Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51680
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝小燕(Sheau-Yann Shieh)
dc.contributor.authorZheng-Cheng Yuen
dc.contributor.author余正晟zh_TW
dc.date.accessioned2021-06-15T13:44:17Z-
dc.date.available2021-02-24
dc.date.copyright2016-02-24
dc.date.issued2015
dc.date.submitted2015-12-09
dc.identifier.citationⅤ. References
Abrieu, A., Magnaghi-Jaulin, L., Kahana, J.A., Peter, M., Castro, A., Vigneron, S., Lorca, T., Cleveland, D.W., and Labbe, J.C. (2001). Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106, 83-93.
Alt, J.R., Bouska, A., Fernandez, M.R., Cerny, R.L., Xiao, H., and Eischen, C.M. (2005). Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem 280, 18771-18781.
Bouska, A., Lushnikova, T., Plaza, S., and Eischen, C.M. (2008). Mdm2 promotes genetic instability and transformation independent of p53. Mol Cell Biol 28, 4862-4874.
Brown, D.R., Thomas, C.A., and Deb, S.P. (1998). The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis. EMBO J 17, 2513-2525.
Buschmann, T., Fuchs, S.Y., Lee, C.G., Pan, Z.Q., and Ronai, Z. (2000). SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101, 753-762.
Busso, C.S., Iwakuma, T., and Izumi, T. (2009). Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene 28, 1616-1625.
Chatterjee, C., McGinty, R.K., Fierz, B., and Muir, T.W. (2010). Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat Chem Biol 6, 267-269.
Cheng, Q., Chen, L., Li, Z., Lane, W.S., and Chen, J. (2009). ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J 28, 3857-3867.
Chodaparambil, J.V., Edayathumangalam, R.S., Bao, Y., Park, Y.J., and Luger, K. (2006). Nucleosome structure and function. Ernst Schering Res Found Workshop, 29-46.
Colombo, R., Caldarelli, M., Mennecozzi, M., Giorgini, M.L., Sola, F., Cappella, P., Perrera, C., Depaolini, S.R., Rusconi, L., Cucchi, U., et al. (2010). Targeting the mitotic checkpoint for cancer therapy with NMS-P715, an inhibitor of MPS1 kinase. Cancer Res 70, 10255-10264.
Costa, A., Scholer-Dahirel, A., and Mechta-Grigoriou, F. (2014). The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin Cancer Biol 25, 23-32.
Dang, J., Kuo, M.L., Eischen, C.M., Stepanova, L., Sherr, C.J., and Roussel, M.F. (2002). The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res 62, 1222-1230.
Douki, T., Bretonniere, Y., and Cadet, J. (2000). Protection against radiation-induced degradation of DNA bases by polyamines. Radiat Res 153, 29-35.
Douville, E.M., Afar, D.E., Howell, B.W., Letwin, K., Tannock, L., Ben-David, Y., Pawson, T., and Bell, J.C. (1992). Multiple cDNAs encoding the esk kinase predict transmembrane and intracellular enzyme isoforms. Mol Cell Biol 12, 2681-2689.
Faucher, D., and Wellinger, R.J. (2010). Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. PLoS Genet 6.
Feng, J., Tamaskovic, R., Yang, Z., Brazil, D.P., Merlo, A., Hess, D., and Hemmings, B.A. (2004). Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem 279, 35510-35517.
Fierz, B., Chatterjee, C., McGinty, R.K., Bar-Dagan, M., Raleigh, D.P., and Muir, T.W. (2011). Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7, 113-119.
Fisk, H.A., and Winey, M. (2001). The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106, 95-104.
Fleming, A.B., Kao, C.F., Hillyer, C., Pikaart, M., and Osley, M.A. (2008). H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 31, 57-66.
Frum, R., Ramamoorthy, M., Mohanraj, L., Deb, S., and Deb, S.P. (2009). MDM2 controls the timely expression of cyclin A to regulate the cell cycle. Mol Cancer Res 7, 1253-1267.
