Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51738
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任(Yuh-Renn Wu)
dc.contributor.authorHung Linen
dc.contributor.author林鴻zh_TW
dc.date.accessioned2021-06-15T13:47:09Z-
dc.date.available2015-12-01
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-11-19
dc.identifier.citation[1] G. E. Moore et al., “Cramming more components onto integrated
circuits,” Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.
[2] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, “Silicon
device scaling to the sub-10-nm regime,” Science, vol. 306,
no. 5704, pp. 2057–2060, 2004.
[3] B. Davari, R. H. Dennard, and G. G. Shahidi, “CMOS scaling for
high performance and low power-the next ten years,” Proceedings
of the IEEE, vol. 83, no. 4, pp. 595–606, 1995.
[4] S.-H. Oh, D. Monroe, and J. Hergenrother, “Analytic description
of short-channel effects in fully-depleted double-gate and cylindrical,
surrounding-gate mosfets,” Electron Device Letters, IEEE,
vol. 21, no. 9, pp. 445–447, 2000.
[5] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage
current mechanisms and leakage reduction techniques in deepsubmicrometer
cmos circuits,” Proceedings of the IEEE, vol. 91,
no. 2, pp. 305–327, 2003.
[6] I. Ahmad, V. Kasisomayajula, M. Holtz, J. Berg, S. Kurtz,
C. Tigges, A. Allerman, and A. Baca, “Self-heating study of
an AlGaN/GaN-based heterostructure field-effect transistor using
ultraviolet micro-Raman scattering,” Applied Physics Letters,
vol. 86, no. 17, pp. 173503–173503, 2005.
[7] I. Ferain, C. A. Colinge, and J.-P. Colinge, “Multigate transistors
as the future of classical metal-oxide-semiconductor field-effect
transistors,” Nature, vol. 479, no. 7373, pp. 310–316, 2011.
[8] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano,
C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “Finfet-a
self-aligned double-gate MOSFET scalable to 20 nm,” Electron
Devices, IEEE Transactions on, vol. 47, no. 12, pp. 2320–2325,
2000.
[9] V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. G‥osele,
“Realization of a silicon nanowire vertical surround-gate fieldeffect
transistor,” Small, vol. 2, no. 1, pp. 85–88, 2006.
[10] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur,
and H.-S. P. Wong, “Device scaling limits of Si MOSFETs and
their application dependencies,” Proceedings of the IEEE, vol. 89,
no. 3, pp. 259–288, 2001.
[11] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling
field-effect transistors (TFETs) with subthreshold swing (SS) less
than 60 mv/dec,” Electron Device Letters, IEEE, vol. 28, no. 8,
pp. 743–745, 2007.
[12] J. Hoyt, H. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake,
E. Fitzgerald, and D. Antoniadis, “Strained silicon MOSFET
technology,” in Electron Devices Meeting, 2002. IEDM'02. In-
ternational, pp. 23–26, IEEE, 2002.
[13] D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P. C.
McIntyre, T. Krishnamohan, and K. C. Saraswat, “Germanium
nanowire field-effect transistors with SiO2 and high-k HfO2 gate
dielectrics,” Applied Physics Letters, vol. 83, no. 12, pp. 2432–
2434, 2003.
[14] W. A. De Heer, C. Berger, X.Wu, P. N. First, E. H. Conrad, X. Li,
T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, et al., “Epitaxial
graphene,” Solid State Communications, vol. 143, no. 1, pp. 92–
100, 2007.
[15] A. Svizhenko, M. Anantram, and T. Govindan in Computational
Electronics, 2000. Book of Abstracts. IWCE Glasgow 2000. 7th
International Workshop on, pp. 112–113, May 2000.
[16] K. Lathrop and B. Carlson, “Numerical solution of the Boltzmann
transport equation,” Journal of Computational Physics, vol. 1,
no. 2, pp. 173–197, 1966.
[17] C. Jacoboni and L. Reggiani, “The Monte Carlo method for the
solution of charge transport in semiconductors with applications
to covalent materials,” Reviews of Modern Physics, vol. 55, no. 3,
p. 645, 1983.
[18] J. Singh, “Electronic and optielectronic properties of semiconductor
structure cambride,” United Kingdon, 2007.
[19] O. K. Andersen and O. Jepsen, “Explicit, first-principles tightbinding
theory,” Physical Review Letters, vol. 53, no. 27, p. 2571,
1984.
[20] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk,
T. Frauenheim, S. Suhai, and G. Seifert, “Self-consistent-charge
density-functional tight-binding method for simulations of com-
plex materials properties,” Physical Review B, vol. 58, no. 11,
p. 7260, 1998.
[21] L. C. L. Y. Voon and M. Willatzen, The KP method: electronic
properties of semiconductors. Springer Science & Business Media,
2009.
[22] Y.-R. Wu, M. Singh, and J. Singh Journal of Applied Physics,
vol. 94, no. 9, pp. 5826–5831, 2003.
[23] S. L. Chuang and S. L. Chuang, “Physics of optoelectronic devices,”
1995.
[24] N. Hugenholtz, “Perturbation theory of large quantum systems,”
Physica, vol. 23, no. 1, pp. 481–532, 1957.
[25] J. Singh, Electronic and optoelectronic properties of semiconduc-
tor structures. Cambridge University Press, 2003.
[26] E. Ramayya, D. Vasileska, S. Goodnick, and I. Knezevic, “Electron
transport in silicon nanowires: The role of acoustic phonon
confinement and surface roughness scattering,” Journal of Applied
Physics, vol. 104, no. 6, p. 063711, 2008.
[27] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber,
“High performance silicon nanowire field effect transistors,” Nano
letters, vol. 3, no. 2, pp. 149–152, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51738-
dc.description.abstract這篇論文主要在討論使用非平衡態格林函數的方法來模擬量子傳輸的效應。近年來,電晶體製程已經被發展至二十奈米以下。因為沒有考慮到量子效應,傳統使用飄移擴散方程的模擬方法來模擬載子傳輸現象已經沒辦法準確的模擬載子在元件中的行為。因此,以量子為理論的載子傳輸模擬軟體需要被發展。因為奈米線在極小元件中能有效的抑制短通道效應,因此我們的程式特定為解奈米線類型的結構。這個研究主要的特點在於我們成功地引入了聲子和材料表面粗糙所引起的散射現象,並計算因此發生載子從高能階躍遷至低能階和被散射到不同能態的結果。zh_TW
dc.description.abstractThis thesis studies the quantum transport mechanism by developing a quantum transport program using NEGF method. In recent years, transistors have been scaling down below 20 nm. The traditional carrier transport program which using drift-diffusion model can no longer accurately describe the transport phenomenon because it ignores the quantum wave pictures. As a result, a program studying carrier transport based on the quantum field theory is required. In our program, we specify the nanowire structure which is a promising solution to suppress short channel effects in small scale device. The key feature is that we successfully include optical phonon, acoustic phonon, surface roughness scattering in the NEGF solver which can simulate the energy relaxation in different energies and the transition rate to the different states in the nanowire.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:47:09Z (GMT). No. of bitstreams: 1
ntu-104-R02941096-1.pdf: 5054209 bytes, checksum: 6a9edd2489b60d620868a11cdfc15087 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Transport Models . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Boltzmann Transport Model . . . . . . . . . . . 4
1.2.2 Monte Carlo Method . . . . . . . . . . . . . . . 5
1.2.3 Non-equilibrium Green Function Method . . . . 6
2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Finite Difference Method . . . . . . . . . . . . . . . . . 12
2.3 Poisson Equation . . . . . . . . . . . . . . . . . . . . . 13
2.4 Schrodinger Equation . . . . . . . . . . . . . . . . . . . 14
2.4.1 Confined States in the Lateral Direction of the
Nanowire . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Open Boundary Condition in the Transport Direction
of the Nanowire . . . . . . . . . . . . . . 16
2.4.3 Probability Current . . . . . . . . . . . . . . . . 18
2.4.4 The Scattering Rate and The Wave Function . . 20
2.5 The Derivation of The Scattering Rate . . . . . . . . . 24
2.5.1 Phonon Scattering . . . . . . . . . . . . . . . . 25
2.5.2 Surface Roughness Scattering . . . . . . . . . . 28
3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . 30
3.1 GaAs Nanowire . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Solving Non-linear Poisson and Drift-diffusion Equations 33
3.3 Solving 2D Schrodinger Equation in Cross Sections . . 34
3.4 Quantum Transport with Scattering Effect . . . . . . . 37
3.4.1 Potential Profile of Different Eigen State . . . . 38
3.4.2 Carrier Density Distribution of Different Eigen
State . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 The Scattering Rates under Different Drain Voltages
. . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.4 The Current Density Distribution under Different
Drain Voltage . . . . . . . . . . . . . . . . . 44
3.4.5 The Scattering Rates in Different Eigen State . 48
3.4.6 The Current Density Distribution in Different
Eigen State . . . . . . . . . . . . . . . . . . . . 48
3.4.7 The Current Saturation . . . . . . . . . . . . . 51
4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 58
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 59
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
dc.language.isoen
dc.subject表面粗糙散射zh_TW
dc.subject量子傳輸zh_TW
dc.subject奈米線zh_TW
dc.subject聲子zh_TW
dc.subjectSurface roughness scatteringen
dc.subjectNanowireen
dc.subjectQuantum transporten
dc.subjectAcoustic phononen
dc.subjectOptical phononen
dc.title發展奈米線元件量子傳輸非平衡態數值模擬和應用zh_TW
dc.titleThe Development and Application of Non-equilibrium Quantum Transport Modeling for Nanowire Deviceen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君(I-Chun Cheng),黃建璋(Jian-Jang Huang)
dc.subject.keyword量子傳輸,奈米線,聲子,表面粗糙散射,zh_TW
dc.subject.keywordQuantum transport,Nanowire,Acoustic phonon,Optical phonon,Surface roughness scattering,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2015-11-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved