請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51732完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何弘能(Hong-Nerng Ho) | |
| dc.contributor.author | Fang-Yu Tsao | en |
| dc.contributor.author | 曹芳瑜 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:46:51Z | - |
| dc.date.available | 2018-02-24 | |
| dc.date.copyright | 2016-02-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-11-24 | |
| dc.identifier.citation | References
Baschong, W., Suetterlin, R., and Laeng, R.H. (2001). Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 49, 1565-1572. Bataille, F., Troppmann, S., Klebl, F., Rogler, G., Stoelcker, B., Hofstadter, F., Bosserhoff, A.K., and Rummele, P. (2006). Multiparameter immunofluorescence on paraffin-embedded tissue sections. Applied immunohistochemistry & molecular morphology : AIMM / official publication of the Society for Applied Immunohistochemistry 14, 225-228. Bouman, A., Heineman, M.J., and Faas, M.M. (2005). Sex hormones and the immune response in humans. Human reproduction update 11, 411-423. Chao, K.H., Wu, M.Y., Chen, C.D., Yang, J.H., Yang, Y.S., and Ho, H.N. (1999). The expression of killer cell inhibitory receptors on natural killer cells and activation status of CD4+ and CD8+ T cells in the decidua of normal and abnormal early pregnancies. Human immunology 60, 791-797. Chaouat, G., Menu, E., Athanassakis, I., and Wegmann, T.G. (1988). Maternal T cells regulate placental size and fetal survival. Regional immunology 1, 143-148. Druckmann, R., and Druckmann, M.A. (2005). Progesterone and the immunology of pregnancy. The Journal of steroid biochemistry and molecular biology 97, 389-396. Edin, S., Wikberg, M.L., Dahlin, A.M., Rutegard, J., Oberg, A., Oldenborg, P.A., and Palmqvist, R. (2012). The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 7, e47045. Erlebacher, A. (2013). Immunology of the maternal-fetal interface. Annual review of immunology 31, 387-411. Fairweather, D., Frisancho-Kiss, S., and Rose, N.R. (2008). Sex differences in autoimmune disease from a pathological perspective. The American journal of pathology 173, 600-609. Harkonen, P.L., and Vaananen, H.K. (2006). Monocyte-macrophage system as a target for estrogen and selective estrogen receptor modulators. Annals of the New York Academy of Sciences 1089, 218-227. Hasan, D., Chalouhi, N., Jabbour, P., and Hashimoto, T. (2012). Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results. Journal of neuroinflammation 9, 222. Heikkinen, J., Mottonen, M., Komi, J., Alanen, A., and Lassila, O. (2003). Phenotypic characterization of human decidual macrophages. Clinical and experimental immunology 131, 498-505. Ho, H.N., Chao, K.H., Chen, C.K., Yang, Y.S., and Huang, S.C. (1996). Activation status of T and NK cells in the endometrium throughout menstrual cycle and normal and abnormal early pregnancy. Human immunology 49, 130-136. Houser, B.L. (2012). Decidual macrophages and their roles at the maternal-fetal interface. Yale J Biol Med 85, 105-118. Houser, B.L., Tilburgs, T., Hill, J., Nicotra, M.L., and Strominger, J.L. (2011). Two unique human decidual macrophage populations. J Immunol 186, 2633-2642. Hutter, S., Heublein, S., Knabl, J., Andergassen, U., Vrekoussis, T., Makrigiannakis, A., Friese, K., Mayr, D., and Jeschke, U. (2013). Macrophages: are they involved in endometriosis, abortion and preeclampsia and how? Journal of Nippon Medical School = Nippon Ika Daigaku zasshi 80, 97-103. Khramtsova, G.L., C. ; Khramtsov, A. ; Li, S. ; Gong, C. ; Huo, D. ; Nanda, R. ; American Association for Cancer Research; University of Texas (2009). The M2/alternatively Activated Macrophage Phenotype Correlates with Aggressive Histopathologic Features and Poor Clinical Outcome in Early Stage Breast Cancer. 107 Pages Komohara, Y., Horlad, H., Ohnishi, K., Ohta, K., Makino, K., Hondo, H., Yamanaka, R., Kajiwara, K., Saito, T., Kuratsu, J., et al. (2011). M2 macrophage/microglial cells induce activation of Stat3 in primary central nervous system lymphoma. Journal of clinical and experimental hematopathology : JCEH 51, 93-99. Kwan, M., Hazan, A., Zhang, J., Jones, R.L., Harris, L.K., Whittle, W., Keating, S., Dunk, C.E., and Lye, S.J. (2014). Dynamic changes in maternal decidual leukocyte populations from first to second trimester gestation. Placenta 35, 1027-1034. La Rocca, C., Carbone, F., Longobardi, S., and Matarese, G. (2014). The immunology of pregnancy: Regulatory T cells control maternal immune tolerance toward the fetus. Immunology letters. Laird, S.M., Mariee, N., Wei, L., and Li, T.C. (2011). Measurements of CD56+ cells in peripheral blood and endometrium by flow cytometry and immunohistochemical staining in situ. Human reproduction (Oxford, England) 26, 1331-1337. Lang, T.J. (2004). Estrogen as an immunomodulator. Clinical immunology (Orlando, Fla) 113, 224-230. Lee, J.Y., Lee, M., and Lee, S.K. (2011). Role of endometrial immune cells in implantation. Clinical and experimental reproductive medicine 38, 119-125. Lee, S., Kim, J., Jang, B., Hur, S., Jung, U., Kil, K., Na, B., Lee, M., Choi, Y., Fukui, A., et al. (2010). Fluctuation of peripheral blood T, B, and NK cells during a menstrual cycle of normal healthy women. Journal of immunology (Baltimore, Md : 1950) 185, 756-762. Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A., and Locati, M. (2013). Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of pathology 229, 176-185. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in immunology 23, 549-555. Martinez, F.O., Sica, A., Mantovani, A., and Locati, M. (2008). Macrophage activation and polarization. Frontiers in bioscience : a journal and virtual library 13, 453-461. Mor, G., and Abrahams, V.M. (2003). Potential role of macrophages as immunoregulators of pregnancy. Reproductive biology and endocrinology : RB&E 1, 119. Mosmann, T.R., and Coffman, R.L. (1989). TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annual review of immunology 7, 145-173. Nagamatsu, T., and Schust, D.J. (2010). The immunomodulatory roles of macrophages at the maternal-fetal interface. Reproductive sciences (Thousand Oaks, Calif) 17, 209-218. Nakashima, A., Shima, T., Inada, K., Ito, M., and Saito, S. (2012). The balance of the immune system between T cells and NK cells in miscarriage. American journal of reproductive immunology (New York, NY : 1989) 67, 304-310. Oliveira, L.J., McClellan, S., and Hansen, P.J. (2010). Differentiation of the endometrial macrophage during pregnancy in the cow. PLoS One 5, e13213. Piccinni, M.-P. (2005). T cells in Pregnancy. Chem Immunol Allergy 89, 3-9. Raghupathy, R., Al-Mutawa, E., Al-Azemi, M., Makhseed, M., Azizieh, F., and Szekeres-Bartho, J. (2009). Progesterone-induced blocking factor (PIBF) modulates cytokine production by lymphocytes from women with recurrent miscarriage or preterm delivery. Journal of reproductive immunology 80, 91-99. Robertson, D., Savage, K., Reis-Filho, J.S., and Isacke, C.M. (2008). Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC cell biology 9, 13. Romagnani, S. (1991). Human TH1 and TH2 subsets: doubt no more. Immunology today 12, 256-257. Seshadri, S., and Sunkara, S.K. (2014). Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Human reproduction update 20, 429-438. Stout, R.D., and Suttles, J. (2004). Functional plasticity of macrophages: reversible adaptation to changing microenvironments. Journal of leukocyte biology 76, 509-513. Szekeres-Bartho, J., Barakonyi, A., Par, G., Polgar, B., Palkovics, T., and Szereday, L. (2001). Progesterone as an immunomodulatory molecule. International immunopharmacology 1, 1037-1048. Szekeres-Bartho, J., Faust, Z., and Varga, P. (1995). The expression of a progesterone-induced immunomodulatory protein in pregnancy lymphocytes. American journal of reproductive immunology (New York, NY : 1989) 34, 342-348. Thiruchelvam, U., Dransfield, I., Saunders, P.T., and Critchley, H.O. (2013). The importance of the macrophage within the human endometrium. Journal of leukocyte biology 93, 217-225. Verthelyi, D. (2001). Sex hormones as immunomodulators in health and disease. International immunopharmacology 1, 983-993. Viegas, M.S., Martins, T.C., Seco, F., and do Carmo, A. (2007). An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues. European journal of histochemistry : EJH 51, 59-66. Ata, B., Tan, S.L., Shehata, F., Holzer, H., and Buckett, W. (2011). A systematic review of intravenous immunoglobulin for treatment of unexplained recurrent miscarriage. Fertility and sterility 95, 1080-1085.e1081-1082. Bouman, A., Heineman, M.J., and Faas, M.M. (2005). Sex hormones and the immune response in humans. Human reproduction update 11, 411-423. Chao, K.H., Wu, M.Y., Chen, C.D., Yang, J.H., Yang, Y.S., and Ho, H.N. (1999). The expression of killer cell inhibitory receptors on natural killer cells and activation status of CD4+ and CD8+ T cells in the decidua of normal and abnormal early pregnancies. Human immunology 60, 791-797. Chen, K.C., Ho, H.N. (2009). Distribution of Th17 cells in human early normal and anembryonic pregnancies Druckmann, R., and Druckmann, M.A. (2005). Progesterone and the immunology of pregnancy. The Journal of steroid biochemistry and molecular biology 97, 389-396. Ho, H.N., Chao, K.H., Chen, C.K., Yang, Y.S., and Huang, S.C. (1996). Activation status of T and NK cells in the endometrium throughout menstrual cycle and normal and abnormal early pregnancy. Human immunology 49, 130-136. Ho, H.N., Chao, K.H., Chen, H.F., Chen, S.U., Wu, M.Y., and Yang, Y.S. (2001). Distribution of Th1 and Th2 cell populations in human peripheral and decidual T cells from normal and anembryonic pregnancies. Fertility and sterility 76, 797-803. Hutter, S., Heublein, S., Knabl, J., Andergassen, U., Vrekoussis, T., Makrigiannakis, A., Friese, K., Mayr, D., and Jeschke, U. (2013). Macrophages: are they involved in endometriosis, abortion and preeclampsia and how? Journal of Nippon Medical School = Nippon Ika Daigaku zasshi 80, 97-103. Kwan, M., Hazan, A., Zhang, J., Jones, R.L., Harris, L.K., Whittle, W., Keating, S., Dunk, C.E., and Lye, S.J. (2014). Dynamic changes in maternal decidual leukocyte populations from first to second trimester gestation. Placenta 35, 1027-1034. Lee, J.Y., Lee, M., and Lee, S.K. (2011). Role of endometrial immune cells in implantation. Clinical and experimental reproductive medicine 38, 119-125. Lee, S., Kim, J., Jang, B., Hur, S., Jung, U., Kil, K., Na, B., Lee, M., Choi, Y., Fukui, A., et al. (2010). Fluctuation of peripheral blood T, B, and NK cells during a menstrual cycle of normal healthy women. Journal of immunology (Baltimore, Md : 1950) 185, 756-762. Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A., and Locati, M. (2013). Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of pathology 229, 176-185. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in immunology 23, 549-555. Martinez, F.O., Sica, A., Mantovani, A., and Locati, M. (2008). Macrophage activation and polarization. Frontiers in bioscience : a journal and virtual library 13, 453-461. Medicine., T.P.C.o.t.A.S.f.R. (2006). Intravenous immunoglobulin (IVIG) and recurrent spontaneous pregnancy loss. Fertility and sterility 86, S226-227. Moffett, A., and Shreeve, N. (2015). First do no harm: uterine natural killer (NK) cells in assisted reproduction. Human reproduction (Oxford, England) 30, 1519-1525. Mor, G., and Abrahams, V.M. (2003). Potential role of macrophages as immunoregulators of pregnancy. Reproductive biology and endocrinology : RB&E 1, 119. Nagamatsu, T., and Schust, D.J. (2010a). The contribution of macrophages to normal and pathological pregnancies. American journal of reproductive immunology (New York, NY : 1989) 63, 460-471. Nagamatsu, T., and Schust, D.J. (2010b). The immunomodulatory roles of macrophages at the maternal-fetal interface. Reproductive sciences (Thousand Oaks, Calif) 17, 209-218. Nakashima, A., Shima, T., Inada, K., Ito, M., and Saito, S. (2012). The balance of the immune system between T cells and NK cells in miscarriage. American journal of reproductive immunology (New York, NY : 1989) 67, 304-310. Raghupathy, R., Al-Mutawa, E., Al-Azemi, M., Makhseed, M., Azizieh, F., and Szekeres-Bartho, J. (2009). Progesterone-induced blocking factor (PIBF) modulates cytokine production by lymphocytes from women with recurrent miscarriage or preterm delivery. Journal of reproductive immunology 80, 91-99. Robertson, D., Savage, K., Reis-Filho, J.S., and Isacke, C.M. (2008). Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC cell biology 9, 13. Siiteri, P.K., Febres, F., Clemens, L.E., Chang, R.J., Gondos, B., and Stites, D. (1977). Progesterone and maintenance of pregnancy: is progesterone nature's immunosuppressant? Annals of the New York Academy of Sciences 286, 384-397. Szekeres-Bartho, J., Barakonyi, A., Par, G., Polgar, B., Palkovics, T., and Szereday, L. (2001). Progesterone as an immunomodulatory molecule. International immunopharmacology 1, 1037-1048. Szekeres-Bartho, J., Faust, Z., and Varga, P. (1995). The expression of a progesterone-induced immunomodulatory protein in pregnancy lymphocytes. American journal of reproductive immunology (New York, NY : 1989) 34, 342-348. Thiruchelvam, U., Dransfield, I., Saunders, P.T., and Critchley, H.O. (2013). The importance of the macrophage within the human endometrium. Journal of leukocyte biology 93, 217-225. Wong, L.F., Porter, T.F., and Scott, J.R. (2014). Immunotherapy for recurrent miscarriage. The Cochrane database of systematic reviews 10, Cd000112. Wu, Y.J., Ho, H.N. (2007). Distribution of FOXP3+ Regulatory T Cells and CD8+ T Cell-Rich Lymphoid Aggregates in Decidua from Human Normal and Anembryonic Pregnancies | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51732 | - |
| dc.description.abstract | 在哺乳類中,胎兒因為帶有一半來自父系的基因而被視為是一半異體移植物(semi-allogeneic graft)。在正常情況下,胎兒能在子宮內正常生長而不被母體免疫系統排斥。因此,免疫細胞被認為在受精卵著床時的環境中扮演重要角色,不僅能維持母親正常免疫功能以對抗外界病原,還能夠產生適當的免疫調適。子宮蛻膜中數量第二多的巨噬細胞(20~25%)在此調適中可能扮演重要的角色,也是本實驗主要探討的對象。一直以來,巨噬細胞被認為會根據不同的刺激及所處的環境,特別是受到懷孕初期性荷爾蒙的影響,而極化成M1及M2兩種類型,且此兩種類型細胞比例的不平衡是否可能導致流產有待進一步探討。臨床上,有些婦女受不明原因的反覆性流產所苦,且給予標準的治療方法也未見起色。因此,我們利用免疫組織螢光染色的方法探討這兩群細胞的比例在受到賀爾蒙波動的影響下:在不同月經週期、正常、不正常懷孕及反覆性流產的情況下有何差異,試圖找尋造成不明原因流產可能的病理及生理原因。實驗結果顯示,在不正常懷孕及反覆性流產的情形下,M1細胞的比例較高;而處於黃體期或正常懷孕的婦女則擁有較高比例的M2細胞。此結果意味著M2細胞在準備懷孕及支持正常懷孕的情況中扮演重要的角色;過多的M1巨噬細胞可能藉由引發過多的發炎反應而導致不正常的懷孕或反覆性流產。了解M1/ M2的分布比例及可能的病理及生理原因,未來將有助於治療方法的開發及幫助預測不明原因流產婦女的懷孕結果。 | zh_TW |
| dc.description.abstract | In mammals, the developing embryo-placenta unit is considered as a semi-allogeneic graft. Maternal immunomodulation allows the acceptance and growth of the fetus without being rejected in the uterus. Immune cells in decidua, holding a key role during the implantation, not merely keep maternal immunomodulation but also maintain defense of host and fetus against pathogens. Decidual macrophages represent the second largest proportion of leukocyte in the uterus so their roles in maintaining maternal tolerance shall not be overlooked and are the main target cells in this study. Macrophages