Game, J.C., and Chernikova, S.B. (2009). The role of RAD6 in recombinational repair, checkpoints and meiosis via histone modification. DNA Repair (Amst) 8, 470-482.
Game, J.C., Williamson, M.S., Spicakova, T., and Brown, J.M. (2006). The RAD6/BRE1 histone modification pathway in Saccharomyces confers radiation resistance through a RAD51-dependent process that is independent of RAD18. Genetics 173, 1951-1968.
Giannattasio, M., Lazzaro, F., Plevani, P., and Muzi-Falconi, M. (2005). The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 280, 9879-9886.
Glaab, W.E., Risinger, J.I., Umar, A., Barrett, J.C., Kunkel, T.A., and Tindall, K.R. (1998). Resistance to 6-thioguanine in mismatch repair-deficient human cancer cell lines correlates with an increase in induced mutations at the HPRT locus. Carcinogenesis 19, 1931-1937.
Gospodinov, A., and Herceg, Z. (2013). Chromatin structure in double strand break repair. DNA Repair (Amst) 12, 800-810.
Guo, Z., Kozlov, S., Lavin, M.F., Person, M.D., and Paull, T.T. (2010). ATM activation by oxidative stress. Science 330, 517-521.
Happel, N., and Doenecke, D. (2009). Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431, 1-12.
Huang, Y.F., Chang, M.D., and Shieh, S.Y. (2009). TTK/hMps1 mediates the p53-dependent postmitotic checkpoint by phosphorylating p53 at Thr18. Mol Cell Biol 29, 2935-2944.
Hwang, W.W., Venkatasubrahmanyam, S., Ianculescu, A.G., Tong, A., Boone, C., and Madhani, H.D. (2003). A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11, 261-266.
Jelluma, N., Dansen, T.B., Sliedrecht, T., Kwiatkowski, N.P., and Kops, G.J. (2010). Release of Mps1 from kinetochores is crucial for timely anaphase onset. J Cell Biol 191, 281-290.
Kao, C.F., Hillyer, C., Tsukuda, T., Henry, K., Berger, S., and Osley, M.A. (2004). Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev 18, 184-195.
Khoronenkova, S.V., Dianova, II, Parsons, J.L., and Dianov, G.L. (2010). USP7/HAUSP stimulates repair of oxidative DNA lesions. Nucleic Acids Res 39, 2604-2609.
Kim, J., Guermah, M., McGinty, R.K., Lee, J.S., Tang, Z., Milne, T.A., Shilatifard, A., Muir, T.W., and Roeder, R.G. (2009). RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459-471.
Kozlov, S., Gueven, N., Keating, K., Ramsay, J., and Lavin, M.F. (2003). ATP activates ataxia-telangiectasia mutated (ATM) in vitro. Importance of autophosphorylation. J Biol Chem 278, 9309-9317.
Lans, H., Marteijn, J.A., and Vermeulen, W. (2012). ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 5, 4.
Lindberg, R.A., Fischer, W.H., and Hunter, T. (1993). Characterization of a human protein threonine kinase isolated by screening an expression library with antibodies to phosphotyrosine. Oncogene 8, 351-359.
Liu, Y., Parry, J.A., Chin, A., Duensing, S., and Duensing, A. (2008). Soluble histone H2AX is induced by DNA replication stress and sensitizes cells to undergo apoptosis. Mol Cancer 7, 61.
London, N., Ceto, S., Ranish, J.A., and Biggins, S. (2012). Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr Biol 22, 900-906.
Lu, W., Hu, Y., Chen, G., Chen, Z., Zhang, H., Wang, F., Feng, L., Pelicano, H., Wang, H., Keating, M.J., et al. (2012). Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol 10, e1001326.
Maciejowski, J., George, K.A., Terret, M.E., Zhang, C., Shokat, K.M., and Jallepalli, P.V. (2010). Mps1 directs the assembly of Cdc20 inhibitory complexes during interphase and mitosis to control M phase timing and spindle checkpoint signaling. J Cell Biol 190, 89-100.
