Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 圖書資訊學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51704
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor唐牧群(Mun-Chyun Tang)
dc.contributor.authorMei-Mei Changen
dc.contributor.author張媺媺zh_TW
dc.date.accessioned2021-06-15T13:45:27Z-
dc.date.available2019-02-15
dc.date.copyright2016-02-15
dc.date.issued2015
dc.date.submitted2015-12-01
dc.identifier.citation林宗鴻(譯)(1997)。人格心理學。臺北:揚智。(Burger, J. M., 1990)
吳明隆(2010)。論文寫作與量化研究。臺北市:五南。
黃希庭(2002)。人格心理学。杭州市:浙江敎育出版社。
邱泯科、陳佳穎、蔡毓智、姜馨彥(譯)(2004)。研究方法:基礎理論與技巧。
臺北市:雙葉書廊。(Babbie, E., 2002)
陳世榮(譯)(2013)。社會網絡分析方法 : UCINET的應用。高雄市:巨流。
(Hanneman, R. A., & Riddle, M, 2005)
潘永祥等編(1996)。自然科學槪論。臺北市:五南。
葉妤貞、黃芳銘、林珊如(2007)。大學生線上遊戲休閒涉入量表之發展。運動休閒管理學報,4(2),頁 16-32。
魏勇剛、龍長權、宋武(譯)(2010)。量表編製:理論與應用。(Devells, R.
F., 1991)
Adamopoulos, P., & Tuzhilin, A. (2011, October). On unexpectedness in recommender systems: Or how to expect the unexpected. InWorkshop on Novelty and Diversity in Recommender Systems (DiveRS 2011), at the 5th ACM International Conference on Recommender Systems (RecSys' 11)(pp. 11-18). Chicago, Illinois, USA.
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6), 734-749.
Amir, O., & Levav, J. (2008). Choice construction versus preference construction: The instability of preferences learned in context. Journal of Marketing Research, 45(2), 145-158.
Bakker, A. B, Van Der Zee, K. I, Lewig, K. A, & Dollard, M. F. (2006). The relationship between the big five personality factors and burnout: A study among volunteer counselors. The Journal of social psychology, 146(1), 31-50.
Baumgartner, H., & Steenkamp, J. B.E. (1996). Exploratory consumer buying behavior: Conceptualization and measurement. International Journal of Research in Marketing, 13(2), 121-137.
Bennett, J., & Lanning, S. (2007). The netflix prize. InProceedings of KDD cup and workshop (Vol. 2007, p. 35). Retrieved from:http://www.cs.uic.edu/~liub/KDD-cup-2007/proceedings.html
Bettman, J. R, Luce, M. F., & Payne, J. W. (1998). Constructive consumer choice processes. Journal of consumer research, 25(3), 187-217.
Boyd, J. P., Fitzgerald, W. J., Mahutga, M. C., & Smith, D. A. (2010). Computing continuous core/periphery structures for social relations data with MINRES/SVD. Social Networks, 32(2), 125-137.
Cantador, I., Fernández-Tobías, I., Bellogín, A., Kosinski, M., & Stillwell, D. (2013, June). Relating Personality Types with User Preferences in Multiple Entertainment Domains. InUMAP Workshops, Girona, Spain.
Castells, P., Vargas, S., & Wang, J. (2011). Novelty and diversity metrics for recommender systems: choice, discovery and relevance. In International Workshop on Diversity in Document Retrieval(DDR 2011) at the 33rd European Conference on Information Retrieval(ECIR 2011) (pp. 29-36). Dublin, Ireland.
Celma, Ò. (2010). Music recommendation and discovery: The long tail, long fail, and long play in the digital music space.Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg.
Celma, Ò., & Herrera, P. (2008). A new approach to evaluating novel recommendations. InProceedings of the 2008 ACM conference on Recommender systems (pp. 179-186). Minneapolis, USA.
Chamorro-Premuzic, T.,& Furnham, A.(2005). Personality and intellectual competence. Mahwah, N.J. ; London : Lawrence Erlbaum Associates.
Chausson, O. (2010). Who watches what?: assessing the impact of gender and personality on film preferences. Paper published online on the MyPersonality project websiteRetrievedfrom: http://mypersonality.org/wiki/doku.php?id=movie_tastes_and_personality.
Chen, L., Wu, W., &He, L. (2013). How Personality Influences Users’ Needs for Recommendation Diversity? In CHI'13 Extended Abstracts on Human Factors in Computing Systems(pp. 829-834). New York:ACM.
Costa, P. T. & McCrae, R. R.(1992). Professional manual: revised NEO personality inventory(NEO-PI-R) and NEO five-factor inventory(NEO-FFI). Odessa, FL: Psychological Assessment Resources, 179-198.
Di Noia, T., Ostuni, V. C., Rosati, J., Tomeo, P., & Di Sciascio, E. (2014). An analysis of users' propensity toward diversity in recommendations.InProceedings of the 8th ACM Conference on Recommender systems(pp. 285-288). New York: ACM.
Dunn, G., Wiersema, J., Ham, J., & Aroyo, L. (2009). Evaluating interface variants on personality acquisition for recommender systems,User Modeling, Adaptation, and Personalization(pp. 259-270).Springer Berlin Heidelberg.
Faison, E.W.(1977). The neglected variety drive: A useful concept for consumer behavior. Journal of Consumer Research,4(3), 172-175.
Finn, S. (1997). Origins of media exposure linking personality traits to TV, radio, print, and film use. Communication Research, 24(5), 507-529.
Franke, N., Keinz, P., & Steger, C. J. (2009). Testing the value of customization: when do customers really prefer products tailored to their preferences? Journal of Marketing, 73(5), 103-121.
Furr, M. R. (2011). Scale construction and psychometrics for social and personality psychology. Los Angeles : SAGE.
George, D., & Mallery, P.(2006). SPSS for Windows Step by Step: A Simple Guide and Reference, 13.0 Update.USA: Pearson A and B.
Goldberg, L. R. (1993). The structure of phenotypic personality traits. American psychologist, 48(1), 26.
Goldsmith, R. E., & Foxall, G. R. (2003). The measurement of innovativeness. In Shavinina, L. V. (Ed.),The international handbook on innovation(chap.1, pp.321-330).UK: Elsevier.
Goldsmith, R. E., & Hofacker, C. F. (1991). Measuring consumer innovativeness. Journal of the Academy of Marketing Science, 19(3), 209-221.
Gosling, S. (2008). Snoop: What Your Stuff Says about You.New York : Basic Books
Häubl, G., & Murray, K. B. (2003). Preference construction and persistence in digital marketplaces: The role of electronic recommendation agents. Journal of Consumer Psychology, 13(1), 75-91.
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems(TOIS), 22(1), 5-53.
Hirschman, E. C. (1980). Innovativeness, novelty seeking, and consumer creativity. Journal of Consumer Research,7(3), 283-295.
Hoeffler, S., & Ariely, D. (1999). Constructing stable preferences: A look into dimensions of experience and their impact on preference stability. Journal of Consumer Psychology, 8(2), 113-139.
Hu, R., & Pu, P. (2009a). Acceptance issues of personality-based recommender systems.InProceedings of the third ACM conference on Recommender systems(pp. 221-224). New York: ACM.
Hu, R., & Pu, P. (2009b). A comparative user study on rating vs. personality quiz based preference elicitation methods.In Proceedings of the 14th international conference on Intelligent user interfaces(pp. 367-372). New York: ACM.
Hu, R., & Pu, P. (2011). Enhancing collaborative filtering systems with personality information.InProceedings of the fifth ACM conference on Recommender systems (pp. 197-204).New York: ACM.
Hurley, N., & Zhang, M. (2011). Novelty and diversity in top-N recommendation--analysis and evaluation. ACM Transactions on Internet Technology(TOIT), 10(4), 14.
Kahn, B. E. (1995). Consumer variety-seeking among goods and services: An integrative review. Journal of Retailing and Consumer Services, 2(3), 139-148.
Kallias, A. (2012). Individual Differences and The Psychology of Film Preferences. Doctoral dissertation, University of London, London.
Konstan, J. A., & Riedl, J. (2012). Recommender systems: from algorithms to user experience. User Modeling and User-Adapted Interaction, 22(1-2), 101-123.
Kramer, T. (2007). The effect of measurement task transparency on preference construction and evaluations of personalized recommendations. Journal of Marketing Research, 44(2), 224-233.
Kwon, K., Cho, J., & Park, Y. (2009). Influences of customer preference development on the effectiveness of recommendation strategies. Electronic Commerce Research and Applications, 8(5), 263-275.
Lin, C. H., & McLeod, D. (2002). Exploiting and Learning Human Temperaments for
Customized Information Recommendation. In Internet and Multimedia Systems
and Applications(IMSA) (pp. 218-223).USA: ACTA Press.
