請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51698
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許正一(Zeng-Yei Hseu) | |
dc.contributor.author | Chia-Yu Yang | en |
dc.contributor.author | 楊家語 | zh_TW |
dc.date.accessioned | 2021-06-15T13:45:09Z | - |
dc.date.available | 2020-08-21 | |
dc.date.copyright | 2020-08-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-10 | |
dc.identifier.citation | 中央氣象局。2019。池上鄉氣象站氣候資料年報表。 經濟部中央地質調查所。2020。地質騰雲網-地質雲端桌面。 何春蓀。1986。臺灣地質圖概論-臺灣地質圖說明書。臺北:經濟部中央地質調查所。 臺灣行政院環保署。2008。土壤及地下水污染整治法 (2018修正版)。 鄧屬予。2007。臺灣第四紀大地構造。臺北:經濟部中央地質調查所。 Alves S, M. A. Trancoso, S. Gonc, M. L. Alves, and M. M. Correia dos Santos. 2011. A nickel availability study in serpentinized areas of Portugal. Geoderma 164:155-163 Alexander, E. B. 2004. Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains, California. Int. Geol. Rev. 46(8): 754-764. Alexander, E. B., R. G. Coleman, S. P. Harrison, and T. Keeler-Wolfe. 2007. Geology and Hydrology. p.13-33. In Serpentine geoecology of western North America: geology, soils, and vegetation. Oxford University Press, USA. Alexander, E. B. 2009. Soil and vegetation differences from peridotite to serpentinite. Northeast. Nat. (Steuben) 16(sp5):178-192. Angelone, M., O. Vaselli, C. Bini, and N. Coradossi. 1993. Pedogeochemical evolution and trace elements availability to plants in ophiolitic soils. Sci. Total Environ. 129(3):291-309. Antić-Mladenović, S., J. Rinklebe, T. Frohne, H. J. Stärk, R. Wennrich, Z. Tomić, and V. Ličina. 2011. Impact of controlled redox conditions on nickel in a serpentine soil. J. Soils Sediments 11(3):406-415. Aumento, F. 1970. Serpentine mineralogy of ultrabasic intrusions in Canada and on the Mid-Atlantic Ridge. Department of Energy, Mines and Resources, Canada. Bach, L. D., V. M. Chau, T. Q. Hung, and H. H. Thanh. 1982. The Song Ma ophiolite. J. Earth Sci. 4:97-106. Bani A., G. Echevarria, E. Montarge`s-Pelletier, S. Sulce, J.L. Morel. 2014. Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environ. Monit. Assess. 186:4431-4442 Barreto, S. R. G., J. Nozaki, E. De Oliveira, V. F. Do Nascimento Filho, P. H. A. Aragão, I. S. Scarminio, and W. J. Barreto. 2004. Comparison of metal analysis in sediments using EDXRF and ICP-OES with the HCl and Tessie extraction methods. Talanta 64(2):345-354. Becquer, T., C. Quantin, M. Sicot, and J. P. Boudot. 2003. Chromium availability in ultramafic soils from New Caledonia. Sci. Total Environ. 301(1-3):251-261. Becquer, T., C. Quantin, S. Rotte-Capet, J. Ghanbaja, C. Mustin, and A. J. Herbillon. 2006. Sources of trace metals in Ferralsols in New Caledonia. Eur. J. Soil Sci. 57(2):200-213. Bern, C. R., M. A. Brzezinski, C. Beucher, K. Ziegler, and O. A. Chadwick. 2010. Weathering, dust, and biocycling effects on soil silicon isotope ratios. Geochim. Cosmochim. Acta 74(3):876-889. Bonifacio, E., E. Zanini, V. Boero, and M. Franchini-Angela. 1997. Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma 75(1-2):33-51. Boyd, R. S., A. R. Kruckeberg, and N. Rajakaruna. 2009. Biology of ultramafic rocks and soils: research goals for the future. Northeast. Nat. 16:422-440. Brooks, R. R. 1987. Serpentine and its vegetation: a multidisciplinary approach. v. 1. P. 454. Dioscorides Press, Portland. Burt, R. (Ed.). 2014. Soil survey field and laboratory methods manual. United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Natural Resources Conservation Service, Kellog Soil Survey Laboratory. Caillaud, J., D. Proust, S. Philippe, C. Fontaine, and M. Fialin. 