluded that the low hot-side thermal conductance is the main reason for the low power generation efficiency. The final application is about the waste cold recovery. A TEG waste-cold recovery system was studied for the cryogenic-nitrogen exhaust system. A TEG thermal-resistance model was constructed for predicting the power generation rate and experiments were performed for verification. Both the model analysis and the experiment show that using cascade TEG modules can access more temperature difference and thus generate more power; a power generation rate as high as 0.93W was obtained by the present system when four two-layer cascade TEG modules were employed at a mass flow rate of cryogenic nitrogen of 3.6 g/s. However, the measured power generation rates are less than the predictions. The ice frozen over the thermal spreader, which is not taken into consideration in the model, must take the responsibility. On the other hand, the influence of the TEG-module number was also explored and the existence of the optimal number of TEG modules was observed in the experiment. Finally, the analytical solution of a common TEG thermal-resistance model is usually unavailable. For convenience, the approximate (empirical) solutions of the maximum power generation rate and the optimal electric load for the TEG thermal-resistance model were derived and investigated in various situations. The investigation shows that the approximate solution has a better accuracy when in the TEG recovery system the hot-side and cold-side thermal conductances are low or nearly equal or when the system is operated at high operating temperatures or with a low temperature difference. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:48:23Z (GMT). No. of bitstreams: 1 ntu-104-D99522007-1.pdf: 9973479 bytes, checksum: 07c5cb5ee076a526834893e4795ac5b8 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書 .........................................I
誌謝....................................................II 中文摘要 ...............................................III Abstract.................................................V Outline.................................................IX List of Tables........................................XIII List of Figures.........................................XV Nomenclature...........................................XXI Chapter 1 Introduction.................................1 1.1 Research background..............................1 1.1.1 TEG module.......................................1 1.1.2 TEG applications in the waste heat recovery......3 1.1.3 TEG application in the automotive waste heat recovery.........................................6 1.1.4 TEG applications in the waste cold recovery......9 1.1.5 The influence of the electric field on the thermal field...........................................10 1.2 Research motivations and objectives.............12 1.2.1 Automotive waste heat recovery..................13 1.2.2 Table-lamp waste heat recovery..................13 1.2.3 Waste cold recovery from exhausted cryogenic nitrogen........................................15 1.3 Thesis organization.............................16 Chapter 2 The Fundamental Thermoelectric Theory.......17 2.1 Thermoelectric effect...........................17 2.2 Thermoelectric equations of a TEG...............18 2.3 Thermoelectric equations of a TEC...............21 2.4 The thermoelectric properties of the thermoelectric module..........................................23 Chapter 3 A Simulation Study of Automotive Waste Heat Recovery....................................25 3.1 Numerical experiment............................25 3.1.1 Simulation model................................25 3.1.2 Grid configuration..............................26 3.1.3 Simulation method...............................27 3.1.4 Boundary conditions.............................30 3.1.5 Convergence criteria............................31 3.1.6 Power calculation...............................32 3.2 Result and discussion...........................34 3.2.1 Effect of the length of the heat exchanger completely covered with TE couples..............35 3.2.2 Effect of the length of the heat exchanger partially covered with TE couples...............36 3.2.3 Comparison between completely and partially covered situations......................................38 3.2.4 Waste-heat recovery efficiency..................39 3.3 Conclusion......................................41 Chapter 4 A Study of the Table-Lamp Waste Heat Recovery ............................................43 4.1 Experiment......................................43 4.1.1 Experimental setup..............................43 4.1.2 The thermoelectric properties of the TEG module (TGM-199-1.4-1.5)...............................44 4.1.3 Experimental procedures.........................46 4.1.4 Measurement devices.............................46 4.2 Simulation......................................47 4.2.1 Simulation model................................47 4.2.2 Compact heat sink model.........................48 4.2.3 Grid configuration..............................48 4.2.4 Simulation method...............................49 4.2.5 Boundary conditions.............................51 4.3 The evaluation of the power generation rate.....53 4.3.1 TEG thermal-resistance model....................53 4.3.2 Closed-circuit simulation.......................55 4.4 Result and Discussion...........................57 4.4.1 Verification of the simulation method...........57 4.4.2 The simulation result of the lamp-TEG system....58 4.4.3 Experimental measurement........................61 4.4.4 The efficiency of the lamp waste heat recovery..64 4.5 Conclusion......................................65 Chapter 5 A Waste Cold Recovery from Exhausted Cryogenic Nitrogen....................................67 5.1 Experiment......................................67 5.1.1 The cryogenic-nitrogen waste-cold-recovery system ................................................67 5.1.2 Experimental procedures.........................70 5.1.3 The estimation of the nitrogen-flow temperature.71 5.2 The TEG thermal-resistance model................72 5.2.1 Model description...............................72 5.2.2 The thermoelectric properties of the TEG module.74 5.2.3 The estimation of Kspreader and hf..............77 5.3 The predicted results by the TEG thermal-resistance model...........................................81 5.3.1 The performance of the TEG waste-cold recovery system..........................................81 5.3.2 TEG-based self-heated exhaust system............83 5.4 Experimental result and discussion..............85 5.5 Conclusion......................................89 Chapter 6 The Approximate Solution for the TEG Thermal- Resistance Model............................91 6.1 Approximate solution............................91 6.2 Illustration....................................94 6.2.1 The influence of mH and mC......................95 6.2.2 The influence of ZTa and ZΔTsys ................96 6.3 Conclusion......................................96 Chapter 7 Conclusions and Future Works................97 7.1 Conclusions.....................................97 7.2 Future works...................................100 References.............................................103 Tables.................................................113 Figures................................................124 | |
dc.language.iso | en | |
dc.title | 以熱電發電器進行廢熱(冷)回收之分析研究 | zh_TW |
dc.title | An Investigation of the Waste Heat/Cold Recovery in Use of Thermoelectric Power Generators | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳希立,王安邦,傅武雄,饒達仁,呂明璋 | |
dc.subject.keyword | 熱電發電器,廢熱回收,廢冷回收,熱阻模型,汽車,桌燈, | zh_TW |
dc.subject.keyword | Thermoelectric Power Generator (TEG),Waste Heat Recovery,Waste Cold Recovery,Thermal-Resistance Model,Automobile,Table Lamp, | en |
dc.relation.page | 162 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-11-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 9.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。