McAlister, L., & Pessemier, E. (1982). Variety seeking behavior: An interdisciplinary review. Journal of Consumer research, 9(3), 311-322.
McCrae, R. R., & Costa, P. T. (1987). Validation of the five-factor model of personality across instruments and observers. Journal of personality and social psychology, 52(1), 81.
McCrae, R. R., & Costa, P. T. (2003). Personality in adulthood: A five-factor theory perspective. New York : Guilford Press.
McFadden, D. (1999). Rationality for economists? Journal of Risk and Uncertainty, 19(1-3), 73-105.
McIntyre, N., & Pigram, JJ. (1992). Recreation specialization reexamined: The case of vehicle‐based campers. Leisure Sciences, 14(1), 3-15.
McNee, S. M., Riedl, J., & Konstan, J. A. (2006). Being accurate is not enough: how accuracy metrics have hurt recommender systems. InCHI'06 extended abstracts on Human factors in computing systems(pp. 1097-1101). NewYork: ACM.
Menon, S., & Kahn, B. E. (1995). The impact of context on variety seeking in product choices. Journal of Consumer Research,22(3), 285-295.
Midgley, D. F., & Dowling, G. R. (1978). Innovativeness: The concept and its measurement. Journal of consumer research,4(4), 229-242.
Murakami, T., Mori, K., & Orihara, R. (2008). Metrics for evaluating the serendipity of recommendation lists. In New Frontiers in Artificial Intelligence (pp. 40-46). Springer Berlin Heidelberg.
Nazim Uddin, M., Shrestha, J., & Jo, G. S. (2009). Enhanced content-based filtering using diverse collaborative prediction for movie recommendation. In Intelligent Information and Database Systems, 2009. ACIIDS 2009. First Asian Conference on(pp. 132-137). IEEE.
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1992). Behavioral decision research: A constructive processing perspective. Annual review of psychology, 43(1), 87-131.
Payne, J. W., Bettman, J. R., Schkade, D. A., Schwarz, N., & Gregory, R. (2000). Measuring constructed preferences: Towards a building code. In Elicitation of preferences(pp. 243-275). Springer Netherlands.
Pearson, P. H. (1970). Relationships between global and specified measures of novelty seeking. Journal of Consulting and Clinical Psychology, 34(2), 199-204 .
Rabin, M. (1998). Psychology and economics. Journal of economic literature,36(1), 11-46.
Raju, P. S. (1980). Optimum stimulation level: Its relationship to personality, demographics, and exploratory behavior. Journal of consumer research,7(3), 272-282.
Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A.,& Riedl, J. (2002). Getting to know you: learning new user preferences in recommender systems. InProceedings of the 7th international conference on Intelligent user interfaces(pp. 127-134). New York: ACM.
Roehrich, G. (2004). Consumer innovativeness: concepts and measurements. Journal of Business Research, 57(6), 671-677.
Rogers, E. M., & Shoemaker, F. F. (1971). Communication of Innovations: A Cross-Cultural Approach. New York: Free Press.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. InProceedings of the 10th international conference on World Wide Web (pp. 285-295). New York: ACM.
Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In F. Ricci, L, Rokach, B. Shapira, & P. B. Kantor (Eds),Recommender systems handbook(chap. 8, pp. 257-297). US: Springer.
Shen, A., & Ball, A. D.(2011). Preference stability belief as a determinant of response to personalized recommendations. Journal of Consumer Behaviour, 10(2), 71-79.
Simonson, I. (2005). Determinants of customers’ responses to customized offers: Conceptual framework and research propositions. Journal of Marketing, 69(1), 32-45.
Slovic, P. (1995). The construction of preference. American psychologist, 50(5), 364.
Small, H. (2009). Critical thresholds for co-citation clusters & emergence of the giant
component. Journal of Informetrics, 3 (4), 332-340.
Tang, M. C., Ke, Y. L., & Sie, Y. J. (2013). The Estimation of aNobii Users’ Reading Diversity Using Book Co-ownership Data: A Social Analytical Approach. In Social Informatics(pp. 274-283). Springer International Publishing.
Tang, M. C., Sie, Y. J., & Ting, P. H. (2014). Evaluating books finding tools on social media: A case study of aNobii. Information Processing & Management, 50(1), 54-68.
Tintarev, N., Dennis, M., & Masthoff, J. (2013). Adapting Recommendation Diversity to Openness to Experience: A Study of Human Behaviour. In User Modeling, Adaptation, and Personalization(pp. 190-202). Springer Berlin Heidelberg.