might be polarized to M1 or M2 subpopulations by the stimulation from uterine microenvironment, especially those hormones and cytokines during implantation in early pregnancy. The imbalance of M1/M2 might link to pathological pregnancies. Clinically, some women, healthy but refractory to traditional therapies, suffered from unexplained recurrent spontaneous abortions without defined etiologies. Hence, our goal is to evaluate the M1/M2 ratio in vivo the condition of hormone fluctuation during different menstrual phases and various groups of women with normal and abnormal pregnancies and recurrent spontaneous abortions with immunofluorescence studies to find out the possible pathophysiology of abortions. The results demonstrated that M1 macrophages are abundant in abnormal pregnancies and RSA and the frequency of M2 macrophages is significantly higher in luteal phase and normal pregnancies. It suggested that M2 macrophage may be the imperative role in preparing for and upholding pregnancy and that high level of M1 macrophages may induce spontaneous abortions due to promoting excessive inflammation. This study may provide directions for developing new treatment and the level of M1/M2 in the future might be the predictor of pregnancy outcome in women with unexplained abortion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:46:51Z (GMT). No. of bitstreams: 1 ntu-104-R02449011-1.pdf: 1330960 bytes, checksum: 17bfcab6cf8444fc4dfd615e4e10f33e (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄
中文摘要 1 Abstract 2 Abbreviations 4 Introduction 5 1.1 Hormones in pregnancy 7 1.2 Hormone effects in immunity 8 1.3 Communication between hormones and immune cells 10 1.4 NK cells in pregnancy 12 1.5 The role of T cells in decidua 13 1.6 M1 & M2 macrophages 15 1.7 Macrophages in decidua 17 1.8 Interactions between macrophages and other cells in decidua 20 1.9 The rationale and aim of our study 22 Materials and methods 23 2.1 Technique improvement 25 2.2 Sample collection 26 2.3 Immunofluorescence staining (Paraffin section) 27 2.4 Data analysis 28 2.5 Statistical Analysis 29 Results 30 3.1 CD68 was not expressed on CD56+ NK cells & CD3+ T cells in human decidua and endometrium 31 3.2 The number of CD68 positive macrophages significantly increases after pregnancy 31 3.3 Sex hormones or immune cells interactions may induce M2-biased immunity to support a normal pregnancy 32 Discussion 34 4.1 Hormones have impact on immunomodulation 35 4.2 Elevated M1 macrophage population are found in pathological pregnancies and M2 macrophage are more abundant in normal pregnancy 36 4.3 The two distinct populations of macrophage may contribute to maternal immunomodulation 37 4.4 Perspective and Application 38 Figure & Table 40 References 54 | |
| dc.language.iso | en | |
| dc.subject | 母體免疫調適 | zh_TW |
| dc.subject | 反覆性流產 | zh_TW |
| dc.subject | M1/M2巨噬細胞 | zh_TW |
| dc.subject | 蛻膜巨噬細胞 | zh_TW |
| dc.subject | recurrent spontaneous abortion | en |
| dc.subject | M1/M2 Macrophages | en |
| dc.subject | decidual macrophages | en |
| dc.subject | maternal immunomodulation | en |
| dc.title | 人類濾泡期、黃體期、正常懷孕、不正常懷孕及反覆性流產之子宮內膜及蛻膜中巨噬細胞(M1/M2亞型比例)之分析 | zh_TW |
| dc.title | Macrophages (M1/M2 ratio) in the endometrium at follicular and secretory phases and deciduae from normal, abnormal pregnancies and recurrent spontaneous abortions in human | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 伍安怡(B.A. Wu-Hsieh),李新揚(Hisn-Yang Lee) | |
| dc.subject.keyword | M1/M2巨噬細胞,蛻膜巨噬細胞,母體免疫調適,反覆性流產, | zh_TW |
| dc.subject.keyword | M1/M2 Macrophages,decidual macrophages,maternal immunomodulation,recurrent spontaneous abortion, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-11-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