Maire, V., Baldeyron, C., Richardson, M., Tesson, B., Vincent-Salomon, A., Gravier, E., Marty-Prouvost, B., De Koning, L., Rigaill, G., Dumont, A., et al. (2013). TTK/hMPS1 is an attractive therapeutic target for triple-negative breast cancer. PLoS One 8, e63712.
Marini, F., Nardo, T., Giannattasio, M., Minuzzo, M., Stefanini, M., Plevani, P., and Muzi Falconi, M. (2006). DNA nucleotide excision repair-dependent signaling to checkpoint activation. Proc Natl Acad Sci U S A 103, 17325-17330.
McDonnell, T.J., Montes de Oca Luna, R., Cho, S., Amelse, L.L., Chavez-Reyes, A., and Lozano, G. (1999). Loss of one but not two mdm2 null alleles alters the tumour spectrum in p53 null mice. J Pathol 188, 322-328.
McGinty, R.K., Kim, J., Chatterjee, C., Roeder, R.G., and Muir, T.W. (2008). Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453, 812-816.
Mills, G.B., Schmandt, R., McGill, M., Amendola, A., Hill, M., Jacobs, K., May, C., Rodricks, A.M., Campbell, S., and Hogg, D. (1992). Expression of TTK, a novel human protein kinase, is associated with cell proliferation. J Biol Chem 267, 16000-16006.
Minsky, N., and Oren, M. (2004). The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 16, 631-639.
Minsky, N., Shema, E., Field, Y., Schuster, M., Segal, E., and Oren, M. (2008). Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol 10, 483-488.
Moyal, L., Lerenthal, Y., Gana-Weisz, M., Mass, G., So, S., Wang, S.Y., Eppink, B., Chung, Y.M., Shalev, G., Shema, E., et al. (2011). Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell 41, 529-542.
Murga, M., Jaco, I., Fan, Y., Soria, R., Martinez-Pastor, B., Cuadrado, M., Yang, S.M., Blasco, M.A., Skoultchi, A.I., and Fernandez-Capetillo, O. (2007). Global chromatin compaction limits the strength of the DNA damage response. J Cell Biol 178, 1101-1108.
Muthurajan, U.M., Hepler, M.R., Hieb, A.R., Clark, N.J., Kramer, M., Yao, T., and Luger, K. (2014). Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. Proc Natl Acad Sci U S A 111, 12752-12757.
Nakamura, K., Kato, A., Kobayashi, J., Yanagihara, H., Sakamoto, S., Oliveira, D.V., Shimada, M., Tauchi, H., Suzuki, H., Tashiro, S., et al. (2011). Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell 41, 515-528.
Nihira, K., Taira, N., Miki, Y., and Yoshida, K. (2008). TTK/Mps1 controls nuclear targeting of c-Abl by 14-3-3-coupled phosphorylation in response to oxidative stress. Oncogene 27, 7285-7295.
Ou, Y.H., Chung, P.H., Hsu, F.F., Sun, T.P., Chang, W.Y., and Shieh, S.Y. (2007). The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J 26, 3968-3980.
Pan, Y., and Chen, J. (2003). MDM2 promotes ubiquitination and degradation of MDMX. Mol Cell Biol 23, 5113-5121.
Pavri, R., Zhu, B., Li, G., Trojer, P., Mandal, S., Shilatifard, A., and Reinberg, D. (2006). Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703-717.
Robzyk, K., Recht, J., and Osley, M.A. (2000). Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501-504.
Santos-Rosa, H., Schneider, R., Bernstein, B.E., Karabetsou, N., Morillon, A., Weise, C., Schreiber, S.L., Mellor, J., and Kouzarides, T. (2003). Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol Cell 12, 1325-1332.