2009. Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma 149(3-4): 199-208. Chardot, V., G. Echevarria, M. Gury, S. Massoura, J. L. Morel. 2007. Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant Soil 293:7-21 Chao, T. T. 1972. Selective Dissolution of Manganese Oxides from Soils and Sediments with Acidified Hydroxylamine Hydrochloride 1. Soil Sci. Soc. Am. J. 36(5):764-768. Cheng, C. H., S. H. Jien, H. Tsai, Y. H. Chang, Y. C. Chen, and Z. Y. Hseu. 2009. Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Sci. 174(5):283-291. Cheng, C. H., S. H. Jien, Y. Iizuka, H. Tsai, Y. H. Chang, and Z. Y. Hseu. 2011. Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Sci. Soc. Am. J. 75(2):659-668. Chung, S. L., and S. S. Sun. 1992. A new genetic model for the East Taiwan Ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth Planet. Sci. Lett. 109(1-2):133-145. Echevarria, G. 2018. Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In Agromining: Farming for Metals. Springer, Cham. 135-156 Faust, G. T., K. J. Murata, and J. J. Fahey. 1956. Relation of minor-element content of serpentines to their geological origin. Geochim. Cosmochim. Acta 10:316-320. Faust, G. T., and J. J. Fahey. 1962. The serpentine-group minerals (No. 384-A). p.1-3. US Govt. Print. Off. Galey, M. L., A. Van Der Ent, M. C. M. Iqbal, and N. Rajakaruna. 2017. Ultramafic geoecology of south and Southeast Asia. Bot. Stud. 58(1):18. Graciano, P., and J. Yumul. 1992. Ophiolite-hosted chromitite deposits as tectonic setting and melting degree indicators: examples from the Zambales Ophiolite Complex, Luzon, Philippines. Shigen-Chishitsu 42(231):5-17. Graham, R. C., S. B. Weed, L. H. Bowen, and S. W. Buol. 1989. Weathering of iron-bearing minerals in soils and saprolite on the North Carolina Blue Ridge Front: I. Sand-size primary minerals. Clays Clay Miner. 37(1):19-28. Gough, L. P., G. R. Meadows, L. L. Jackson, and S. Dudka. 1989. Biogeochemistry of a highly serpentinized, chromite-rich ultramafic area, Tehama County, California (No. 1901). Department of the Interior, U.S. Geological Survey. Gunarathne, V., N. Rajakaruna, U. Gunarathne, J. K. Biswas, Z. A. Raposo, and M. Vithanage. 2019. Influence of soil water content and soil amendments on trace metal release and seedling growth in serpentine soil. J. soils sediments 19(12): 3908-3921. Ho, C. P., Z. Y. Hseu, N. C. Chen, and C. C. Tsai. 2013. Evaluating heavy metal concentration of plants on a serpentine site for phytoremediation applications. Environ. Earth Sci. 70(1):191-199. Hseu, Z. Y. 2006. Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil Sci. 171(4):341-353. Hseu, Z. Y., H. Tsai, H. C. Hsi, and Y. C. Chen. 2007. Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clays Clay Miner. 55(4):389-401. Hseu, Z. Y., and Y. Iizuka. 2013. Pedogeochemical characteristics of chromite in a paddy soil derived from serpentinites. Geoderma 202:126-133. Hseu, Z. Y., F. Zehetner, F. Ottner, and Y. Iizuka. 2015. Clay-mineral transformations and heavy-metal release in paddy soils formed on serpentinites in eastern Taiwan. Clays Clay Miner. 63(2):119-131. Hseu, Z. Y., T. Watanabe, A. Nakao, and S. Funakawa. 2016. Partition of geogenic nickel in paddy soils derived from serpentinites. Paddy water environ. 14(3):417-426. Hseu, Z. Y., and Y. J. Lai. 2017. Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan. Environ. Geochem. Health 39(6):1325-1334. Hseu, Z. Y., Y.C. Su, F. Zehetner, and H.C. Hsi. 2017. Leaching potential of geogenic nickel in serpentine soils from Taiwan and Austria. J. Environ. Manage. 186:151-157. Hseu, Z. Y., F. Zehetner, K. Fujii, T. Watanabe, and A. Nakao. 2018. Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient. Geoderma 327:97-106. Hutchison, C. S. 1975. Ophiolite in southeast Asia. Geol. Soc. Am. Bull. 86(6):797-806. Ichiyama, Y., and A. Ishiwatari. 2004. Petrochemical evidence for off‐ridge magmatism in a back‐arc setting from the Yakuno ophiolite, Japan. Isl. Arc 13(1):157-177. Ishiwatari, A. 1991. Time-space distribution and petrologic diversity of Japanese ophiolites. p. 723-743. In Ophiolite genesis and evolution of the oceanic lithosphere. Springer, Dordrecht. Japan Meteorological Agency. 2019. Japan Meteorological Agency homepage. Jean, L., F. Bordas, and J. C. Bollinger. 2007. Chromium and nickel mobilization from a contaminated soil using chelants. Environ. Pollut. 147(3):729-736. Kabata-Pendias, A. 2000. Element of group VIII. p.246-252. In Trace elements in soils and plants. CRC press, USA. Kierczak, J., C. Neel, H. Bril, and J. Puziewicz. 2007. Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma 142(1-2):165-177. Kim, C., Y. Lee, and S. K. Ong. 2003. Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere 51(9):845-853. Kruckeberg, A. R. 2004. The influences of lithology on plant life. p. 168-169. In Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press, USA. Kubová, J., P. Matúš, M. Bujdoš, and I. Hagarová. 2008. Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil-plant metal transfer predictions in contaminated lands. Talanta 75(4):1110-1122. Kulizhskiy, S., A. Rodikova, N. Evseeva, Z. Kvasnikova, and M. Kashiro. 2014. The components of critical zone (soil and vegetation) as indicators of atmospheric pollution with heavy metals of the Tomsk District (Western Siberia) in the natural ecosystems. Procedia Earth Planet. Sci. 10:399-404. Kuo, S., M. S. Lai and C. W. Lin. 2006. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Environ. Pollut. 144(3):918-925. Lee, B. D., S. K. Sears, R. C. Graham, C. Amrhein, and H. Vali. 2003. Secondary mineral genesis from chlorite and serpentine in an ultramafic soil toposequence. Soil Sci. Soc. Am. J. 67(4):1309-1317. Licina, V., S. Antic‐Mladenovic, M. Kresovic, and J. Rinklebe. 2010. Effect of high nickel and chromium background levels in serpentine soil on their accumulation in organs of a perennial plant. Commun. Soil Sci. Plant Anal. 41(4):482-496. Lo, I. M., and X. Y. Yang. 1999. EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water, Air, and Soil Pollut. 109(1-4):219-236. Ma, R., X. Zhou, and J. Shi. 2018. Heavy metal contamination and health risk assessment in Critical Zone of Luan River Catchment in the North China Plain. Geochem.: Explor., Env. A. 18(1):47-57. Malpas, J. 1992. Serpentine and the geology of serpentinized rocks. p.7-30. In The Ecology of areas with serpentinized rocks. Springer, Dordrecht. Manouchehri, N., S. Besancon, and A. Bermond. 2006. Major and trace metal extraction from soil by EDTA: equilibrium and kinetic studies. Anal. Chim. Acta 559(1):105-112. Marescotti, P., E. Roccotiello, M. Zotti, L. De Capitani, C. Carbone, E. Azzali, M. G. Mariotti, and G. Lucchetti. 2013. Influence of soil mineralogy and chemistry on fungi and plants in a waste-rock dump from the Libiola mine (eastern Liguria, Italy). Period Mineral 82:141-162. Massoura, S. T., G. Echevarria, T. Becquer, J. Ghanbaja, E. Leclerc-Cessac, and J. L. Morel. 2006. Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136(1-2):28-37. McFadden, L. D., and D. M. Hendricks. 1985. Changes in the content and composition of pedogenic iron oxyhydroxides in a chronosequence of soils in southern California. Quat. Res. 23(2):189-204. McGahan, D. G., R. J. Southard, and V. P. Claassen. 2009. Plant-available calcium varies widely in soils on serpentinite landscapes. Soil Sci. Soc. Am. J. 73(6):2087-2095. McKeague, J., and J. Day. 1966. Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46(1):13-22. Meharg, A. A., and M. M. Rahman. 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. J. Environ. Sci. Technol. 37(2):229-234. Meng, F., Y. Wei, and X. Yang. 2005. Iron content and bioavailability in rice. J. Trace Elem. Med. Biol. 18(4):333-338. Mizuno, N., and S. Nosaka. 1992. The distribution and extent of serpentinized areas in Japan. p.271-311. In The ecology of areas with serpentinized rocks. Springer, Dordrecht. Moraetis, D., N. P. Nikolaidis, G. P. Karatzas, Z. Dokou, N. Kalogerakis, L. H. E. Winkel, and A. Palaiogianni-Bellou. 2012. Origin and mobility of hexavalent chromium in North-Eastern Attica, Greece. J. Appl. geochem. 27(6):1170-1178. Nakao, A., T. Watanabe, T. Honda, Z. Y. Hseu, and S. Funakawa. 2011. The calcium-magnesium ratio of serpentinitic soils in various topographic locations in Sekinomiya, Japan: a potential criterion for the classification of the Dark-red Magnesian soils. Pedologist 55(1):30-42. Nakao, A., M. Tomita, R. Wagai, R. Tanaka, J. Yanai, and T. Kosaki. 2019. Asian dust increases radiocesium retention ability of serpentine soils in Japan. J. Environ. Radioact. 204:86-94. Nakata, M., and S. Kojima. 1987. Effects of serpentine substrate on vegetation and soil development with special reference to Picea glehnii forest in Teshio District, Hokkaido, Japan. Forest Ecol. Manag. 20(3-4):265-290. Nguyen-Thanh, L., T. Hoang-Minh, H. J. Herbert, J. Kasbohm, M. N. Nguyen, and R. F. Mählmann. 2017. Development of Fe-rich clay minerals in a weathering profile derived from serpentinized ultramafic rock in Nui Nua massif, Vietnam. Geoderma 308:159-170. Novozamsky, I., T. M. Lexmond, and V. J. G. Houba. 1993. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. Int. J. Environ. Anal. Chem. 51(1-4):47-58. Nozaka, T., and Y. Ito. 2009. Cleavable olivine in serpentinite mylonites from the Oeyama ophiolite. J. Miner. Petrol. Sci. 106(1):36-50. Oze, C., S. Fendorf, D. K. Bird, and R. G. Coleman. 2004a. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. Am. J. Sci. 304(1):67-101. Oze, C., S. Fendorf, D. K. Bird, and R. G. Coleman. 2004b. Chromium geochemistry of serpentine soils. Int. Geol. Rev. 46(2):97-126. Page, A. L. 1965. Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Sci. Soc. Am. Pearce, J. A., S. R. van der Laan, R. J. Arculus, B. J. Murton, T. Ishii, D. W. Peate, and I. J. Parkinson. 1992. Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction. p. 623-659. In Proceedings of the ocean drilling program, scientific results (Vol. 125). Ocean Drilling Program, College Station, TX. Philippine Atmospheric, Geophysical and Astronomical Services Administration. 2010. Iba, Zambales Climatological Normal Values (1981-2010). Proctor, J. 1971a. The plant ecology of serpentine: II. Plant response to serpentine soils. J. Ecol. 59:397-410. Proctor, J. 1971b. The plant ecology of serpentine: III. The influence of a high magnesium/calcium ratio and high nickel and chromium levels in some British and Swedish serpentine soils. J. Ecol. 59:827-842. Proctor, J., and S. R. Woodell. 1975. The ecology of serpentine soils. p.255-366. In Advances in ecological research (Vol. 9). Academic Press, USA. Quantin, C., T. Becquer, J. H. Rouiller, and J. Berthelin. 2002a. Redistribution of metals in a New Caledonia Ferralsol after microbial weathering. Soil Sci. Soc. Am. J. 66(6):1797-1804. Quantin, C., T. Becquer, and J. Berthelin. 2002b. Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. C. R. Geosci. 334(4):273-278. Quantin, C., V. Ettler, J. Garnier, and O. Šebek. 2008. Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. C. R. Geosci. 340(12):872-882. Queaño, K. L., C. B. Dimalanta, G. P. Yumul Jr., E. J. Marquez, D. V. Faustino-Eslava, S. Suzuki, and K. Ishida. 2017. Stratigraphic units overlying the Zambales Ophiolite Complex (ZOC) in Luzon,(Philippines): Tectonostratigraphic significance and regional implications. J. Asian Earth Sci. 142:20-31. Quimado, M. O., E. S. Fernando, L. C. Trinidad, and A. Doronila. 2015. Nickel-hyperaccumulating species of Phyllanthus (Phyllanthaceae) from the Philippines. Aust. J. Bot. 63(2):103-110. Rabenhorst, M. C., J. E. Foss, and D. S. Fanning. 1982. Genesis of Maryland soils formed from serpentinite. Soil Sci. Soc. Am. J. 46(3):607-616. Rajapaksha, A. U., M. Vithanage, C. Oze, W. M. A. T. Bandara, and R. Weerasooriya. 2012. Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma 189:1-9. Rajkumar, M., M. N. Vara Prasad, H. Freitas, and N. Ae. 2009. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit. Rev. Biotechnol. 29(2):120-130. Saleeby, J. B. 1984. Tectonic significance of serpentinite mobility and ophiolitic melange. Geol Soc Am 198:153-168. Sasaki, S., T. Matsuno, and Y. Kondo. 1968. A podsol derived from serpentine rocks in Hokkaido, Japan. J. Soil Sci. Plant Nutr. 14(3):99-109. Shaw, J. N., L. T. West, and B. F. Hajek. 2001. Ca-Mg ratios for evaluating pedogenesis in the piedmont province of the southeastern United States of America.Can. J. Soil Sci. 81(4):415-421. Shewry, P. R., and P. J. Peterson. 1976. Distribution of chromium and nickel in plants and soil from serpentine and other sites. J. Ecol. 64:195-212. Soil Science Division Staff. 2017. Soil survey manual. C. Ditzler, K. Scheffe, and H.C. Monger (eds.). USDA Handbook 18. Government Printing Office, Washington, D.C. Sparks, D. L. 2013. Advances in the use of synchrotron radiation to elucidate environmental interfacial reaction processes and mechanisms in the earth’s critical zone. p. 93-114. In Molecular Environmental Soil Science. Springer, Dordrecht. Sutherland, R. A., and Tack, F. M. 2003. Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Adv. Environ. Res. 8(1):37-50. Tartaj, P., A. Cerpa, M. T. Garcia-Gonzalez, and C. J. Serna. 2000. Surface instability of serpentine in aqueous suspensions. J. Colloid Interface Sci. 231(1):176-181. Tessier, A., P. G. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51(7):844-851. Thanh, N. X., T. T. Hai, N. Hoang, V. Q. Lan, S. Kwon, T. Itaya, and M. Santosh. 2014. Backarc mafic-ultramafic magmatism in Northeastern Vietnam and its regional tectonic significance. J. Asian Earth Sci. 90:45-60. Tiller, K. G. 1963. Weathering and soil formation on dolerite in Tasmania with particular reference to several trace elements. Soil Res. 1(1):74-90. Tyler, L. D., and M. B. Mcbride. 1982. Mobility and extractability of cadmium, copper, nickel, and zinc in organic and mineral soil columns. Soil Sci. 134(3):198-205. Tyndall, R. W., and J. C. Hull. 1999. Vegetation, flora, and plant physiological ecology of serpentine barrens of eastern North America. p.67-82. In Savannas, barrens, and rock outcrop plant communities of North America. Cambridge University Press, UK. Van der Ent, A., D. Cardace, M. Tibbett, and G. Echevarria. 2018. Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena 160:154-169. Vaughan, A. P., and J. H. Scarrow. 2003. Ophiolite obduction pulses as a proxy indicator of superplume events?. Earth Planet. Sc. Lett. 213(3-4):407-416. Vietnam National Centre for Hydrometeorological Forecasting. 2010. Hanoi climate station climate for 1971-2010. Vithanage, M., A. U. Rajapaksha, C. Oze, N. Rajakaruna, and C. B. Dissanayake. 2014. Metal release from serpentine soils in Sri Lanka. Environ. Monit. Assess. 186(6):3415-3429. Vithanage, M., P. Kumarathilaka, C. Oze, S. Karunatilake, M. Seneviratne, Z. Y. Hseu, V. Gunarathne, M. Dassanayake, Y. S. Ok, and J. Rinklebe. 2019. Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environ. Int. 131:104974. Whittaker, R. H. 1954. The ecology of serpentine soils. Ecology 35(2):258-288. Yang, X. H., R. R. Brooks, T. Jaffré, and J. Lee. 1985. Elemental levels and relationships in the Flacourtiaceae of New Caledonia and their significance for the evaluation of the ‘serpentine problem’. Plant Soil 87(2):281-291. Yumul Jr, G. P., R. T. Datuin, and J. C. Manipon. 1990. Geology and geochemistry of the Cabangan-San Antonio massifs, Zambales Ophiolite Complex, Philippines: Tectonically juxtaposed marginal basin-island arc terranes. J. Geol. Soc. Phil. 45: 69-100. Zhang, R. Y., C. H. LO, S. L. Chung, M. Grove, S. Omori, Y. Iizuka, J. G. Liou and T. V. Tri. 2013. Origin and tectonic implication of ophiolite and eclogite in the Song Ma suture zone between the South China and Indochina blocks. J. Metamorph. Geol. 31(1):49-62. Zhang, Q., G. Han, M. Liu, and T. Liang. 2019. Spatial distribution and controlling factors of heavy metals in soils from Puding Karst Critical Zone Observatory, southwest China. Environ. Earth Sci. 78(9):279. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51698 | - |
dc.description.abstract | 蛇紋岩土壤的特徵為偏低的鈣/鎂比、高鉻、鎳背景含量等,但受到母質來源及化育條件的不同,全球各地的蛇紋岩土壤在鉻、鎳型態分布與其潛在有效性上可能會有差異。本論文採集東亞島弧的日本、臺灣與菲律賓蛇紋岩土壤,以及越南紅河斷裂帶之蛇紋岩土壤,共七個剖面,分析土壤物化性質與元素全量,並以BCR序列萃取與單一化學試劑萃取,評估鉻、鎳型態分布與潛在有效性。王水消化全量結果顯示,不同地區蛇紋岩土壤的組成元素含量差異大,其中鉻全量為684.9-3410 mg/kg,鎳全量為288.8-15746 mg/kg,另外以PCA (Principal Component Analysis) 分析元素 (鈣、鎂、鉀、鐵、鋁、錳、鉻、鎳、鈷) 全量可知,這些元素組成可區別不同地區蛇紋岩土壤,其中鎂、鎳是主要的影響元素。序列萃取發現殘餘態為鉻與鎳最高比例的結合型態,在越南土樣中,有大量鎳與鐵氧化物型態結合,且在化育過程會隨著鐵氧化物從表層洗入至裏土層;但在日本土樣中,鎳與鉻則較傾向和有機質結合而非鐵氧化物,且比例隨著深度遞減。單一化學試劑萃取結果顯示,除了日本土樣以外,所有土樣中鎳的潛在有效性皆高於鉻。此外,X光繞射分析顯示這些地區的土壤母質礦物組成在綠泥石、蛇紋石與鉻鐵礦等比例不同,支持了PCA所分析在元素含量上的差異。總結而言,受到古南海板塊碰撞影響的臺灣、菲律賓及越南蛇紋岩土壤性質相似,而位於東北亞的日本土樣與其他土樣有明顯差異,可能是因板塊運動的不同造成,導致土壤元素組成、鉻與鎳型態分布與其潛在有效性以及礦物組成皆有所不同。 | zh_TW |
