請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51748完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧茂華 | |
| dc.contributor.author | Shang-Shih Li | en |
| dc.contributor.author | 李尚實 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:47:39Z | - |
| dc.date.available | 2016-02-15 | |
| dc.date.copyright | 2016-02-15 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-11-12 | |
| dc.identifier.citation | [1] M. Poplawska, M. Bystrzejewski, I.P. Grudzin´ ski, M.A. Cywin´ ska,
J. Ostapko, A. Cieszanowski, “Immobilization of gamma globulins and polyclonal antibodies of class IgG onto carbon-encapsulated iron nanoparticles functionalized with various surface linkers”, Carbon, 74 (2014), pp. 180-194. [2] B. Michał, H. Andrzej, L. Hubert, C. Stanisław, K. Wojciech, “Combustion synthesis route to carbon-encapsulated iron nanoparticles ”, Diamond Relat. Mater., 16 (2007), pp. 225-228. [3] A. Taylor, Y. Krupskaya, S. Costa, S. Oswald, K. Krämer, S. Füssel, R. Klingeler, B. Büchner, E. Borowiak-Palen, M.P. Wirth, “Functionalization of carbon encapsulated iron nanoparticles ” J. Nanoparticle Res., 12 (2010), pp. 513-519. [4] J.J. Host, V.P. Dravid, M.H. Teng, “Systematic study of graphite encapsulated nickel nanocrystal synthesis with formation mechanism implications”, J. Mater. Res., 13 (1998), pp. 2547-2555. [5] M.H. Teng, C.I Hsiao, Y.L. Hsiao, “Formation mechanism ofmicrocrystalline spherical graphite particles in solidified nickel”, Diamond Relat. Mater., 18 (2009), pp. 396-398. [6] 梁家豪,蔡欣璋。TW200923309 (2009)。 [7] 鄭啟煇 (2002) “用電弧法在甲烷與氦氣混合氣體中合成石墨包裹奈米鎳晶粒的初步結果”,碩士論文,國立台灣大學地質科學系。 [8] 陳永得 (2006) “以人造鑽石及噴氣式電弧法合成石墨包裹奈米鐵晶粒之初步結果”,碩士論文,國立台灣大學地質科學系。 [9] M.H. Teng, S.W. Tsai, C.I Hsiao, Y.D. Chen, “Using diamond as a metastable phase carbon source to facilitate the synthesis of graphite encapsulated metal (GEM) nanoparticles by an arc-discharge method”, J. Alloys Compd., 434-435 (2007), pp. 678-681. [10] 邱志成 (2012) “以高合成效率的製程方法合成石墨包裹奈米鐵、 鈷、鎳以及銅晶粒之初步研究”,碩士論文,國立台灣大學地質科 學系。 [11] C.C. Chiu, J.C. Lo, M.H. Teng, “A novel high efficiency method for the synthesis of graphite encapsulated metal (GEM) nanoparticles”, Diamond Relat. Mater., 24 (2012), pp.179-183. [12] 李尚實 (2006) “不同粒徑大小的石墨包裹奈米鎳晶粒在NP-9膠體 系統中之分散研究”,碩士論文,國立台灣大學地質科學系。 [13] S.S. Lee, M.H. Teng, “Dispersion of graphite encapsulated nickel nanoparticles in a NP-9 colloidal system”, Diamond Relat. Mater., 20 (2011), pp.183-186. [14] M. Tomita, Y. Saito, T. Hayashi, “LaC2 Encapsulated in Graphite Nano-Particle”, Jpn. J. Appl. Phys., 32 (1993), pp. L280-282. [15] R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotraand, S. Subramoney, “Single Crystal Metals Encapsulated in Carbon Nanoparticles,” Science, 259 (1993), pp. 346-348. [16] W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, “Solid C60:a new form of carbon”, Nature, 318 (1990), pp.354-358. [17] M.H. Teng, J.J. Host, J.H. Hwang, B.R. Elliott, J.R. Weertman, T.O. Mason, V.O. Dravid, “Nanophase Ni particles produced by a blown are method”, J. Mater. Res., 10 (1995), pp. 233-236. [18] V.P. Dravid, J.J. Host, M.H. Teng, B.R. Elliott, J.H. Hwang, D.L. Johnson, T.O. Mason, J.R. Weetman, “Controlled-size nanocapsules”, Nature, 374 (1995), pp.602-604. [19] S. Seraphin, D. Zhou, J. Jiao, “Filling the carbon nanocages”, J. Appl. Phys., 80 (1996), pp.2079-2104. [20] C. Guerret-Piecourt, Y. Lebouar, H. Pascard, “Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes”, Nature, 372 (1994), pp. 761-765. [21] S. Seraphin, D. Zhou, J. Jiao, M. Minke, S. Wang, “Catalystic role of nickel, palladium, and platinum in the formation of carbon nanoclusters”, Chem. Phys. Lett., 217 (1994), pp. 191-195. [22] B.R. Elliot, J.J. Host, V.P. Dravid, M.H. Teng, J.H. Hwang, “A descriptive model linking possible formation mechanisms for graphite encapsulated nanoparticles to processing parameters”, J. Mater. Res., 12 (1997), pp.3328-3333. [23] D.S. Jacob, I. Genish, L. Klein, A. Gedanken,“Carbon-coated core shell structured copper and nickel nanoparticles synthesized in an ionic liquid”, J Phys Chem B, 110 (2006), pp.17711-17714. [24] M. Bystrzejewski, A. Huczko, H. Lange, P. Baranowski, G. Cota-Sanchez, G. Soucy, “Large scale continuous synthesis of carbon-encapsulated magnetic nanoparticles”, Nanotechnology, 18 (2007), pp. 145608. [25] W. Wu, Z. Zhu, Z. Liu, Y. Xie, J. Zhangand, T. Hu, “Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method”, Carbon, 41 (2003), pp.317-321. [26] Z.H. Wang, Z.D. Zhang, C.J. Choi, B.K. Kim, “Structure and magnetic properties of Fe(C) and Co(C) nanocapsulesprepared by chemical vapor condensation”, J. Alloys Compd., 361 (2003), pp.289-293. [27] C.F. Wang, J.N. Wang, Z.M. Sheng, “Solid-phase synthesis of carbon-encapsulated magnetic nanoparticles”, J. Phys. Chem. C, 111 (2007), pp.6303-6307. [28] P. Singjai, K. Wongwigkarn, Y. Laosiritaworn, R. Yimnirun, S. Maensiri, “Carbon encapsulated nickel nanoparticles synthesized by a modified alcohol catalytic chemical vapordeposition method”, Curr. Appl. Phys., 7(6) (2007), pp. 662-666. [29] R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoney, “Single crystal metals encapsulated in carbon nanoparticles”, Science, 259 (1993), pp. 346-348. [30] J.H.J. Scott, S.A. Majetich, “Morphology, structure, and growth of nanoparticles produced in a carbon arc”, Phy. Rev. B, 52 (1995), pp.12564-12571. [31] J.J. Host, J.A. Block, K. Parvin, V.P. Dravid, J.L. Alpers, T. Sezen, R. LaDuca, “Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals”, J. Appl. Phys., 83 (1998), pp.793-801. [32] 林沛彥 (1999) “石墨包裹奈米晶粒材料與機械設計”,學士論文, 國立台灣大學地質科學系。 [33] 張麗娟 (1999) “石墨包裹奈米鎳晶粒的純化分離效果初步研究”, 碩士論文,國立台灣大學地質科學系。 [34] 林春長 (2002) “石墨包裹奈米鈷晶粒之純化研究”,碩士論文,國 立台灣大學地質科學系。 [35] 蕭崇毅 (2006) “合成石墨包裹奈米金屬晶粒製程中熔融金屬內碳源料變化之初步研究”,碩士論文,國立台灣大學地質科學系。 [36] 羅仁傑 (2010) “石墨包裹奈米鐵晶粒的合成方法改進研究:石墨坩堝設計”,碩士論文,國立台灣大學地質科學系。 [37] 李雱雯 (2013) “以退火改善石墨包裹奈米鐵晶粒之包裹良率”,碩士論文,國立台灣大學地質科學系。 [38] 蕭敦仁 (2005) “石墨包裹奈米鎳晶粒在高溫高壓下合成鑽石的初步探討”,碩士論文,國立台灣大學地質科學系。 [39] 蔡少葳 (2007) “石墨包裹奈米鎳晶粒的緻密化之初步研究”,碩士論文,國立台灣大學地質科學系。 [40] 蕭淵隆 (2010) “甲醇之蒸散速率效應對石墨包裹奈米鎳晶粒緻密化之研究”,碩士論文,國立台灣大學地質科學系。 [41] 呂睿晟 (2011) “非鐵磁性石墨包裹奈米晶粒合成方法之初步研究”,碩士論文,國立台灣大學地質科學系。 [42] M. Bystrzejewski, K. Pyrzyńska, A. Huczko, H. Lange, “Biodistribution and accumulation of intravenously administered carbon nanotubes in mice probed by Raman spectroscopy and fluorescent labeling”, Carbon, 47 (2009), pp. 1189-1192. [43] Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, “Applications of magnetic nanoparticles in biomedicine”, J. Phys. D: Appl. Phys., 36 (2003), pp. R167-181. [44] V.I. Shubayev, T.R. Pisanic, S. Jin, “Magnetic nanoparticles for theragnostics”, Adv. Drug Deliv. Rev., 61 (2009), pp. 467-477. [45] M. Bystrzejewski, M.H. Rümmeli, “Novel Nanomaterials for Prospective Biomedical Applications: Synthesis, Structure and Toxicity”, Polym. J. Chem., 81 (2007), pp. 1219-1255. [46] H. Cao, R. Li, J. Xue, H. Li, X. Wang, X. Bin,S. Chen, H. Xiang, “A simple technique for preparing carbon encapsulated La and Eu nanoparticles”, Carbon, 47 ( 2009 ), pp. 1543. [47] S.R. Chung, K.W. Wang, M.H. Teng, T.P. Perng, “Electrochemical hydrogenation of nanocrystalline face-centered cubic Co powder”, Int. J. Hydrogen Energy., 34 (2009), pp. 1383-1388. [48] G. Reiss, A. Hutten, “Magnetic nanoparticles: Applications beyond data storage”, Nat. Mater., 4 (2005), pp. 725-726. [49] N. Wibowo, L. Setyadhi, D. Wibowo, J. Setiawan, S. Ismadji, “Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption”, J. Hazard Mater., 146 (2007), pp. 237-242. [50] H. Tamai, H. Nagoya, T. Shiono, “Adsorption of methyl mercaptan on surface modified activated carbon”, J. Colloid Interf. Sci., 300 (2006), pp. 814-817. [51] W. Shen, Z. Li, Y. Liu, “Surface chemical functional groups modification of porous carbon”, Recent Patents on Chemical Engineering, 1 (2008), pp. 27-40. [52] M.J. Sobkowicz, J.R. Dorgan, K.W. Gneshin, A.M. Herring, J.T. McKinnon, “Controlled dispersion of carbon nanospheres through surface functionalization”, Carbon, 47 (2009), pp. 622-628. [53] B.K. Pradhan, N.K. Sandle, “Effect of different oxidizing agent treatment on the surface properties of activated carbon”, Carbon, 37 (1999), pp. 1323-1332. [54] X. Wei, J. Chen, K. Shankhamala, M. Martin, “A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor”, Carbon, 47 (2009), pp. 919-922. [55] E.J. van Wyk, S.M. Bradshaw, J.B. de Swardt, “The Dependence of Microwave Regeneration of Activated Carbon on Time and Temperature”, JMPEE, 33 (1998), pp. 151-157. [56] D.P. Jackson, US20077219677 (2007). [57] H.P. Boehm, “Some aspects of the surface chemistry of carbon blacks and other carbons”, Carbon, 32 (1994), pp. 759-769. [58] E. Papier, S. Li, J. Donnet, “Contribution to the study of basic surface groups on carbons”, Carbon, 25 (1987), pp. 243-247. [59] H.P. Boehm, “Surface oxides on carbon”, High Temp-High Pressures, 22 (1990), pp. 275-288. [60] Q.L. Zhuang, T. Kyotani, A. Tomita, “The change of TPD pattern of O2-gasified carbon upon air exposure”, Carbon, 31 (1993), pp. 539-540. [61] W.W. Zheng, Y.H. Hsieh, Y.C. Chiu, S.J. Cai, C.L. Cheng, C. Chen, “Organic functionalization of ultradispersed nanodiamond: synthesis and applications”, J. Mater. Chem., 19 (2009), pp. 8432–8441. [62] I.P. Chang, K.C. Hwang, J.A. Ho, C.C. Lin, R. J.-R. Hwu, J.C. Horng, “Facile Surface Functionalization of Nanodiamonds”, Langmuir, 26 (2010), pp. 3685–3689. [63] S. Iijima (1991) “Helical microtubules of graphitic carbon”, Nature, Vol. 354, pp. 56-58. [64] H. Wang, W. Zhou, D.L. Ho, K.I. Winey, J.E. Fischer, C.J. Glinka, “Dispersing single-walled carbon nanotubes with surfactants: a small angle neutron scattering study”, Nano Lett, 4 (2004), pp.1789-1793. [65] B. Shi, X. Zhuang, X. Yan, J. Lu, H. Tang,“Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes”, J. Environ. Sci., 22 (2010), pp.1195-1202. [66] Y. Bai, I.S. Park , S.J. Lee, T.S. Bae, F. Watari, M. Uo, M.H. Lee, “Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent”, Carbon, 49 (2011), pp. 3663-3671. [67] A. Anso´n-Casaos, J.M. Gonza´ lez-Domı´nguez, E. Terrado, M.T. Martı´nez, “Surfactant-free assembling of functionalized single-walled carbon nanotube buckypapers”, Carbon, 48 (2010), pp. 1480-1488. [68] W.S. Hummers, R.E. Offeman, “Preparation of Graphitic Oxide”, Journal of the American Chemical Society, 80 (1958), pp. 1339-1339. [69] W. Chen, L. Yan, P.R. Bangal, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves”, Carbon, 48 (2010), pp. 1146-1152. [70] V.K. Dmitry, L.H. Amanda, S. Alexander, R.L. Jay, D. Ayrat, B.K. Price, M.T. James, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”, Nature, 458 (2009), pp. 872-876. [71] 吳俊人 (2007) “利用聚乙二醇和葉酸接枝於石墨包覆鐵磁性奈米粒子做癌症之熱治療”,碩士論文,國立台灣大學醫學工程學系。 [72] S. Iijima, “Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy”, Journal of Crystal Growth, 50 (1980), pp. 675-683. [73] A.K. Geim, K.S. Novoselov, 'The rise of graphene', Nature Materials, 6 (2007), pp. 183-191. [74] C.W. Huang, C.H. Hsu, P.L. Kuo, C.T. Hsieh, H. Teng, “Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors”, Carbon, 49 (2011), pp. 895-903. [75] J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei, “Electrochemical properties of graphene nanosheet-carbon black composites as electrodes for supercapacitors”, Carbon, 48 (2010), pp. 1731-1737. [76] Q. Wang, J. Yan, Y. Wang, G. Ning, Z. Fan, T. Wei, J. Cheng, M. Zhang, X. Jing, “Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors”, Carbon, 52 (2013), pp. 209-218. [77] H.R. Byon, S.W. Lee, S. Chen, P.T. Hammond, S.H. Yang, “Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors”, Carbon, 49 (2011), pp. 457-467. [78] H. Hart, L.E. Craine, D.J. Hart, (1999) “Organic Chemistry”, Houghton Mifflin Company. [79] B. Derjaguin, L. Landau, “Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes”, Acta Physico Chemica URSS, 14 (1941), pp. 633. [80] E.J.W. Verwey, J.Th.G. Overbeek (1948) “Theory of the stability of lyophobic colloids”, Amsterdam: Elsevier Publishing Company Inc. [81] R. Beams, L.G. Canҫado, L. Novotny, “Raman characterization of defects and dopants in graphene”, J. Phys.: Condens. Matter, 27 (2015), 083002 (26pp). [82] D.A. Skooge (1985) “Principles of Instrumental Analysis”, Holt-Saunders International Editions. [83] H. Zhang, C. Liang, J. Liu, Z. Tian, G. Shao, “The formation of onion-like carbon-encapsulated cobalt carbide core/shell nanoparticles by the laser ablation of metallic cobalt in acetone”, Carbon, 55 (2013), pp. 108-115. [84] T. Iqbal, M. Sajjad, M. Imran, M. Sadiq, M. Sakaullah, “Characterization of carbon film by Raman spectroscopy”, Radiation Effects & Defects in Solids, 164 (2009), pp. 153-161. [85] J. Jiao, S. Seraphin, X. Wang, J.C. Withers, “Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles”, J. Appl. Phys., 80 (1996), pp. 103-108. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51748 | - |
| dc.description.abstract | 石墨包裹奈米金屬晶粒(Graphite Encapsulated Metal nanoparticles, GEM)是一種在1993年偶然間發現的核/殼奈米結構材料,外層由吸附效果佳的多片石墨層所組成,內核則包裹有奈米金屬晶粒,而由於鐵、鈷和鎳等鐵磁性金屬具有催化碳變為石墨的能力,故以合成石墨包裹奈米鐵磁性金屬晶粒的研究最為普遍。本研究係以石墨包裹奈米鐵晶粒(FeGEM)做為主要研究材料,針對該材料的合成純化步驟及表面改質程序,進行操作條件的分析改良。
本研究團隊利用注入液態醇類作為碳源配合改良之電弧系統,已成功將FeGEM顆粒的生產良率由10 wt%提升至40-50 wt%,並經由本研究分析發現使用鹽酸做為純化處理之酸液,不僅可有效減少氧化鐵雜質的產生,並能保留高比例包裹良好之產物及維持該材料在10K時具有97 emu/g的飽和磁化強度。然而,保留了FeGEM材料高的鐵磁性質,顆粒之間存在磁力及凡得瓦力等吸引力,加上外殼石墨(數層石墨烯)層之親油特性,導致FeGEM顆粒在極性溶劑中產生快速團聚而沉澱,此現象對於材料所應具有的高比表面積、顆粒滲透反應和鍍膜的均勻分佈等優異特性都造成很大的阻礙。 本研究利用硝酸進行FeGEM顆粒迴流程序,利用升溫至80℃的條件成功將顆粒親油表面改質為親水性,使FeGEM顆粒可穩定懸浮於去離子水或乙醇等極性溶劑中超過24小時,克服FeGEM顆粒團聚問題,同時依序利用亞硫醯氯和四乙烯五胺迴流改質FeGEM顆粒表面,使其接枝上不同官能基團,並利用表面電位、元素分析、傅利葉紅外光譜以及超導量子干涉磁量儀等設備進行分析,輔以分光光譜儀定量檢測奈米顆粒於膠體系統中之懸浮程度,有效說明本研究改質程序之結果,不僅成功克服FeGEM顆粒團聚問題,亦增加材料在應用上的潛能。 | zh_TW |
| dc.description.abstract | Graphite encapsulated iron metal nanoparticles (FeGEM) are a core/shell nanostructured material. The novel ultrafine material of graphite encapsulated metal (GEM) nanaoparticles was first discovered in 1993. The outer shells of GEM material are composed of graphitic layers with superior adsorbing property and the inner core is composed of nanocrystalline metal. Due to the excellent catalytic ability of ferromagnetic metal to transform carbon to graphite, the researches about synthesizing graphite encapsulated ferromagnetic metal nanoparticles are most common. In this study, we focused on the purification and surface modification procedures of FeGEM. By introducing various liquid alcohols as carbon source during modified arc-discharge synthesis procedures, we succeeded in raising the yield rate of FeGEM from 10 wt% to 40-50 wt%. It is found that the purification steps with hydrochloric acid can reduce the impurities of oxides and preserve high percentage of well-encapsulated nanoparticles and the best magnetic property. However, the hydrophobic outer graphite (graphene) shells and the strong magnetic attraction between inner ferromagnetic iron cores can easily lead to rapid agglomeration and precipitation of FeGEM nanoparticles in a polar solvent such as water. As a result, it may impede many potential applications of FeGEM nanoparticles in numerous fields.
To overcome the problem, it is necessary to change the hydrophobic surface of FeGEM nanoparticles to a hydrophilic one. In this work, we show that progressive sequential refluxing in nitric acid, thionyl chloride and tetraethylenepentamine (TEPA) can modify FeGEM nanoparticles with different functional groups. After refluxing with nitric acid solution at 80℃, the grafted FeGEM is able to disperse in polar solvent, such as deionized water or ethanol for over 24 h. Zeta potential analysis, EA, FTIR and SQUID were used to characterize the grafted FeGEM at the refluxing step, and ultraviolet-visible spectrophotometry was used to quantify the suspension ability of modified FeGEM nanoparticles in a colloidal system continuously. The modification processes not only overcome the agglomeration problem of FeGEM nanoparticles but also enhance the potential applications of the material. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:47:39Z (GMT). No. of bitstreams: 1 ntu-104-D98224003-1.pdf: 10253693 bytes, checksum: a2cd202501ea14668d84fae7854f2e4a (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目 錄
中文摘要……………………………………………………………….. i Abstract…………………………………………………………………. ii 目錄……………………………………………………………………... iv 圖目錄…………………………………………………………………... vii 表目錄…………………………………………………………………... xii 第一章 前言…………………………………………………………… 1 1-1研究動機和目的………………………………………………. 1 1-2研究方法………………………………………………………. 3 1-3本文內容………………………………………………………. 3 第二章 文獻回顧……………………………………………………… 5 2-1石墨包裹奈米金屬晶粒(GEM)的研究與探討……………….. 5 2-1.1 石墨包裹奈米晶粒結構…………………………….. 5 2-1.2 石墨包裹奈米晶粒材料發現的歷史及其形成機制.. 7 2-1.3 本研究團隊合成石墨包裹奈米晶粒材料的歷程….. 10 2-2碳材料表面改質機制…………………………………………. 15 2-2.1 一般改質方法……………………………………….. 15 2-2.2 一般材料改質之檢測方法………………………….. 19 2-2.3 常見碳材料的改質方法…………………………….. 21 2-3碳-碳複合材料………………………………………………… 25 第三章 實驗方法與步驟……………………………………………… 34 3-1實驗裝置………………………………………………………. 34 3-1.1 真空電弧系統……………………………………….. 34 3-1.2 迴流裝置…………………………………………….. 41 3-2實驗步驟………………………………………………………. 42 3-2.1 FeGEM奈米顆粒的製備與純化程序……………… 42 3-2.2 FeGEM奈米顆粒的表面改質步驟………………… 47 3-2.3 碳-碳複合材料之合成……………………………… 52 3-3實驗分析儀器及藥品…………………………………………. 53 3-3.1 實驗分析儀器……………………………………….. 53 3-3.2 實驗材料和藥品…………………………………….. 69 第四章 結果與討論…………………………………………………… 72 4-1 分析石墨包裹奈米鐵晶粒於不同純化步驟下之材料特性… 73 4-1.1 穿透式電子顯微鏡分析…………………………….. 73 4-1.2 掃描式電子顯微鏡&能量散射光譜儀分析………... 76 4-1.3 拉曼光譜儀分析…………………………………….. 81 4-1.4 超導量子干涉磁量儀分析………………………….. 83 4-1.5 雷射光粒徑分析儀………………………………….. 86 4-1.6 比表面積分析儀…………………………………….. 89 4-1.7 傅立葉轉換紅外線光譜儀………………………….. 92 4-1.8 小結………………………………………………….. 95 4-2分析並建立石墨包裹奈米鐵晶粒之改質步驟………………. 96 4-2.1 沉降實驗的觀察結果……………………………….. 96 4-2.2 可見光紫外光分光光譜分析儀…………………….. 100 4-2.3 拉曼光譜儀分析…………………………………….. 103 4-2.4 傅立葉轉換紅外線光譜儀………………………….. 105 4-2.5 小結………………………………………………….. 107 4-3分析石墨包裹奈米鐵晶粒接枝不同官能基之特性比較……. 108 4-3.1 可見光紫外光分光光譜分析儀…………………….. 108 4-3.2 掃描式電子顯微鏡………………………………….. 110 4-3.3 超導量子干涉磁量儀分析………………………….. 114 4-3.4 元素分析儀………………………………………….. 117 4-3.5 雷射光粒徑分析儀………………………………….. 118 4-3.6 比表面積分析儀…………………………………….. 119 4-3.7 導電度量測………………………………………….. 122 4-3.8 改質樣品產物回收率……………………………….. 123 4-3.9 小結………………………………………………….. 124 4-4碳-碳複合材料之合成………………………………………… 125 4-4.1 掃描式電子顯微鏡………………………………….. 125 4-4.2 比表面積分析儀…………………………………….. 128 第五章 結果與建議…………………………………………………… 132 參考文獻……………………………………………………………….. 136 附 錄………………………………………………………………….. 145 | |
| dc.language.iso | zh-TW | |
| dc.subject | 團聚 | zh_TW |
| dc.subject | 核殼結構 | zh_TW |
| dc.subject | 鐵磁性 | zh_TW |
| dc.subject | 懸浮 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 親水性 | zh_TW |
| dc.subject | 迴流 | zh_TW |
| dc.subject | core/shell | en |
| dc.subject | agglomeration | en |
| dc.subject | refluxing | en |
| dc.subject | hydrophilic | en |
| dc.subject | suspension | en |
| dc.subject | ferromagnetic | en |
| dc.subject | surface modification | en |
| dc.title | 石墨包裹奈米鐵晶粒的純化及表面改質程序之研究 | zh_TW |
| dc.title | Study on the purification and surface modification procedures of graphite encapsulated iron nanoparticles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉雅瑄,劉如熹,陳文章,王玉瑞,林義傑 | |
| dc.subject.keyword | 核殼結構,鐵磁性,懸浮,表面改質,親水性,迴流,團聚, | zh_TW |
| dc.subject.keyword | core/shell,ferromagnetic,suspension,surface modification,hydrophilic,refluxing,agglomeration, | en |
| dc.relation.page | 153 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-11-12 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 10.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