SenGupta, T., Torgersen, M.L., Kassahun, H., Vellai, T., Simonsen, A., and Nilsen, H. (2013). Base excision repair AP endonucleases and mismatch repair act together to induce checkpoint-mediated autophagy. Nat Commun 4, 2674.
Sertic, S., Pizzi, S., Cloney, R., Lehmann, A.R., Marini, F., Plevani, P., and Muzi-Falconi, M. (2011). Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc Natl Acad Sci U S A 108, 13647-13652.
Shepperd, L.A., Meadows, J.C., Sochaj, A.M., Lancaster, T.C., Zou, J., Buttrick, G.J., Rappsilber, J., Hardwick, K.G., and Millar, J.B. (2012). Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol 22, 891-899.
Shogren-Knaak, M., Ishii, H., Sun, J.M., Pazin, M.J., Davie, J.R., and Peterson, C.L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844-847.
Spotheim-Maurizot, M., Ruiz, S., Sabattier, R., and Charlier, M. (1995). Radioprotection of DNA by polyamines. Int J Radiat Biol 68, 571-577.
Stucke, V.M., Sillje, H.H., Arnaud, L., and Nigg, E.A. (2002). Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. Embo J 21, 1723-1732.
Takata, H., Hanafusa, T., Mori, T., Shimura, M., Iida, Y., Ishikawa, K., Yoshikawa, K., Yoshikawa, Y., and Maeshima, K. (2013). Chromatin compaction protects genomic DNA from radiation damage. PLoS One 8, e75622.
Trujillo, K.M., and Osley, M.A. (2012). A role for H2B ubiquitylation in DNA replication. Mol Cell 48, 734-746.
Wang, X., Taplick, J., Geva, N., and Oren, M. (2004). Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett 561, 195-201.
Wang, X., Wang, J., and Jiang, X. (2011). MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J Biol Chem 286, 23725-23734.
Warters, R.L., Newton, G.L., Olive, P.L., and Fahey, R.C. (1999). Radioprotection of human cell nuclear DNA by polyamines: radiosensitivity of chromatin is influenced by tightly bound spermine. Radiat Res 151, 354-362.
Weake, V.M., and Workman, J.L. (2008). Histone ubiquitination: triggering gene activity. Mol Cell 29, 653-663.
Wei, J.H., Chou, Y.F., Ou, Y.H., Yeh, Y.H., Tyan, S.W., Sun, T.P., Shen, C.Y., and Shieh, S.Y. (2005). TTK/hMps1 participates in the regulation of DNA damage checkpoint response by phosphorylating CHK2 on threonine 68. J Biol Chem 280, 7748-7757.
Weiss, E., and Winey, M. (1996). The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132, 111-123.
Willis, J., Patel, Y., Lentz, B.L., and Yan, S. (2013). APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress. Proc Natl Acad Sci U S A 110, 10592-10597.
Winey, M., Goetsch, L., Baum, P., and Byers, B. (1991). MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114, 745-754.
Winey, M., and Huneycutt, B.J. (2002). Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene 21, 6161-6169.
Wood, A., Krogan, N.J., Dover, J., Schneider, J., Heidt, J., Boateng, M.A., Dean, K., Golshani, A., Zhang, Y., Greenblatt, J.F., et al. (2003). Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell 11, 267-274.
Xu, Y., Ayrapetov, M.K., Xu, C., Gursoy-Yuzugullu, O., Hu, Y., and Price, B.D. (2012). Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48, 723-733.
Yamagishi, Y., Yang, C.H., Tanno, Y., and Watanabe, Y. (2012). MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol 14, 746-752.
Yeh, Y.H., Huang, Y.F., Lin, T.Y., and Shieh, S.Y. (2009). The cell cycle checkpoint kinase CHK2 mediates DNA damage-induced stabilization of TTK/hMps1. Oncogene 28, 1366-1378.
Zhou, R., Frum, R., Deb, S., and Deb, S.P. (2005). The growth arrest function of the human oncoprotein mouse double minute-2 is disabled by downstream mutation in cancer cells. Cancer Res 65, 1839-1848.