dc.description.abstract | Serpentine soils usually contain unique properties, etc. low Ca to Mg raio and high heavy metal contents, compared with other non-serpentine soils. However, these soils could have different dynamics and potential availability of Cr and Ni due to different parent materials and pedogenetic factors. Soils were collected from Japan, Taiwan and Philippines along the Eastern Asia island arc as well as Red River fault zone in Vietnam. Totally, seven pedons were collected and analyzed by physio-chemical properties and total element contents. Cr and Ni distribution and potential availability were evaluated by BCR sequential extraction and single stage extraction. According to total content digested by aqua-regia, Cr content ranged in 684.9-3410 mg/kg, while Ni content was among 288.8-15746 mg/kg. After analyzed by principal component analysis, element composition (Ca, Mg, K, Fe, Al, Mn, Cr, Ni, Co) was shown to lead to the main difference among these serpentine soils. On the other hand, Ni was one of the dominant elements. On average, residual Cr and Ni had the highest ratio in soils. Nevertheless, Ni in Vietnam soils were greatly associated with Fe-oxides, and appeared to illuviate into B horizon with Fe-oxides. On the contrary, Ni and Cr in Japan soils tended to combine with organic matter, and the aomunt decreased with depth. The results of single stage extraction indicated that Ni had much higher potential availability than Cr in all pedons except for OY1. In addition, powder XRD (X-Ray Diffraction) analysis showed that these soils had different chlorite, serpentine and chromite composition, which identified the outcome of PCA analysis. All in all, Taiwan, Philippines and Vietnam serpentine soils, which were influenced by south China sea plate, had similar properties, while element composition, Cr and Ni distribution and potential availability, and mineral composition of Japan serpentine soils were apparently different from other soils, probably due to different tectonic activities. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:45:09Z (GMT). No. of bitstreams: 1 U0001-0908202015013700.pdf: 10896698 bytes, checksum: d0d2007b7f877c5aedfadcf410a90d9c (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VII 第一章、前言 1 第二章、文獻回顧 5 2.1 何謂蛇紋岩土壤 5 2.2 蛇紋岩土壤中鉻與鎳的來源 6 2.3 鉻與鎳在蛇紋岩土壤中的動態變化 7 2.3.1 有機質 7 2.3.2 鐵錳氧化物 7 2.3.3 黏土礦物 8 2.3.4 pH值 9 第三章、材料與方法 10 3.1 研究區域 10 3.1.1日本 11 3.1.2 臺灣 14 3.1.3 菲律賓 17 3.1.4 越南 20 3.1.5 各研究區域環境特徵說明 23 3.2 土壤剖面調查與野外形態特徵之描述 25 3.3 土壤樣品採集 25 3.4 土壤物化性質分析 25 3.5 鉻、鎳序列萃取 31 3.6 鉻、鎳單一化學試劑萃取 32 3.7 土壤礦物鑑定 34 3.8 實驗品管與品保分析 (QA/QC) 34 3.9 統計分析 35 第四章、結果與討論 37 4.1 土壤形態特徵 37 4.1.1 日本土壤樣體 37 4.1.2 臺灣土壤樣體 37 4.1.3 菲律賓土壤樣體 40 4.1.4 越南土壤樣體 43 4.2 土壤物化特性 47 4.2.1 土壤質地 47 4.2.2 土壤化學性質 49 4.2.3 元素全量 54 4.2.4 游離性與無定型金屬元素抽出量 60 4.3 土壤樣體分類 67 4.4 鉻、鎳型態分布 70 4.4.1 鉻 70 4.4.2 鎳 74 4.5 鉻、鎳單一化學萃取量 80 4.5.1 鉻 80 4.5.2 鎳 83 4.6 土壤樣體砂粒之礦物鑑定 85 4.7 研究延伸及未來展望 88 第五章、結論 89 參考文獻 90 附錄 100 | |
dc.language.iso | zh-TW | |
dc.title | 東亞島弧不同地區蛇紋岩土壤鉻與鎳在化育過程中的動態及有效性評估 | zh_TW |
dc.title | Evaluating chromium and nickel dynamics and availability in serpentine soils along the Eastern Asia island arc during pedogenesis | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王尚禮(Shang-Li Wang),賴鴻裕(Hong-Yu Lai),簡士濠(Shi-Hao Jien),劉雨庭(Yu-Ting Liu) | |
dc.subject.keyword | 蛇紋岩土壤,土壤化育,母質,BCR序列萃取,單一化學試劑萃取, | zh_TW |
dc.subject.keyword | serpentine soils,pedogenesis,parent materials,BCR sequential extraction,Single-stage extraction, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU202002714 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-11 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0908202015013700.pdf 目前未授權公開取用 | 10.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。