請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51760完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 唐牧群 | |
| dc.contributor.author | Mang-Yuan Yang | en |
| dc.contributor.author | 楊莽原 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:48:20Z | - |
| dc.date.available | 2016-03-08 | |
| dc.date.copyright | 2016-03-08 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-11-06 | |
| dc.identifier.citation | Babbie, E. (2013). The basics of social research. Cengage Learning.
Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or fun: measuring hedonic and utilitarian shopping value. Journal of consumer research, 644-656. Bigne-Alcaniz, E., Ruiz-Mafe, C., Aldas-Manzano, J., & Sanz-Blas, S. (2008). Influence of online shopping information dependency and innovativeness on internet shopping adoption. Online Information Review, 32(5), 648-667. Case, D. O. (Ed.). (2012). Looking for information. A survey of research on information seeking, needs and behavior. Emerald Group Publishing. Celma, O. (2010). Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer. Chang, S. J., & Rice, R. E. (1993). Browsing a multidimensional framework. Annual review of information science and technology, 28, 231-276. Cooper, W. S. (1978). A Perspective on the Measurement of Retrieval Effectiveness. Drexel Library Quarterly, 14(2), 25-39. Dieberger, A., Dourish, P., Hook, K., Resnick, P., & Wexelblat, A. (2000). Social navigation: techniques for building more usable systems. Interactions,7(6), 36-45. Elberse, A. (2008). Should you invest in the long tail?. Harvard business review, 86(7/8), 88. Fidel, R. (2008). Are we there yet Mixed methods research in library and information science?. Library & Information Science Research, 30(4), 265-272. Franke, N., Keinz, P., & Steger, C. J. (2009). Testing the value of customization: when do customers really prefer products tailored to their preferences?. Journal of Marketing, 73(5), 103-121. Gaffney, M., & Rafferty, P. (2009). Making the long tail visible: social networking sites and independent music discovery. Program: electronic library and information systems, 43(4), 375-391. Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53. Inskip, C., MacFarlane, A., & Rafferty, P. (2008). Meaning, communication, music towards a revised communication model. Journal of Documentation, 64(5), 687-706. Jansen, B. J., & Rieh, S. Y. (2010). The seventeen theoretical constructs of information searching and information retrieval. Journal of the American Society for Information Science and Technology, 61(8), 1517-1534. Jiang, P. (2002). A model of price search behavior in electronic marketplace. Internet Research, 12(2), 181-190. Konstan, J. A., & Riedl, J. (2012). Recommender systems: from algorithms to user experience. User Modeling and User-Adapted Interaction, 22(1-2), 101-123. Kramer, T. (2007). The effect of measurement task transparency on preference construction and evaluations of personalized recommendations. Journal of Marketing Research, 44(2), 224-233. Kwasnik, B. H. (2000). The role of classification in knowledge represantation and discovery. Library trends, 48(1), 22-47. Kwon, K., Cho, J., & Park, Y. (2009). Influences of customer preference development on the effectiveness of recommendation strategies. Electronic Commerce Research and Applications, 8(5), 263-275. Lacher, K. T. (1989). Hedonic consumption: Music as a product. Advances in Consumer Research, 16(1), 367-373. Lee, D., Park, J. Y., Kim, J., Kim, J., & Moon, J. (2011). Understanding music sharing behaviour on social network services. Online Information Review, 35(5), 716-733. Lin, W. Y. (2007). The Concept and Applications of Faceted Classification. Journal of Educational Media & Library Sciences, 44(2), 153-171. Midgley, D. F., & Dowling, G. R. (1978). Innovativeness: the concept and its measurement. Journal of consumer research, 229-242. Mochel, K. (2006). Search in the Web shopping environment. Journal of the American Society for Information Science and Technology, 57(6), 819-824. Peppers, D., & Rogers, M. (1999). Enterprise one to one. Random House, New York, NY. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of applied psychology, 88(5), 879. Roehrich, G. (2004). Consumer innovativeness: concepts and measurements. Journal of Business Research, 57(6), 671-677. Ross, C. S. (1999). Finding without seeking: the information encounter in the context of reading for pleasure. Information Processing & Management, 35(6), 783-799. Santini, R. M. (2011). Collaborative classification of popular music on the internet and its social implications. OCLC Systems and Services, 27(3), 210-247. Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering recommender systems. The adaptive web, 291-324. Simonson, I. (2005). Determinants of customers’ responses to customized offers conceptual framework and research propositions. Journal of Marketing, 69(1), 32-45. Tang, M. C. (2014). Exploring the Impact of Users’ Preference Diversity on Recommender System Performance. HCI in Business: First International Conference, HCIB 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014, Proceedings, 681-689. Tang, M. C., Ke, Y. L., & Sie, Y. J. (2013). The Estimation of aNobii Users’ Reading Diversity Using Book Co-ownership Data: A Social Analytical Approach. Social Informatics, Springer International Publishing, 274-283. Tang, M. C., Sie, Y. J., & Ting, P. H. (2014). Evaluating books finding tools on social media: A case study of aNobii. Information Processing & Management, 50(1), 54-68. Tversky, A., & Simonson, I. (1993). Context-dependent preferences. Management Science, 39(10), 1179-1189. Wilson, P. (1973). Situational relevance. Information storage and retrieval, 9(8), 457-471. Wilson, T. D. (1999). Models in information behaviour research. Journal of documentation, 55(3), 249-270. Wilson, T. D. (2000). Human information behavior. Informing science, 3(2), 49-56. Xu, Y. (2007). Relevance judgment in epistemic and hedonic information searches. Journal of the American Society for Information Science and Technology, 58(2), 179-189. Ylikoski, T. (2005). A sequence analysis of consumers’ online searches. Internet Research, 15(2), 181-194. Zhang, N. (2011). The role of web 2.0 applications on niche culture diffusion. Online Information Review, 35(5), 734-746. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51760 | - |
| dc.description.abstract | 本研究以Spotify為研究平台,探討音樂社交軟體的使用者使用不同音樂發掘工具進行音樂欣賞時的主觀評價和客觀推薦成效,以及與使用者偏好結構之間的關係。本研究採用了量化與質化結合的研究方法,希望能從多維度、更準確地評估音樂發掘工具之效用。
首先,量化研究的部份包括主觀評價和客觀推薦成效兩個測量項目:1. 通過實證型的小型實驗來測量受試者之主觀評價,自變項為Spotify所提供的四種音樂發掘工具(地區排行導覽工具、情境風格導覽工具、曲目電臺推薦工具、音樂追蹤導覽工具);中介變項為受試者的偏好結構(偏好洞見、偏好多樣性、偏好開放性);依變項為實驗後問卷中收集的受試者主觀評價;2. 客觀推薦成效則由受試者在實驗中產生的曲目集合數量之比例決定。質化研究的部份,採用訪談法,通過實驗後對受試者進行針對性的深度訪談,為量化研究的結果提供檢定、補充和解釋。 研究結果發現:一、不同音樂發掘工具的推薦效用的確有所差異。二、使用者面對不同音樂發掘工具時的主觀評價與客觀推薦成效並不一致。三、使用者的個人偏好結構的確會影響音樂發掘工具的推薦效用。 | zh_TW |
| dc.description.abstract | This study aim to explore the subjective evaluations and objective effectiveness of different music recommendation tools offered by Spotify, a music social software, and how does this result relate to the preference structure of users. We employ a mixed methods research in this study, attempt to assess the effectiveness of music recommendation tools more precisely in multi-dimensions.
A quantitative research was conducted to evaluate the objective effectiveness and subjective evaluations: 1. The participants’ subjective evaluations was measured by a small-scale empirical experiment, setting the four music recommendation tools offered by Spotify as independent variable, and the preference structure of users as intermediary variable, and the subjective evaluations collected in the questionnaire as dependent variable. 2. The objective effectiveness was calculated by the proportions of tracks’ sets generated in the experiment. And we conducted an unstandardized in-depth interview after the experiment as a qualitative research method, making some triangulations, supplements and explanations. Some major findings are as follows. First, different music recommendation tools do have a difference of effectiveness. Second, the subjective evaluations given by users are not exactly consistent with the objective effectiveness of different music recommendation tools. Furthermore, the users’ preference structure do have an impact on the effectiveness of music recommendation tools. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:48:20Z (GMT). No. of bitstreams: 1 ntu-104-R02126022-1.pdf: 1882127 bytes, checksum: fdc9690fb2fb4c8b66e63d5440afb1a9 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 第一章 緒論 1
第一節 研究背景 1 第二節 研究動機 4 第三節 研究問題 7 第四節 名詞解釋 10 第二章 文獻回顧 13 第一節 音樂尋求行為 13 第二節 探索式搜尋與社會性導覽 16 第三節 推薦系統評估 22 第四節 偏好與客製化推薦 25 第五節 小結 34 第三章 研究設計與實施 37 第一節 研究架構 37 第二節 研究對象與工具 40 第三節 實驗流程 46 第四節 資料搜集與分析 49 第四章 研究結果與討論 54 第一節 受試者基本資料處理 54 第二節 發掘工具效用與評價 56 第三節 偏好結構資料分析 64 第四節 綜合討論 69 第五章 結論與限制 75 第一節 研究結論 75 第二節 研究限制及改進方向 79 附錄一:Spotify音樂發掘工具研究同意書 82 附錄二:個人偏好結構問卷 84 附錄三:Spotify桌面版軟體應用情況問卷 86 附錄四:個人基本資料 87 參考文獻 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 音樂社交軟體 | zh_TW |
| dc.subject | 偏好結構 | zh_TW |
| dc.subject | recommendation system | en |
| dc.subject | preference structure | en |
| dc.subject | music social software | en |
| dc.title | 音樂社交軟體Spotify的發掘工具效用評估 | zh_TW |
| dc.title | Evaluating Music Discovery Tools on Spotify:
the Role of User Preference Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡天怡,林頌堅 | |
| dc.subject.keyword | 音樂社交軟體,偏好結構,推薦系統, | zh_TW |
| dc.subject.keyword | music social software,preference structure,recommendation system, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-11-09 | |
| dc.contributor.author-college | 文學院 | zh_TW |
| dc.contributor.author-dept | 圖書資訊學研究所 | zh_TW |
| 顯示於系所單位: | 圖書資訊學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