Zhu, B., Zheng, Y., Pham, A.D., Mandal, S.S., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. (2005). Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 20, 601-611.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51680-
dc.description.abstractMDM2為一著名的E3泛素連接酶,而其最為著名的下游受體為抑癌蛋白p53。然而除了p53外,已經有許多MDM2的下游受體被報導,而其中有許多是參與在細胞週期調控的重要蛋白。但是關於MDM2的活性調控,尤其是本篇論文提到的遭遇氧化壓力的環境,相關的作用機制並沒有被真正的了解。在本篇論文,我們發現一著名的調控紡錘絲檢查點的激酶,hMps1,會磷酸化MDM2,進而增加MDM2對於下游受體,組蛋白子單位H2B的泛素化。透過氨基丙酸 (Ala) 突變在hMps1磷酸化的位點,會降低經由hMps1磷酸化而增加的組蛋白H2B的泛素化。在細胞內,H2B的泛素化會由於氧化壓力而增加而降低hMPs1或MDM2的表現,會降低H2B的泛素化。補回野生型 (WT) MDM2能夠回復H2B泛素化,不過如果補回的是氨基丙酸突變在Mps1磷酸化的位點的MDM2,H2B的泛素化回復的效率會變差。此實驗證明了Mps1磷酸化MDM2對於組蛋白H2B的泛素化的重要性。而本篇論文也證明了,hMps1及MDM2藉由調控H2B的泛素化,來幫助細胞在氧化壓力下的DNA損傷反應及修復。zh_TW
dc.description.abstractMDM2 is an E3 ubiquitin ligase that targets proteins involved in cell cycle progression. Although many MDM2 substrates have been identified, how its activity is regulated is not fully understood, especially when cells are under oxidative stress. Here we show that upon oxidative stress, MDM2 can be phosphorylated by human Mps1 (hMps1)/TTK, a kinase known to function in the spindle assembly and DNA damage checkpoints. Consequently, MDM2-mediated H2B ubiquitination is enhanced, and Ala substitution at the hMps1/TTK phosphorylation sites compromises this effect. In cells, H2B ubiquitination was enhanced upon oxidative stress. Depletion of hMps1/TTK or MDM2 not only abrogated this induction but also resulted in reduced DNA repair, cell survival, and ATR signaling. Consistent with these observations, cells expressing a ubiquitination-deficient H2B mutant were also defective in DNA repair and ATR signaling. Complementation with WT MDM2 but not the phospho-deficient mutant rescued the H2B ubiquitination and DNA repair, suggesting the requirement for hMps1/TTK-mediated MDM2 phosphorylation. Taken together, we propose that hMps1/TTK phosphorylates MDM2 upon oxidative damage to promote H2B ubiquitination, which in turn facilitates oxidative DNA damage signaling and repair.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:44:17Z (GMT). No. of bitstreams: 1
ntu-104-D98445003-1.pdf: 1737577 bytes, checksum: 12e1964dcf7230f51f956c4b629ffa09 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContents
中文摘要…………………………………………………………………….…………け
Abstract…………………………………………………………………………………げ
Contents……………………………………………………………………...…………こ
List of Figures……………………………………………………………..……………し
Ⅰ. Introduction …………………………………………………………………………1
1.1 Functions of MDM2 beyond regulating p53………………………………...………1
1.2 Post-translational modification on MDM2………………………………………..…2
1.3 hMps1 and its canonical function in spindle assembly checkpoint (SAC) …………3
1.4 hMps1 also functions as an effector in DNA damage response…….………….……4
1.5 Histone modification-H2B ubiquitination…………………………………………5
1.6 H2B ubiquitination plays a role in DNA damage response……………………….…6
Ⅱ. Materials and Methods………………………………………………………………8
2.1 Cell lines………………………………………………………………………..……8
2.2 Plasmids and siRNA transfection……………………………………………………8
2.3 Antibodies…………………………………………………………………..………10
2.4 Phospho-specific antibodies production……………………………………………11
2.5 In vivo ubiquitination assay……………………………………………...…………11
2.6 In vitro ubiquitination………………………………………………………………12
2.7 Preparation of recombinant proteins…………………………..……………………13
2.8 GST pulldown assay…………………………………………………………..……13
2.9 Coimmunoprecipitation………………………………………………….…………14
2.10 In vitro kinase assay……………………………………………………….………15
2.11 Comet assay………………………………………………………………….……15
2.12 Immunofluorescence assay…………………………………………..……………15
2.13 Harvest of chromatin fraction………………………………………..……………16
2.14 Clonogenic cell survival assay……………………………………………………16
2.15 Protein stability assay………………………………………………………..……17
2.16 HPRT mutation frequency assay………………………………….………………17
Ⅲ. Results…………………………………………………………………………...…19
3.1 hMps1 interacts with MDM2 in vivo………………………………….……………19
3.2 Identification of the interaction domains hMps1 and MDM2…………...…………19
3.3 MDM2 can directly bind to hMps1 in vitro……………………………………...…20
3.4 MDM2 is phosphorylated by hMps1………………………………………….……20
3.5 Thr4, Thr306 and Ser307 are the major hMps1 phosphorylation sites in MDM2....21
3.6 hMps1-mediated phosphorylation promotes MDM2-dependent Histone H2B
ubiquitination…………………………………………………………………...………22
3.7 H2B ubiquitination is increased by phosphomimetic mutants of MDM2……….....24
3.8 hMps1 and MDM2 are required for H2B ubiquitination after H2O2 treatment…….24
3.9 MDM2 can be phosphorylated by hMps1 upon oxidative stress…………………..25
3.10 hMps1 and MDM2 are involved in DNA repair after H2O2 treatment……………26
3.11 Impaired hMps1-MDM2 signaling leads to increased DNA mutation……………27
3.12 hMps1-MDM2 signaling modulates DNA repair through H2B ubiquitination…..28
3.13 Colocalzation of MDM2 with oxidative DNA damage repair factors…………….29
3.14 hMps1 and MDM2 are involved in DNA damage response induced by oxidative
stress……………………………………………………………………………………29
3.15 Defect in H2B ubiquitination also obstructs ATR signaling under oxidative DNA
damage…………………………………………………………………………………30
3.16 The hMps1-MDM2-H2B ubiquitination axis regulates the histone compaction. ..31
3.17 Recruitment of RPA and XRCC1 to damage sites was impaired in hMps1 and
MDM2 downregulated cells….. ………………….……………………………………31
3.18 Physiological relevance in clinical samples………………………... ……………32
Ⅳ. Disscussion……………………. ………………………………………………..…35
4.1 The roles of hMps1 in DNA damage signaling and repair………………..……. …35
4.2 MDM2 orchestrates DNA damage signaling and repair……………………...……37
4.3 The involvement of Histone H2B ubiquitination in DNA repair………………..…38
4.4 The DNA damage signaling is regulated by chromatin compaction tuned by histone H2B ubiquitination…………………………………………………..…………………40
4.5 The clinical correlation between hMps1-MDM2 signaling axis and cancer……….42
Ⅴ. References………………………………………………………………….………44
Ⅵ.Figures………………………………………………………………………………57
List of Figures
Figure 1. hMps1 interacts with MDM2…………………………………………...……57
Figure 2. Truncated form of MDM2 or hMps1 interacts with each other. ……...…..…58
Figure 3. MDM2 interacts with hMps1 directly in vitro. ………………..…….………60
Figure 4. MDM2 is phosphorylated by hMps1. ……………………………………….61
Figure 5. hMps1 phosphorylation sites on MDM2. ……………………………………62
Figure 6. Thr4, Thr306 and Ser307 at MDM2 were phosphorylated by hMps1…….…63
Figure 7. hMps1 enhances MDM2-mediated Histone H2B ubiquitination………….…65
Figure 8. hMps1 phosphorylation of MDM2 did not alter its E3 ligase specifity….…..66
Figure 9. hMps1 phosphorylates MDM2 at Thr4,Thr306 and Ser307 to enhance H2B ubiquitination in part through the elevated stability………………………………....…67
Figure 10. The 3A mutation of MDM2 did not alter the intrinsic E3 ligase activity…..68
Figure 11. Phosphomimetic mutation at hMps1 phosphorylation sites of MDM2 increased the E3 ligase activity……………………………………………………...…69
Figure 12. Depletion of hMps1 or Mdm2 results in decrease in H2B Ubiquitination…70
Figure 13. Depletion of hMps1 and MDM2 compromises the H2B ubiquitination...….71
Figure 14. Complementation with MDM2 WT but not 3A mutant restored H2B ubiquitination. ………………………………………………………….………………73
Figure 15. Specificity analysis of anti-phospho Thr4 and Thr306 MDM2 antibodies…75
Figure 16. MDM2 phosphorylation at Thr4 and Thr306 were induced upon oxidative stress.……………………………………………………...……………………………76
Figure 17. Downregulation of hMps1 or MDM2 impaired DNA repair and cell survival upon oxidative stress. ………………………………………………………….………77
Figure 18. Complementation with MDM2 WT but not 3A mutant rescued DNA repair upon oxidative stress. …………………………………………………………….……79
Figure 19. Downregulation of hMps1 or MDM2 delayed repair of 8-oxoguanine under oxidative stress. …………………………………………………………………..……81
Figure 20. Increase of WT MDM2 impaired mutation frequency from oxidative stress but 3A mutant compromised this ability. ………………………………………………82
Figure 21. Defect in histone H2B ubiquitination dampened DNA repair upon oxidative stress. ………………………………………………………………………………..…83
Figure 22. MDM2 co-localized with effectors for base excision repair….…………….85
Figure 23. Depletion of hMps1 or MDM2 diminishes ATR signaling after H2O2 treatment………………………………………………………………………..………87
Figure 24. Expression of 2KR mutant histone H2B dampened the ATR signaling…….89
Figure 25. H2O2-induced eviction of histones from chromatin was impaired by knockdown of hMps1 or MDM2………………………………………………….……90
Figure 26. Foci formation of RPA or XRCC1 was dampened upon oxidative stress in hMps1 or MDM2-depleted cells. ………………………………………………………91
Figure 27. Expression or Variation of copy numbers of hMps1 or MDM2 in human sarcoma. …………………………………………………………………………..……92
dc.language.isoen
dc.subjecthMps1激?zh_TW
dc.subjectMDM2泛素連接?zh_TW
dc.subject組蛋白H2B泛素化zh_TW
dc.subject氧化壓力zh_TW
dc.subjectDNA損傷反應zh_TW
dc.subjectDNA damage responseen
dc.subjecthMps1en
dc.subjectMDM2en
dc.subjectHistone H2B ubiquitinationen
dc.subjectoxidative stressen
dc.title激酶TTK/hMps1藉由磷酸化MDM2調控組織蛋白H2B泛素化以及氧化壓力下的DNA損傷及修復反應zh_TW
dc.titleMDM2 Phosphorylation by TTK/hMps1 Promotes Oxidative DNA Damage Response and Repair through Histone H2B Ubiquitinationen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree博士
dc.contributor.oralexamcommittee李財坤(Tsai-Kun Li),陳小梨(Show-Lin Chen),沈志陽(Chen-Yang Shen),張智芬(Zee-Fen Chang)
dc.subject.keywordMDM2泛素連接?,hMps1激?,組蛋白H2B泛素化,氧化壓力,DNA損傷反應,zh_TW
dc.subject.keywordMDM2,hMps1,Histone H2B ubiquitination,oxidative stress,DNA damage response,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2015-12-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved