Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51741
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching-Fuh Lin)
dc.contributor.authorYu-Zhong Linen
dc.contributor.author林禹鍾zh_TW
dc.date.accessioned2021-06-15T13:47:18Z-
dc.date.available2020-11-20
dc.date.copyright2015-11-20
dc.date.issued2015
dc.date.submitted2015-11-18
dc.identifier.citation[1] Hahn, B. “High power LEDs for solid state lighting”, 2010 Proceedings of the European in Solid-State Device Research Conference (ESSDERC), pp. 57-63, 2010.
[2] How LED lighting changes the world, IEEE Santa Clara Valley Chapter, Components, Packaging and Manufacturing Technology Society, 2013.
[3] 黃孟嬌, “立足照明市場 LED廠強化燈具開發能力”, 新電子, 2014. [Online]. Available: http://www.mem.com.tw/article_content.asp?sn=1406130011. [Accessed: 23- Jun- 2015].
[4] S. Ltd, “LED bulb cost to drop by 50% to $11 by 2020”, Optics.org, 2015. [Online]. Available: http://optics.org/indepth/3/7/4. [Accessed: 23- Jun- 2015].
[5] 陳錫銘, “LED技術發展與趨勢”, 奇力光電科技, pp. 28, 35.
[6] W. Wong, T. Sands, N. Cheung, M. Kneissl, D. Bour, P. Mei, L. Romano and N. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off”, Applied Physics Letters, vol. 75, no. 10, p. 1360, 1999.
[7] W. Wong, T. Sands, N. Cheung, M. Kneissl, D. Bour, P. Mei, L. Romano and N. Johnson, 'InxGa[1−x]N light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off', Applied Physics Letters, vol. 77, no. 18, p. 2822, 2000.
[8] Chen-Fu Chu, Fang-I Lai, Jung-Tang Chu, Chang-Chin Yu, Chia-Feng Lin, Hao-Chung Kuo and S. C. Wang, “Study of GaN light-emitting diodes fabricated by laser lift-off technique”, J. Appl. Phys., vol. 95, no. 8, p. 3916, 2004.
[9] A. David, T. Fujii, B. Moran, S. Nakamura, S. DenBaars, C. Weisbuch and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes”, Applied Physics Letters, vol. 88, no. 13, p. 133514, 2006.
[10] W. Wong, A. Wengrow, Y. Cho, A. Salleo, N. Quitoriano, N. Cheung and T. Sands, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off”, Journal of Electronic Materials, vol. 28, no. 12, pp. 1409-1413, 1999.
[11] A. Janotti and C. Van de Walle, “Fundamentals of zinc oxide as a semiconductor”, Rep. Prog. Phys., vol. 72, no. 12, p. 126501, 2009.
[12] P. Waltereit, O. Brandt, A. Trampert, H. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. Ploog, “ChemInform Abstract: Nitride Semiconductors Free of Electrostatic Fields for Efficient White Light-Emitting Diodes.”, ChemInform, vol. 31, no. 48, p. no-no, 2000.
[13] D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood and C. Burrus, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect”, Phys. Rev. Lett., vol. 53, no. 22, pp. 2173-2176, 1984.
[14] S. Empedocles, “Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots”, Science, vol. 278, no. 5346, pp. 2114-2117, 1997.
[15] Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller and J. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon”, Nature, vol. 437, no. 7063, pp. 1334-1336, 2005.
[16] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect”, Applied Physics Letters, vol. 73, no. 12, p. 1691, 1998.
[17] M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells”, Physical Review B, vol. 58, no. 20, pp. R13371-R13374, 1998.
[18] H. Polland, L. Schultheis, J. Kuhl, E. Gobel and C. Tu, “Lifetime Enhancement of Two-Dimensional Excitons by the Quantum-Confined Stark Effect”, Phys. Rev. Lett., vol. 55, no. 23, pp. 2610-2613, 1985.
[19] D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood and C. Burrus, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect”, Phys. Rev. Lett., vol. 53, no. 22, pp. 2173-2176, 1984.
[20] M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells”, Physical Review B, vol. 58, no. 20, pp. R13371-R13374, 1998.
[21] Debdeep Jena, S. Pamir Alpay, Joseph V. Mantese,”Function graded polar heterostructures: New material for multifunctional devices,” in Polarization Effect in Semiconductors: From Ab Initio Theory to Devices Applications, C. Wood and D. Jane, New York, pp. 307-372, 2007.
[22] S. Chichibu, A. Uedono, T. Onuma, B. Haskell, A. Chakraborty, T. Koyama, P. Fini, S. Keller, S. DenBaars, J. Speck, U. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors”, Nat Mater, vol. 5, no. 10, pp. 810-816, 2006.
[23] K. Kojima, H. Kamon, M. Funato and Y. Kawakami, “Theoretical investigations on anisotropic optical properties in semipolar and nonpolar InGaN quantum wells”, physica status solidi (c), vol. 5, no. 9, pp. 3038-3041, 2008.
[24] M. Schmidt, K. Kim, R. Farrell, D. Feezell, D. Cohen, M. Saito, K. Fujito, J. Speck, S. DenBaars and S. Nakamura, “Demonstration of Nonpolar m -Plane InGaN/GaN Laser Diodes”, Japanese Journal of Applied Physics, vol. 46, no. 9, pp. L190-L191, 2007.
[25] A. Chakraborty, K. Kim, F. Wu, J. Speck, S. DenBaars and U. Mishra, 'Defect reduction in nonpolar a-plane GaN films using in situ SiNx nanomask', Applied Physics Letters, vol. 89, no. 4, p. 041903, 2006.
[26] D. Feezell, M. Schmidt, S. DenBaars and S. Nakamura, “Development of Nonpolar and Semipolar InGaN/GaN Visible Light-Emitting Diodes”, MRS Bull., vol. 34, no. 05, pp. 318-323, 2009.
[27] A. Chakraborty, B. Haskell, S. Keller, J. Speck, S. DenBaars, S. Nakamura and U. Mishra, “Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak”, Applied Physics Letters, vol. 85, no. 22, p. 5143, 2004.
[28] H. Masui, S. Nakamura, S. DenBaars and U. Mishra, “Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges”, IEEE Trans. Electron Devices, vol. 57, no. 1, pp. 88-100, 2010.
[29] Chauveau J, Vennéguès P, Laügt M, Deparis C, Zuniga-Perez J, Morhain C. Interface structure and anisotropic strain relaxation of nonpolar wurtzite (112 ‾0) and (101 ‾0) orientations: ZnO epilayers grown on sapphire. J Appl Phys. 2008;104(7):073535. doi:10.1063/1.2996248.
[30] Moriyama T, Fujita S. Growth Behavior of Nonpolar ZnO on M -plane and R -plane Sapphire by Metalorganic Vapor Phase Epitaxy. Jpn J Appl Phys. 2005;44(11):7919-7921. doi:10.1143/jjap.44.7919.
[31] Zhou S, Zhou J, Huang T et al. Nonpolar a-plane ZnO films fabricated on (302)γ-LiAlO2 by pulsed laser deposition. Journal of Crystal Growth. 2007;303(2):510-514. doi:10.1016/j.jcrysgro.2007.01.029.
[32] T. Moriyama and S. Fujita, “Growth Behavior of Nonpolar ZnO on M -plane and R -plane Sapphire by Metalorganic Vapor Phase Epitaxy”, Japanese Journal of Applied Physics, vol. 44, no. 11, pp. 7919-7921, 2005.
[33] Y. Kashiwaba, T. Abe, A. Nakagawa, H. Endo, I. Niikura and Y. Kashiwaba, “Homoepitaxial growth of high-quality nonpolar ZnO films by MOCVD and evaluation of the homoepitaxial ZnO films by XRD measurement for asymmetric planes”, physica status solidi (a), vol. 206, no. 5, pp. 944-947, 2009.
[34] T. Moriyama and S. Fujita, “Epitaxial growth of nonpolar ZnO by MOVPE”, physica status solidi (c), vol. 3, no. 4, pp. 726-729, 2006.
[35] T. Abe, Y. Kashiwaba, S. Onodera, F. Masuoka, A. Nakagawa, H. Endo, I. Niikura and Y. Kashiwaba, “Homoepitaxial growth of non-polar ZnO films on off-angle ZnO substrates by MOCVD”, Journal of Crystal Growth, vol. 298, pp. 457-460, 2007.
[36] S. Gangil, A. Nakamura, M. Shimomura and J. Temmyo, ”Nonpolar (1120) p-type nitrogen-doped ZnO by remote-plasma-enhanced metalorganic chemical vapor deposition”, Japanese Journal of Applied Physics, vol. 46, no. 23, pp. L549-L551, 2007.
[37] J. Zhu, T. Aaltonen, V. Venkatachalapathy, A. Galeckas and A. Kuznetsov, ”Structural and optical properties of polar and non-polar ZnO films grown by MOVPE”, Journal of Crystal Growth, vol. 310, no. 23, pp. 5020-5024, 2008.
[38] H. CHEN, G. CHEN, S. JIAN, G. HUANG and J. NI, ”EPITAXIAL GROWTH OF NON-POLAR A-PLANE ZNO ON R-PLANE SAPPHIRE SUBSTRATES BY MOCVD AND RF-SPUTTERING”, Int. J. Mod. Phys. B, vol. 23, no. 0607, pp. 1154-1159, 2009.
[39] Award.ledinside.com.tw, ”AIX G5+: A novel 5 x 200 mm GaN/Si MOCVD reactor technology package | LEDinside - LED, LED Lighting, LED Price Trends, Global LED News and Market Research”, 2013. [Online]. Available: http://award.ledinside.com.tw/item/view/122. [Accessed: 23- Jun- 2015].
[40] P. Vennéguès, J. Chauveau, M. Korytov, C. Deparis, J. Zuniga-Perez and C. Morhain, ”Interfacial structure and defect analysis of nonpolar ZnO films grown on R-plane sapphire by molecular beam epitaxy”, J. Appl. Phys., vol. 103, no. 8, p. 083525, 2008.
[41] D. Taïnoff, M. Al-Khalfioui, C. Deparis, B. Vinter, M. Teisseire, C. Morhain and J. Chauveau, ”Residual and nitrogen doping of homoepitaxial nonpolar m-plane ZnO films grown by molecular beam epitaxy”, Applied Physics Letters, vol. 98, no. 13, p. 131915, 2011.
[42] S. Han, S. Hong, J. Lee, J. Lee, J. Song, Y. Nam, S. Chang, T. Minegishi and T. Yao, ”Structural and optical properties of non-polar A-plane ZnO films grown on R-plane sapphire substrates by plasma-assisted molecular-beam epitaxy”, Journal of Crystal Growth, vol. 309, no. 2, pp. 121-127, 2007.
[43] J. Chauveau, M. Laugt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain and B. Vinter, ”Non-polar a -plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy”, Semicond. Sci. Technol., vol. 23, no. 3, p. 035005, 2008.
[44] S. Kyu Han, J. Kim, S. Hong, J. Song, J. Song, J. Wook Lee, J. Yong Lee, S. Ig Hong and T. Yao, ”Investigation of nonpolar (112‾0) a-plane ZnO films grown under various Zn/O ratios by plasma-assisted molecular beam epitaxy”, Journal of Crystal Growth, vol. 312, no. 15, pp. 2196-2200, 2010.
[45] Sandia.gov, ”Sandia develops vertical cavity surface emitting laser that promises to reduce cost of fiber optics connections”, 2015. [Online]. Available: http://www.sandia.gov/media/NewsRel/NR2000/laser.htm. [Accessed: 23- Jun- 2015].
[46] U. Özgür, Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S. Cho and H. Morkoç, ”A comprehensive review of ZnO materials and devices”, J. Appl. Phys., vol. 98, no. 4, p. 041301, 2005.
[47] 博客, ”中學化學晶體結構”, 2015. [Online]. Available: http://bbs.sciencenet.cn/blog-3777-328239.html. [Accessed: 23- Jun- 2015].
[48] W. Su, J. Huang and C. Lin, “Improving the property of ZnO nanorods using hydrogen peroxide solution”, Journal of Crystal Growth, vol. 310, no. 11, pp. 2806-2809, 2008.
[49] Y. Ryu, T. Lee, J. Lubguban, H. White, B. Kim, Y. Park and C. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes”, Applied Physics Letters, vol. 88, no. 24, p. 241108, 2006.
[50] S. Park, S. Kim and S. Han, “Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications”, Nanotechnology, vol. 18, no. 5, p. 055608, 2007.
[51] Z. Wei, Y. Lu, D. Shen, Z. Zhang, B. Yao, B. Li, J. Zhang, D. Zhao, X. Fan and Z. Tang, “Room temperature p-n ZnO blue-violet light-emitting diodes”, Applied Physics Letters, vol. 90, no. 4, p. 042113, 2007.
[52] C. Lu, S. Chang, S. Chang, C. Lee, C. Kuo, H. Chang, Y. Chiou, C. Hsu and I. Chen, “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates”, Applied Physics Letters, vol. 89, no. 15, p. 153101, 2006.
[53] J. Cui, C. Daghlian, U. Gibson, R. Püsche, P. Geithner and L. Ley, “Low-temperature growth and field emission of ZnO nanowire arrays”, J. Appl. Phys., vol. 97, no. 4, p. 044315, 2005.
[54] B. Cao, X. Teng, S. Heo, Y. Li, S. Cho, G. Li and W. Cai, “Different ZnO Nanostructures Fabricated by a Seed-Layer Assisted Electrochemical Route and Their Photoluminescence and Field Emission Properties”, J. Phys. Chem. C, vol. 111, no. 6, pp. 2470-2476, 2007.
[55] W. Wang, G. Zhang, L. Yu, X. Bai, Z. Zhang and X. Zhao, “Field emission properties of zinc oxide nanowires fabricated by thermal evaporation”, Physica E: Low-dimensional Systems and Nanostructures, vol. 36, no. 1, pp. 86-91, 2007.
[56] D. Olson, J. Piris, R. Collins, S. Shaheen and D. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites”, Thin Solid Films, vol. 496, no. 1, pp. 26-29, 2006.
[57] Peiro, A.M., et al.,” Hybrid polymer/metal oxide solar cells based on ZnO columnar structures” Journal of Materials Chemistry, vol. 16, no. 21, p. 2088, 2006.
[58] P. Ravirajan, A. Peiro, M. Nazeeruddin, M. Graetzel, D. Bradley, J. Durrant and J. Nelson, “Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer”, J. Phys. Chem. B, vol. 110, no. 15, pp. 7635-7639, 2006.
[59] Kmle.co.kr, “sol gel transformation”, 2015. [Online]. Available: http://www.kmle.co.kr/search.php?Search=sol+gel+transformation. [Accessed: 23- Jun- 2015].
[60] 伍秀菁, 汪若文, 林美吟編輯,”儀器總覽-化學分析儀器”, 行政院國家科學委員會精密儀器發展中心, p.22-24, 1998
[61] Fys.kuleuven.be, “X-ray diffraction – Bruker D8 Discover – Nuclear and Radiation Physics”, 2015. [Online]. Available: http://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover. [Accessed: 23- Jun- 2015].
[62] Sulfate Attack on Cementitious Materials, 1st ed. U. PORTO, 2013. [Online]. Available:file:///C:/Users/%E6%B7%8B%E9%9B%A8%E4%B8%AD/Downloads/Diogo_Araujo_-Sulfate_Attack_on_Cementitious_Materials%20(2).pdf
[63] Www4.nau.edu, “Instrumentation”, 2008. [Online]. Available: http://www4.nau.edu/microanalysis/Microprobe-SEM/Instrumentation.html. [Accessed: 23- Jun- 2015].
[64] http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy, [Accessed: 23- Jun- 2015].
[65] B. Stannowski, 'Silicon-based thin-film transistors with a high stability', Ph.D. Thesis, University Utrecht, The Netherlands, (2002).
[66] Meyers S, Anderson J, Hung C, Thompson J, Wager J, Keszler D. Aqueous Inorganic Inks for Low-Temperature Fabrication of ZnO TFTs. J Am Chem Soc. 2008;130(51):17603-17609. doi:10.1021/ja808243k.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51741-
dc.description.abstract本論文主要研究為製作出非極性氧化鋅。為了克服氮化鎵具有的Quantum Confined Stark Effect (QCSE),而選用非極性氧化鋅作為氮化鎵與基板的中間層。在論文中,我們採用一種簡便且無汙染的溶液製程-水熱法,去製作非極性氧化鋅。藉由掃描式電子顯微鏡觀察氧化鋅成長結構,並透過X光繞射儀來判斷氧化鋅是否具有良好的非極性取向。首先,我們利用曝光顯影的製程,製作出週期排列的矽蝕刻槽,並透過溶膠凝膠法和水熱法成長氧化鋅。
為了去除蝕刻槽外極性氧化鋅,我們採取金屬剝離法,金屬層採用金。先在蝕刻槽上鍍金,並旋塗氧化鋅種子層,再以水熱法成長氧化鋅,並浸泡於三碘化鉀溶液中,去除金層,並順帶移除槽外極性氧化鋅。然而,金與三碘化鉀溶液的接觸面積極少,使得金無法被完全移除,造成部分極性氧化鋅殘留。故針對金屬剝離法進行改良,原先是先鍍金,再旋轉塗佈種子層,而改良後的製程則改為先塗種子層再鍍金。此方式具有兩個優點:其一,槽外的氧化鋅成長在金層上,故會成長出倒柱,倒柱間的空隙能增加金與三碘化鉀溶液的接觸面積,提高除金效率;其二,槽內的側壁表面為氧化鋅種子層,而底部是金,氧化鋅會優先於種子層上成長,故只會成長出水平方向的氧化鋅。但改良的金屬剝離法仍具有一些缺點。其一,當水熱法的成長時間超過3小時,倒柱排列太過密集,而無法移除;其二,為了接合槽內水平方向的氧化鋅,採用二次除金的方式,但成長的氧化鋅具有尖塔的結構,須再以RIE沿著鉛直方向進行蝕刻,鉛直方向的蝕刻無法大面積生產,使得此技術應用性不大。最後,改以電感耦合式乾蝕刻法去製作整面的非極性氧化鋅。首先,藉由ICP-RIE去除槽外氧化鋅,並量測XRD頻譜,觀察到明顯的a-ZnO晶相,接著再以RIE蝕刻Si層,使得槽內的氧化鋅裸露出來,再以水熱法填滿為整面,最後以ICP-RIE蝕刻上層氧化鋅,得到整面的非極性氧化鋅。接著,於玻璃上以相同方式製作整面非極性氧化鋅。此方式能完全不以磊晶的方式,而以低成本及簡便的方式製作整面非極性氧化鋅,並製作成氧化鋅薄膜電晶體,其場效載子遷移率約為4.269 cm2/V-s。
zh_TW
dc.description.abstractThe study of this thesis is to fabricate nonpolar zinc oxide (ZnO). To avoid quantum confined Stark effect (QCSE), we choose nonpolar ZnO as the intermediate layer between GaN and a substrate. In this thesis, we use a convenient solution process that is hydrothermal method to grow nonpolar ZnO. By using scanning electron microscopy (SEM) to observe the structure of ZnO. X-ray diffraction (XRD) is adopted to confirm whether ZnO has nonpolar orientation. We first fabricate a periodic array of Si etching grooves. Sol-gel and hydrothermal method are used to grow ZnO on Si etching grooves.
After removing the gold layer and the polar ZnO in the same time, we present the ZnO with nonpolar face on the top. However, the contact area between the gold layer and three potassium iodine solution is little. Part of gold layer still remains on the sample. Therefore, an improved method is proposed. The original method is to deposit gold layer first. The improved method is to spin coat ZnO seed layer first. Then, to deposit the gold layer. It is two advanages. One, inverted column is grown outside the grooves. The more interspace higher the rate of removing gold. The other, seed layer is coated on the sidewall of the grooves, and the gold layer is deposited on the bottom. The only horizontal ZnO is growed. However, it is two shortcomings of the modified method. First, when the growth time of hydrothermal method is higher than 3 hours, the inverted column will not be lift off. Second, twice removing gold process is adopted to merge the ZnO in the grooves. Minaret structure of ZnO appear. Therefore, reactive ion etching (RIE) is used to remove minaret structure along the vertical direction. It is unable to achieve large area of production.
Fianally, inductively-coupled plasma reactive ion etching (ICP-RIE) is used to remove ZnO outside the grooves. It appear apparent crystalline phase of a-ZnO from XRD measurement. RIE is used to etch Si. Hydrothermal method is adopted to fill the whole plane. After c-plane ZnO is removed by ICP-RIE, the whole plane nonpolar ZnO is completed. Also, the whole plane nonpolar ZnO is completed on glass substrate. Without the epitaxy process, the more convenient method is adopted to fabricate nonpolar ZnO of whole plane. Also, ZnO thin film transistor is finished. The field effect mobility is 4.269 cm2/V-s.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:47:18Z (GMT). No. of bitstreams: 1
ntu-104-R02941051-1.pdf: 7733160 bytes, checksum: 90f337bf8c8af09b8901bf49cd8e8ed5 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
致謝 I
摘要 III
ABSTRACT V
目錄 VII
圖目錄 X
表目錄 XIII
1 第一章 緒論 1
1.1 現今照明科技的背景 1
1.1.1 LED散熱問題 3
1.1.2 Quantum Confined Stark Effect (QCSE) 5
1.2 常見非極性氧化鋅的成長方式 10
1.2.1 金屬化學氣相沉積法(Metal-organic Chemical Vapor Deposition, MOCVD) 10
1.2.2 分子束磊晶系統(Molecular beam epitaxy, MBE) 12
1.3 研究動機 13
2 第二章 實驗儀器與方法 14
2.1 氧化鋅材料特性 14
2.2 水熱法介紹 15
2.3 其他實驗設備 17
2.3.1 曝光機 17
2.3.2 電子束蒸鍍機 18
2.3.3 反應式離子蝕刻機(Reactive ion etch, RIE) 19
2.3.4 電感耦合式乾蝕刻機(Inductively-coupled plasma reactive ion etch, ICP-RIE) 21
2.4 分析儀器 22
2.4.1 X光繞射儀(x-ray diffractometer, XRD) 22
2.4.2 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM) 24
3 第三章 於矽蝕刻槽上以水熱法成長氧化鋅 27
3.1 實驗動機 27
3.2 實驗方法 28
3.2.1 實驗設計 28
3.2.2 實驗流程 28
3.3 於矽蝕刻槽上以水熱法成長氧化鋅 30
3.4 結論 35
4 第四章 非極性氧化鋅製作 37
4.1 研究動機 37
4.2 金屬剝離法-除金製程 37
4.2.1 實驗方法 38
4.2.2 結果與討論 39
4.3 改良的金屬剝離法 42
4.3.1 實驗動機 42
4.3.2 結果與討論 45
4.4 電感耦合式乾蝕刻法 48
4.4.1 實驗動機和方法 49
4.4.2 結果與討論 50
4.5 結論 57
5 第五章 玻璃基板上製作非極性氧化鋅 59
5.1 實驗動機 59
5.2 實驗方法 59
5.3 於玻璃蝕刻槽上製作非極性氧化鋅 62
5.4 氧化鋅薄膜電晶體製作 71
5.4.1 實驗動機 71
5.4.2 實驗方法 72
5.4.3 薄膜電晶體元件效能 73
5.5 結論 80
6 第六章 總結 82
6.1 結論 82
6.2 未來展望 85
REFERENCES 86
LIST OF PUBLICATION 100

圖目錄
圖 1.1 LED與傳統光源效率演進圖[2]。 2
圖 1.2 2011~2017 LED照明市場規模分析[3]。 3
圖 1.3 LED燈泡之成本分布[4]。 4
圖 1.4 傳統LED製程步驟[5]。 4
圖 1.5 雷射剝離法之垂直結構LED[5]。 5
圖 1.6 氮化鎵晶體內自發性極化示意圖[21]。 6
圖 1.7 量子井能帶圖(A)受C軸方向內建電場影響,(B)未受C軸方向內建電場影響 [22]。 7
圖 1.8 氮化鎵的SEMI-POLAR PLANE [28]。 8
圖 1.9 常見氮化鎵晶面示意圖[28]。 8
圖 1.10 MOCVD機台拍攝圖[39]。 11
圖 1.11 MBE機台拍攝圖[45]。 12
圖 2.1 氧化鋅晶體結構圖,(A)岩鹽結構,(B)閃鋅礦結構,(C)纖鋅礦結構。[43] 15
圖 2.2以溶膠凝膠法合成氧化鋅種子層之示意圖[59]。 16
圖 2.3以水熱法成長氧化鋅之示意圖[60]。 17
圖 2.4 本研究採用的曝光機。 18
圖 2.5本論文所使用電子束蒸鍍機。 19
圖 2.6本論文所使用反應式離子蝕刻機。 21
圖 2.7 本研究使用的電感耦合式乾蝕刻機。 22
圖 2.8 XRD原理 (A) 布拉格繞射[61](B) 以 方法得到繞射訊號[62]。 23
圖 2.9本研究使用的X光繞射儀。 24
圖 2.10 (A)掃瞄式電子顯微鏡原理示意圖[63](B)能量散佈光譜儀原理示意圖[64]。 25
圖 2.11本論文所使用之場發射掃描式電子顯微鏡。 26
圖 3.1矽蝕刻槽製作流程。 29
圖 3.2矽基板經曝光顯影後的SEM側面圖。 31
圖 3.3鉻陣列的SEM側面圖。 31
圖 3.4不旋塗氧化鋅種子層而直接以水熱法於矽基板上成長氧化鋅的SEM側面圖。 32
圖 3.5於矽蝕刻槽上以水熱法成長3小時的SEM側面圖。 33
圖 3.6於矽蝕刻槽上以水熱法成長12小時的SEM側面圖。 34
圖 3.7水熱法成長3和12小時側壁水熱法氧化鋅的XRD頻譜。 34
圖 4.1金屬剝離法的實驗流程圖。 39
圖 4.2 以金屬剝離法(除金製程)製作之非極性氧化鋅的SEM側面圖。 40
圖 4.3 以金屬剝離法(除金製程)成長氧化鋅的XRD頻譜。 41
圖4.4蝕刻槽側壁上成長氧化鋅柱的示意圖。(A)俯視圖;(B)剖面圖。 42
圖 4.5 改良金屬剝離法的實驗流程圖。 44
圖 4.6將試片浸泡於三碘化鉀溶液中的示意圖。 44
圖 4.7 以水熱法成長3小時並除金的SEM側面圖。 45
圖 4.8 以水熱法成長12小時並除金的SEM側面圖。 46
圖 4.9 使用改良金屬剝離法並以二次除金的SEM側面圖。 47
圖 4.10 以RIE沿著鉛直方向將尖塔部分氧化鋅去除的SEM側面圖。 48
圖 4.11 以ICP-RIE去除蝕刻槽外所有氧化鋅的示意圖。 50
圖 4.12以ICP蝕刻平面氧化鋅之SEM側面圖 (A)原本尚未蝕刻的氧化鋅 (B) 蝕刻10分鐘 (C) 蝕刻11分鐘 (D) 蝕刻12分鐘。 51
圖 4.13水熱法成長兩邊側壁MERGE氧化鋅奈米柱的SEM圖,(A)成長時間為12小時,(B)成長時間為3+3+12小時。 52
圖 4.14 以ICP-RIE去除蝕刻槽外的C軸取向氧化鋅之SEM側面圖。 53
圖 4.15以ICP-RIE去除蝕刻槽外的氧化鋅所量測的XRD頻譜。 54
圖 4.16蝕刻SI使得槽內的氧化鋅裸露出來的SEM側面圖。 55
圖 4.17 RIE蝕刻使得槽內氧化鋅裸露出來繼續以水熱法成長氧化鋅的SEM側面圖。 56
圖 4.18 以ICP-RIE製作出整面非極性氧化鋅的SEM側面圖。 57
圖 5.1 製作玻璃蝕刻槽的示意圖。 61
圖 5.2 於玻璃上以ICP-RIE製作非極性氧化鋅的示意圖。 62
圖 5.3 玻璃蝕刻槽的SEM側面圖。 63
圖 5.4於玻璃蝕刻槽上以水熱法成長3小時的SEM側面圖((A)倍率為3000,(B)倍率為20000);於玻璃蝕刻槽上以水熱法成長12小時的SEM側面圖((C)倍率為3000,(D)倍率為20000)。 64
圖 5.5玻璃蝕刻槽上成長12小時的水熱法之SEM側面圖。 65
圖 5.6 以ICP-RIE去除蝕刻槽外所有氧化鋅的SEM側面圖。 66
圖 5.7蝕刻玻璃使得槽內的氧化鋅裸露出來的SEM側面圖。 67
圖 5.8 RIE蝕刻使得槽內氧化鋅裸露出來繼續以水熱法成長氧化鋅的SEM側面圖。 68
圖 5.9 以ICP-RIE製作出整面非極性氧化鋅的SEM側面圖。 69
圖 5.10以研磨機研磨30秒的SEM側面圖。 70
圖5.11以研磨機研磨1分鐘的SEM側面圖。 70
圖 5.12以研磨機去除C軸取向氧化鋅的SEM側面圖。(A)研磨前。(B)研磨後。 71
圖 5.13氧化鋅薄膜電晶體各層示意圖 72
圖 5.14氧化鋅薄膜電晶體ID-VD圖。(A) GATE LENGTH為2ΜM。(B) GATE LENGTH為5ΜM。(C) GATE LENGTH為10ΜM。(D) GATE LENGTH為20ΜM。(E) GATE LENGTH為50ΜM。 75
圖 5.15氧化鋅薄膜電晶體ID-VG圖。(A) GATE LENGTH: 2ΜM。(B) GATE LENGTH: 5ΜM。(C) GATE LENGTH: 10ΜM。(D) GATE LENGTH: 20ΜM。(E) GATE LENGTH: 50ΜM 77
圖 5.16氧化鋅薄膜電晶體ID-VG圖。(VD =0.2 V) 78
圖 5.17以場效載子遷移率針對不同GATE LENGTH的CURVE FITTING分析圖。 80
表目錄
表 5.1 水熱法於側壁成長的氧化鋅柱長。 65
表 5.2不同GATE LENGTH電晶體元件的ON/OFF RATIO。 77
表 5.3不同GATE LENGTH電晶體元件的場效載子遷移率。 79
dc.language.isozh-TW
dc.title以水熱法製作非極性氧化鋅及其應用zh_TW
dc.titleUsing Hydrothermal Method to Grow Nonpolar ZnO and Its Applicationen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君(I-Chun Cheng),蘇國棟(Guo-Dung Su),黃鼎偉(Ding-wei Huang)
dc.subject.keyword非極性氧化鋅,水熱法,Quantum confined Stark effect,氧化鋅薄膜電晶體,zh_TW
dc.subject.keywordNonpolar zinc oxide (ZnO),hydrothermal method,Quantum confined Stark effect,ZnO thin film transistor.,en
dc.relation.page101
dc.rights.note有償授權
dc.date.accepted2015-11-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved