請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51738完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳育任(Yuh-Renn Wu) | |
| dc.contributor.author | Hung Lin | en |
| dc.contributor.author | 林鴻 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:47:09Z | - |
| dc.date.available | 2015-12-01 | |
| dc.date.copyright | 2015-12-01 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-11-19 | |
| dc.identifier.citation | [1] G. E. Moore et al., “Cramming more components onto integrated
circuits,” Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998. [2] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “Silicon device scaling to the sub-10-nm regime,” Science, vol. 306, no. 5704, pp. 2057–2060, 2004. [3] B. Davari, R. H. Dennard, and G. G. Shahidi, “CMOS scaling for high performance and low power-the next ten years,” Proceedings of the IEEE, vol. 83, no. 4, pp. 595–606, 1995. [4] S.-H. Oh, D. Monroe, and J. Hergenrother, “Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate mosfets,” Electron Device Letters, IEEE, vol. 21, no. 9, pp. 445–447, 2000. [5] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deepsubmicrometer cmos circuits,” Proceedings of the IEEE, vol. 91, no. 2, pp. 305–327, 2003. [6] I. Ahmad, V. Kasisomayajula, M. Holtz, J. Berg, S. Kurtz, C. Tigges, A. Allerman, and A. Baca, “Self-heating study of an AlGaN/GaN-based heterostructure field-effect transistor using ultraviolet micro-Raman scattering,” Applied Physics Letters, vol. 86, no. 17, pp. 173503–173503, 2005. [7] I. Ferain, C. A. Colinge, and J.-P. Colinge, “Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors,” Nature, vol. 479, no. 7373, pp. 310–316, 2011. [8] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “Finfet-a self-aligned double-gate MOSFET scalable to 20 nm,” Electron Devices, IEEE Transactions on, vol. 47, no. 12, pp. 2320–2325, 2000. [9] V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. G‥osele, “Realization of a silicon nanowire vertical surround-gate fieldeffect transistor,” Small, vol. 2, no. 1, pp. 85–88, 2006. [10] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-S. P. Wong, “Device scaling limits of Si MOSFETs and their application dependencies,” Proceedings of the IEEE, vol. 89, no. 3, pp. 259–288, 2001. [11] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec,” Electron Device Letters, IEEE, vol. 28, no. 8, pp. 743–745, 2007. [12] J. Hoyt, H. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. Fitzgerald, and D. Antoniadis, “Strained silicon MOSFET technology,” in Electron Devices Meeting, 2002. IEDM'02. In- ternational, pp. 23–26, IEEE, 2002. [13] D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P. C. McIntyre, T. Krishnamohan, and K. C. Saraswat, “Germanium nanowire field-effect transistors with SiO2 and high-k HfO2 gate dielectrics,” Applied Physics Letters, vol. 83, no. 12, pp. 2432– 2434, 2003. [14] W. A. De Heer, C. Berger, X.Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, et al., “Epitaxial graphene,” Solid State Communications, vol. 143, no. 1, pp. 92– 100, 2007. [15] A. Svizhenko, M. Anantram, and T. Govindan in Computational Electronics, 2000. Book of Abstracts. IWCE Glasgow 2000. 7th International Workshop on, pp. 112–113, May 2000. [16] K. Lathrop and B. Carlson, “Numerical solution of the Boltzmann transport equation,” Journal of Computational Physics, vol. 1, no. 2, pp. 173–197, 1966. [17] C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Reviews of Modern Physics, vol. 55, no. 3, p. 645, 1983. [18] J. Singh, “Electronic and optielectronic properties of semiconductor structure cambride,” United Kingdon, 2007. [19] O. K. Andersen and O. Jepsen, “Explicit, first-principles tightbinding theory,” Physical Review Letters, vol. 53, no. 27, p. 2571, 1984. [20] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, “Self-consistent-charge density-functional tight-binding method for simulations of com- plex materials properties,” Physical Review B, vol. 58, no. 11, p. 7260, 1998. [21] L. C. L. Y. Voon and M. Willatzen, The KP method: electronic properties of semiconductors. Springer Science & Business Media, 2009. [22] Y.-R. Wu, M. Singh, and J. Singh Journal of Applied Physics, vol. 94, no. 9, pp. 5826–5831, 2003. [23] S. L. Chuang and S. L. Chuang, “Physics of optoelectronic devices,” 1995. [24] N. Hugenholtz, “Perturbation theory of large quantum systems,” Physica, vol. 23, no. 1, pp. 481–532, 1957. [25] J. Singh, Electronic and optoelectronic properties of semiconduc- tor structures. Cambridge University Press, 2003. [26] E. Ramayya, D. Vasileska, S. Goodnick, and I. Knezevic, “Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering,” Journal of Applied Physics, vol. 104, no. 6, p. 063711, 2008. [27] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano letters, vol. 3, no. 2, pp. 149–152, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51738 | - |
| dc.description.abstract | 這篇論文主要在討論使用非平衡態格林函數的方法來模擬量子傳輸的效應。近年來,電晶體製程已經被發展至二十奈米以下。因為沒有考慮到量子效應,傳統使用飄移擴散方程的模擬方法來模擬載子傳輸現象已經沒辦法準確的模擬載子在元件中的行為。因此,以量子為理論的載子傳輸模擬軟體需要被發展。因為奈米線在極小元件中能有效的抑制短通道效應,因此我們的程式特定為解奈米線類型的結構。這個研究主要的特點在於我們成功地引入了聲子和材料表面粗糙所引起的散射現象,並計算因此發生載子從高能階躍遷至低能階和被散射到不同能態的結果。 | zh_TW |
| dc.description.abstract | This thesis studies the quantum transport mechanism by developing a quantum transport program using NEGF method. In recent years, transistors have been scaling down below 20 nm. The traditional carrier transport program which using drift-diffusion model can no longer accurately describe the transport phenomenon because it ignores the quantum wave pictures. As a result, a program studying carrier transport based on the quantum field theory is required. In our program, we specify the nanowire structure which is a promising solution to suppress short channel effects in small scale device. The key feature is that we successfully include optical phonon, acoustic phonon, surface roughness scattering in the NEGF solver which can simulate the energy relaxation in different energies and the transition rate to the different states in the nanowire. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:47:09Z (GMT). No. of bitstreams: 1 ntu-104-R02941096-1.pdf: 5054209 bytes, checksum: 6a9edd2489b60d620868a11cdfc15087 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Transport Models . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Boltzmann Transport Model . . . . . . . . . . . 4 1.2.2 Monte Carlo Method . . . . . . . . . . . . . . . 5 1.2.3 Non-equilibrium Green Function Method . . . . 6 2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Finite Difference Method . . . . . . . . . . . . . . . . . 12 2.3 Poisson Equation . . . . . . . . . . . . . . . . . . . . . 13 2.4 Schrodinger Equation . . . . . . . . . . . . . . . . . . . 14 2.4.1 Confined States in the Lateral Direction of the Nanowire . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 Open Boundary Condition in the Transport Direction of the Nanowire . . . . . . . . . . . . . . 16 2.4.3 Probability Current . . . . . . . . . . . . . . . . 18 2.4.4 The Scattering Rate and The Wave Function . . 20 2.5 The Derivation of The Scattering Rate . . . . . . . . . 24 2.5.1 Phonon Scattering . . . . . . . . . . . . . . . . 25 2.5.2 Surface Roughness Scattering . . . . . . . . . . 28 3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . 30 3.1 GaAs Nanowire . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Solving Non-linear Poisson and Drift-diffusion Equations 33 3.3 Solving 2D Schrodinger Equation in Cross Sections . . 34 3.4 Quantum Transport with Scattering Effect . . . . . . . 37 3.4.1 Potential Profile of Different Eigen State . . . . 38 3.4.2 Carrier Density Distribution of Different Eigen State . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.3 The Scattering Rates under Different Drain Voltages . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.4 The Current Density Distribution under Different Drain Voltage . . . . . . . . . . . . . . . . . 44 3.4.5 The Scattering Rates in Different Eigen State . 48 3.4.6 The Current Density Distribution in Different Eigen State . . . . . . . . . . . . . . . . . . . . 48 3.4.7 The Current Saturation . . . . . . . . . . . . . 51 4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 58 4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 59 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 | |
| dc.language.iso | en | |
| dc.subject | 表面粗糙散射 | zh_TW |
| dc.subject | 量子傳輸 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | 聲子 | zh_TW |
| dc.subject | Surface roughness scattering | en |
| dc.subject | Nanowire | en |
| dc.subject | Quantum transport | en |
| dc.subject | Acoustic phonon | en |
| dc.subject | Optical phonon | en |
| dc.title | 發展奈米線元件量子傳輸非平衡態數值模擬和應用 | zh_TW |
| dc.title | The Development and Application of Non-equilibrium Quantum Transport Modeling for Nanowire Device | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君(I-Chun Cheng),黃建璋(Jian-Jang Huang) | |
| dc.subject.keyword | 量子傳輸,奈米線,聲子,表面粗糙散射, | zh_TW |
| dc.subject.keyword | Quantum transport,Nanowire,Acoustic phonon,Optical phonon,Surface roughness scattering, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-11-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