Van Trijp, H. C., Hoyer, W. D., & Inman, J. J. (1996). Why switch? Product category: level explanations for true variety-seeking behavior. Journal of Marketing Research,33(3), 281-292.
Vandecasteele, B., & Geuens, M. (2010). Motivated consumer innovativeness: Concept, measurement, and validation. International Journal of Research in Marketing, 27(4), 308-318.
Vargas, S., & Castells, P. (2013, May). Exploiting the diversity of user preferences for recommendation. InProceedings of the 10th Conference on Open Research Areas in Information Retrieval(pp. 129-136). Paris: LE CENTRE DE HAUTES ETUDES INTERNATIONALES D'INFORMATIQUE DOCUMENTAIRE.
Weaver, J. B. (1991). Exploring the links between personality and media preferences. Personality and Individual Differences, 12(12), 1293-1299.
Weaver, J. B., Brosius, H. B., & Mundorf, N. (1993). Personality and movie preferences: A comparison of American and German audiences. Personality and Individual Differences, 14(2), 307-315.
Wu, W., Chen, L., & He, L. (2013). Using personality to adjust diversity in recommender systems. InProceedings of the 24th ACM Conference on Hypertext and Social Media(pp. 225-229). New York: ACM.
Yang, Y., & Li, J. Z. (2005). Interest-based recommendation in digital library. Journal of Computer Science, 1(1), 40.
Zhang, M., & Hurley, N. (2008). Avoiding monotony: improving the diversity of recommendation lists. InProceedings of the 2008 ACM conference on Recommender systems(pp. 123-130). New York: ACM.
Zhou, T., Kuscsik, Z., Liu, J. G., Medo, M., Wakeling, J. R., & Zhang, Y. C. (2010). Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings of the National Academy of Sciences, 107(10), 4511-4515.
Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving
recommendation lists through topic diversification. InProceedings of the 14th
international conference on World Wide Web(pp. 22-32). New York: ACM.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51704-
dc.description.abstract推薦系統除了既有的準確度之外,推薦結果的多樣性與新穎性也漸被學界重視,本研究從消費者偏好結構與心理特質上探討不同使用者對多樣性與新穎性推薦接受程度的差異,稱之為偏好多樣性與偏好開放性,以作為未來推薦系統發展的參考。本研究旨在發展電影偏好結構多樣性及開放性之量表,偏好多樣性欲反映的是消費者其偏好的廣泛、多元程度,偏好開放性則是消費者接納陌生事物的開放程度,以編製出適合衡量消費者偏好的測量工具,並驗證量表與電影觀眾真實偏好間的相關程度。
量表編製係從相關文獻中的量表、問卷之題項,與焦點團體訪談,據以編製量表題庫。正式偏好多樣性及偏好開放性量表皆各為5題題項,以李克特七點量尺測量。量表驗證則蒐集電影資料並設計電影問卷以調查消費者真實觀賞電影行為與電影偏好。最後,得有效問卷293份並進行相關分析。
研究結果顯示:偏好多樣性及偏好開放性量表在信度方面,初始及正式量表Cronbach’s α值均達0.7以上,具穩定性及內部一致性;在效度方面,經過表面效度、內容效度檢驗,並以因素分析對於量表的建構效度予以驗證,在外在效度上量表與消費者觀影行為間具有相關性,故兩量表在信、效度屬良好,具一致性、可靠性及有效性。本研究亦發現兩量表間呈現正向相關,並與消費者真實觀影行為有關聯,偏好多樣性以使用者曾經觀看過電影的類別、平均相似度和社會網絡分析方式中電影網絡的成分數為指標進行測量,偏好開放性則分析使用者所觀看的電影中屬於小眾電影以及對新電影的接受度等。結果顯示,偏好多樣性高的人,所觀看的電影彼此之間是相似度低、多樣性高的,而偏好開放性高的人,會觀看較多的小眾電影,對於新電影其不感興趣的電影比例較低。
zh_TW
dc.description.abstractThere is an increasing attention in the Recommender Systems field that diversity and novelty are key qualities of recommendation results beyond accuracy.This study explores the differences between different users acceptdiversity and novelty from the perspective of personal traits and preference structure,namely, “preference diversity” and “openness to novelty.”This study aimed to develop preference diversity and openness to novelty scale for movie preference structure, construct reliable and valid instruments, and validate the correlation between the scales and movie viewers’ preferences. Preference diversity denotes how widely scattered one’s interests are. Openness to novelty represents the extent to which an individual is willing to venture out of familiarity.
Items were created based on the literature review and the results of focus group.Initial scales were then carefully examined and revisedbased on experts’ opinions.Through exploratory factor analysis and item analysis, each formal scale comprised 5 items scored on a 7-point Likert scale.Besides, film data were collected andquestionnairewas established to collectmovie-viewing behavior and movie preference.293 valid surveys were collected and correlation analyses were then performedbetween scales and movie questionnaire.
Major finding are as following:Cronbach’sαvalues were above 0.7 on both initial and formal scales, which showed stability and internal consistency.Face validity, content validity,construct validity, and external validitywere tested and it was found that the two scales hadsatisfactory consistency, reliability, and validity.Results showed that there was a significant positive correlation betweenthe scales and the number of consumers’ corresponding movie-viewing behaviors.Preference diversity was measured by movie genresthat the users had seen, their average similarity, and number of components calculated usingsocial network analysis,whereasopenness to noveltywas measured by non-mainstream films that the users had watchedand their acceptance ofunfamiliar movies.Results also showed that the higher one’s preference diversity, the more diversity was the movies s/he had watched, as measured by average dissimilarity.Furthermore, those who have higher openness to novelty tend to watch more non-mainstream films and interestedin greater number of unfamiliar movies.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:45:27Z (GMT). No. of bitstreams: 1
ntu-104-R01126009-1.pdf: 3580741 bytes, checksum: 7ad044622231996259f272ed0f29ef53 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iv
表次 vi
圖次 viii
第一章緒論 - 1 -
第一節 問題陳述 - 1 -
第二節 研究目的與問題 - 5 -
第三節 研究範圍與限制 - 7 -
第四節 名詞解釋 - 7 -
第二章文獻探討 - 9 -
第一節 推薦系統效能 - 9 -
第二節 推薦系統之多樣性與新穎性 - 13 -
第三節 偏好結構 - 16 -
第四節 新奇尋求 - 20 -
第五節 偏好多樣性 - 25 -
第六節 偏好開放性 - 26 -
第三章研究設計與實施 - 31 -
第一節 研究設計與步驟 - 31 -
第二節 研究工具 - 35 -
第三節 前置研究 - 44 -
第四節 研究對象與實施 - 50 -
第五節 資料蒐集與分析 - 51 -
第四章研究結果與討論 - 62 -
第一節 受試者基本資料分析 - 62 -
第二節 電影問卷資料分析 - 65 -
第三節 偏好多樣性及偏好開放性量表之統計分析 - 70 -
第四節 綜合討論 - 87 -
第五章結論與建議 - 94 -
第一節 結論 - 94 -
第二節 未來研究建議 - 95 -
參考文獻 - 99 -
附錄一、問項發展來源及刪改過程 - 107 -
附錄二、電影樣本清單 - 109 -
附錄三、預試問卷 - 118 -
附錄四、實驗報名表 - 120 -
附錄五、研究同意書 - 121 -
附錄六、實驗前說明 - 124 -
附錄七、正式量表問卷 - 125 -
附錄八、核心與邊陲電影 - 128 -
dc.language.isozh-TW
dc.subject量表建立zh_TW
dc.subject偏好多樣性zh_TW
dc.subject偏好開放性zh_TW
dc.subject電影推薦系統zh_TW
dc.subject偏好結構zh_TW
dc.subjectpreference structureen
dc.subjectscale developmenten
dc.subjectpreference diversityen
dc.subjectopenness to noveltyen
dc.subjectmovie recommender systemen
dc.title電影偏好結構多樣性及開放性之量表建立與驗證zh_TW
dc.titleThe Development and Validation of
Preference Diversity and Openness to Novelty Scale for Movie Preference Structure
en
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林頌堅(Sung-Chien Lin),吳怡瑾(I-Chin Wu)
dc.subject.keyword偏好多樣性,偏好開放性,電影推薦系統,偏好結構,量表建立,zh_TW
dc.subject.keywordpreference diversity,openness to novelty,movie recommender system,preference structure,scale development,en
dc.relation.page134
dc.rights.note有償授權
dc.date.accepted2015-12-01
dc.contributor.author-college文學院zh_TW
dc.contributor.author-dept圖書資訊學研究所zh_TW
顯示於系所單位:圖書資訊學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved