Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51676
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周仲島(Ben Jong-Dao Jou)
dc.contributor.authorWei-Jhih Chenen
dc.contributor.author陳威志zh_TW
dc.date.accessioned2021-06-15T13:44:06Z-
dc.date.available2020-09-02
dc.date.copyright2020-09-02
dc.date.issued2020
dc.date.submitted2020-08-09
dc.identifier.citation周仲島、鍾吉俊及修榮光,2015:S波段雙偏極化雷達在梅雨季豪大雨天氣系統定量降雨估計之應用。大氣科學,43(2),91–113。
周仲島、高聿正、修榮光、鍾吉俊、李宗融及郭鴻基,2016:臺北都會區豪雨型午後雷暴的觀測特徵與預報挑戰:2015年6月14日個案研究。大氣科學,44(1),57–82。
林品芳、張保亮、周思運及秦新龍,2017:五分山C波段雷達觀測掃描策略之研擬與應用。106年天氣分析與預報研討會論文彙編,A1–24。
林品芳、張保亮、陳姿瑾及秦新龍,2018:區域防災降雨雷達之高時空降雨估計評估。107年天氣分析與預報研討會論文彙編,A1–2。
唐玉霜及張保亮,2019:C波段雙偏極化雷達定量降雨估計法比較分析。108年天氣分析與預報研討會論文彙編,A3–3。
陳如瑜、張偉裕及陳台琦,2017:北台灣S與C波段雙偏極化雷達定量降雨估計之比較。大氣科學,45(1),57-81,doi:10.3966/025400022017034501004。
張保亮、林品芳、陳佁甄及秦新龍,2017:五分山S波段與C波段雷達觀測比對初步分析。106年天氣分析與預報研討會論文彙編,A1–25。
Anderson, M. E., L. D. Carey, W. A. Petersen, and K. R. Knupp, 2011: C-band dual-polarimetric radar signatures of hail. Electron. J. Oper. Meteor., 2011-EJ2.
Bodine, D. J., R. D. Palmer, and G. Zhang, 2014: Dual-wavelength polarimetric radar analyses of tornadic debris signatures. J. Appl. Meteor. Climatol., 53(2), 242-261, doi:10.1175/JAMC-D-13-0189.1.
Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp., doi:10.1017/CBO9780511541094.
Bringi, V. N., G. Huang, V. Chandrasekar, and T. D. Keenan, 2001: An areal rainfall estimator using differential propagation phase: Evaluation using a C-band radar and a dense gauge network in the tropics. J. Atmos. Oceanic Technol., 18(11), 1810-1818, doi:10.1175/1520-0426(2001)018<1810:AAREUD>2.0.CO;2.
Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Ocean. Technol., 7(6), 829-840, doi:10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.
Bringi, V. N., L. Liu, P. C. Kennedy, V. Chandrasekar, and S. A. Rutledge, 1996: Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor. Atmos. Phys., 59, 3-31, doi:10.1007/BF01031999.
Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499-533, doi:10.1002/qj.49710243303.
Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric study. Mon. Wea. Rev., 128(8), 2687-2710, doi:10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.
Carey, L. D., S. A. Rutledge, and D. A. Ahijevych, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39(9), 1405-1433, doi:10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristic of Taiwan. Mon. Wea. Rev., 131(7), 1323-1341, doi:10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2.
Chen, G. T.-J., H.-C. Chou, T.-C. Chang, and C.-S. Liu, 2001: Frontal and non-frontal convection over northern Taiwan in mei-yu season. (in Chinese with English abstract). Atmos. Sci., 29(1), 37-52.
Chisholm, A. J., and J. H. Renick, 1972: The kinematics of multicell and supercell Alberta hailstorms. Research Council of Alberta Hail Studies, Report No. 72-2, 24-31.
Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26(10), 2071-2088, doi:10.1175/2009JTECHA1208.1.
Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52(9), 2162-2186, doi:10.1175/JAMC-D-12-0275.1.
Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47(5), 1354-1364, doi:10.1175/2007JAMC1634.1.
Griffin, C. B., D. J. Bodine, and R. Palmer, 2020: Polarimetric radar observations of simultaneous tornadoes on 10 may 2010 near norman, oklahoma. Mon. Wea. Rev., 148(2), 477-497, doi:10.1175/MWR-D-19-0156.1.
Handler, S. L., and C. R. Homeyer, 2018: Radar-observed bulk microphysics of midlatitude leading-line trailing-stratiform mesoscale convective systems. J. Appl. Meteor. Climatol., 57(10), 2231-2248, doi:10.1175/JAMC-D-18-0030.1.
Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolan, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37(8), 749-775, doi:10.1175/1520-0450(1998)037,0749:CCPRMF.2.0.CO;2.
Jou, B. J.-D., 1994: Mountain-originated mesoscale precipitation system in northern Taiwan: A case study 21 June 1991. [北臺灣地區地形引發之中尺度降水系統:一九九一年六月二十一日個案研究]. Terr. Atmos. Ocean. Sci., 5(2), 169-197, doi: 10.3319/TAO.1994.5.2.169(TAMEX).
Jou, B. J.-D., W.-C.Lee, and R. H.Johnson, 2011: An overview of SoWMEX/TiMREX operation. In Global Monsoon System, Eds. C.-P. Chang et al., World Scientific Publishing, 214-232.
Keenan, T. D., 2003: Hydrometeor classification with a C-band polarimetric radar. Aust. Meteor. Mag., 52(1), 23-31.
Kumjian, M. R., 2013b: Principles and applications of dual-polarization radar. Part II: Warm- and cold-season applications. J. Operational Meteor., 1(20), 243-264, doi:10.15191/nwajom.2013.0120
Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47(7), 1940-1961, doi:10.1175/2007JAMC1874.1.
Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69(12), 3471-3490, doi:10.1175/JAS-D-12-067.1.
Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53(7), 1820-1843, doi:10.1175/JAMC-D-13-0354.1.
Kuo, K.-T., and C.-M. Wu, 2019: The precipitation hotspots of afternoon thunderstorms over the Taipei basin: Idealized numerical simulations. J. Meteor. Soc. Japan, 97(2), 501-517, doi:10.2151/jmsj.2019-031.
Levin, Z., and W. R. Cotton, Eds., 2008: Aerosol Pollution Impact on Precipitation: A Scientific Review. Springer, 386 pp.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Wea. Forecasting, 26(1), 44-60, doi:10.1175/2010WAF2222386.1.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2012: Objective Prediction of Warm Season Afternoon Thunderstorms in Northern Taiwan Using a Fuzzy Logic Approach. Wea. Forecasting, 27(5), 1178-1197, doi: 10.1175/WAF-D-11-00105.1.
Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17(2), 140-164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.
Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41(12), 1179-1194, doi:10.1175/1520-0450(2002)041,1179:EPRSAT.2.0.CO;2.
Mattos, E. V., L. A. T. Machado, E. R. Williams, and R. I. Albrecht, 2016: Polarimetric radar characteristics of storms with and without lightning activity, J. Geophys. Res.-Atmos., 121, 14201-14220, doi:10.1002/2016JD025142.
Miao, J.-E., and M.-J. Yang, 2020: A modeling study of the severe afternoon thunderstorm event at Taipei on 14 June 2015: The roles of sea breeze, microphysics, and terrain. J. Meteor. Soc. Japan, 98(1), 129-152, doi:10.2151/jmsj.2020-008.
Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24(3), 730-748, doi:10.1175/2008WAF2222205.1.
Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128(10), 3413-3436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.
Picca, J. C., and A. V. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140(4), 1385-1403, doi:10.1175/MWR-D-11-00112.1.
Ryzhkov, A. V., and D. S. Zrnić, 2005: Radar polarimetry at S, C, and X bands comparative analysis and operational implications. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 9R.3.
Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteorol. Climatol., 52(12), 2849-2870, doi:10.1175/JAMC-D-13-073.1
Starzec, M., C. R. Homeyer, and G. L. Mullendore, 2017: Storm labeling in three dimensions (SL3D): A volumetric radar echo and dual-polarization updraft classification algorithm. Mon. Wea. Rev., 145(3), 1127-1145, doi:10.1175/MWR-D-16-0089.1.
Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39(8), 1341-1372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.
Su, C.-Y., W.-T. Chen, J.-P. Chen, W.-Y. Chang, and B. J.-D. Jou, 2020: The Impacts of cloud condensation nuclei on the extreme precipitation of a monsoon coastal mesoscale convection system. Terr. Atmos. Ocean. Sci., 31(2), 131-139, doi:10.3319/TAO.2019.11.29.01.
Tang, L., J. Zhang, C. Langston, J. Krause, K. Howard, and V. Lakshmanan, 2014: A physically based precipitation-nonprecipitation radar echo classifier using polarimetric and environmental data in a real-time national system. Wea. Forecasting, 29(5), 1106-1119, doi:10.1175/WAF-D-13-00072.1.
Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50(2), RG2001, doi:10.1029/2011RG000369.
van Lier-Walqui, M., and Coauthors, 2016: On polarimetric radar signatures of deep convection for model evaluation: Columns of specific differential phase observed during MC3E. Mon. Wea. Rev, 144(2), 737-758, doi:10.1175/MWR-D-15-0100.1.
Varble, A., and Coauthors, 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116, D12206, doi:10.1029/2010JD015180.
Vivekanandan, J., D. S. Zrnić, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80(3), 381-388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.
Wang, Y., J. Zhang, A. V. Ryzhkov, and L. Tang, 2013: C-band polarimetric radar QPE based on specific differential propagation phase for extreme typhoon rainfall. J. Atmos. Oceanic Technol., 30(7), 1354-1370, doi:10.1175/JTECH-D-12-00083.1.
Wang, Y., J. Zhang, P.-L. Chang, C. Langston, B. Kaney, and L. Tang, 2016: Operational C-band dual-polarization radar QPE for the subtropical complex terrain of Taiwan. Adv. Meteor., 2016, 4294271, doi:10.1155/2016/4294271.
Woodard, C. J., L. D. Carey, W. A. Petersen, and W. P. Roeder, 2012: Operational utility of dual-polarization variables in lightning initiation forecasting. Electronic J. Operational Meteor., 13(6), 79-102.
Wu, D., and Coauthors, 2018: Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146(7), 2147-2159, doi:10.1175/MWR-D-17-0320.1.
Yuter, S. E., and R. A. Houze, 1995: Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Mon. Wea. Rev., 123(7), 1941-1963, doi: 10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.
Zrnić, D. S., and A. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13(2), 454-464, doi:10.1175/1520-0426(1996)013<0454:AORMUS>2.0.CO;2.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51676-
dc.description.abstract在2018年雙北夏季暴雨實驗期間針對午後雷暴進行密集觀測。本研究使用五分山C波段雙偏極化雷達密集式掃描,同時利用共站觀測的S波段雙偏極化雷達,針對2018年8月17日午後雷暴進行高時空解析度降雨、運動場結構,以及雙偏極化參數特徵分析。
觀測結果顯示有明顯的BWER、ZDR弧、KDP柱,以及ρHV弧等類似中緯度超級胞經常觀測到的雙偏極化參數特徵。但不論是時間或空間的規模皆和美國中西部大平原典型的超級胞無可比擬。經由自洽法及同步比較法的結果顯示,C波段在豪雨時衰減效應顯著,導致能量參數ZHH及ZDR的大值被低估。衰減效應可以透過衰減訂正法解決,雙波段Z_DR的差值並非成線性關係,而是在ZDR大於1.5 dB之後呈現另一趨勢,由此可知兩波段ZDR參數關係無法直接透過線性關係式描述之間的關係,而必須考慮共振效應帶來的非線性結果。本研究也發現共振效應在不同仰角有不同強度的反應,可能和雨滴粒子掉落時產生快速變化有關,將來必須考慮仰角之間共振效應的敏感度差異。
在水象粒子分類的結果,指出mdf-D13對於融解層附近濕雪的分辨較為敏銳,而P09則對雨雹混合物的辨識最為敏感,但分布較為零碎。透過C波段RHI掃描能觀察到接近對流層頂有大範圍霰的存在。這結果過去沒有被提及,表示雷暴低層提供充足的水汽,直到高層仍有很明顯的淞化現象。並且從淞化粒子掉落過程,可以推測這是導致後續地面量測到局部短延時強降雨的主因。另外透過水象粒子及閃電訊號的比對,發現霰和閃電的訊號有很好的相關性,且霰對閃電的躍升大約有20分鐘的領先時間。
統計對流前後期的水象粒子隨高度的變化,顯示在雷暴不同發展階段有明顯垂直結構的差異。前期的對流體積集中在對流層頂,代表受到強烈上衝流影響,除了淞化粒子之外,也有許多冰晶被傳送到對流層頂。而後期的體積則集中在中層,主要是受到前期高層冰晶落下的影響,而此時的降雨型態則偏向層狀降雨。因此,利用C波段雙偏極化觀測的優勢,結合水象粒子分類演算法,除了幫助我們更加理解雷暴的內部結構,也可大幅強化雷暴強降水的預警訊號。
zh_TW
dc.description.abstractIntensive observations on afternoon thunderstorms were made in 2018 TAipei Summer Storm Experiment (TASSE). This study used Wu Fen Shan C-band polarimetric radar (RCMD) with intensive scans, making contemporaneous comparisons with co-site S-band polarimetric radar (RCWF), to analyze the characteristics of precipitation and kinematic structures, and polarimetric variables of afternoon thunderstorms with fine time and space resolution on Aug. 17, 2018.
The polarimetric signatures in mid-latitude supercells, usually including Bounded Weak Echo Region (BWER), ZDR arc, KDP column, and ρHV arc, have been found obvious in the case. However, the time or space scale was not comparable with the one of typical supercells in the Great Plains. By self-consistency and contemporaneous comparisons, the attenuation effect in heavy rain was significant at C band, resulting in underestimation of maxima of power parameters (ZHH and ZDR). The attenuation effect could be solved by the attenuation correction, whereas the differences of ZDR values at 2 bands have been pointed out the nonlinear relationships were notable above ZDR=1.5 dB. Therefore, the relationships between 2 bands could not be described in one linear equation, and we must consider the outcome of resonance effect. This study also suggested the strength of resonance effect could vary with elevations. It might be due to the rapid change of falling raindrops. The variations in sensitivity to heights must also be taken into account in the future.
The results of Hydrometeor Classification Algorithms (HCA) indicated mdf-D13 was sensitive to “wet snow” near the melting layer. By contrast, P09 was sensitive to “a mixture of rain and hail,” but it was recognized fragmentation. A wide range of “graupel” near tropopause, having not been mentioned in the past, was observed by RHI scans at C band. It represented the significantly upper-level riming owing to sufficient water vapor from the bottom of thunderstorm. We could also speculate locally and short-term extreme precipitation on the ground mainly resulted from previously falling rimed particles. Furthermore, there was a strong positive correlation between signatures of graupel and lightning jumps, and the former had approximately 20-minute lead time.
The statistics of hydrometeors in the vertical distribution revealed distinct features in the different stages of the thunderstorm. The volume of convection concentrated on upper levels with not only rimed particles but also ice crystals in the earlier stage, representing the influence of strong updrafts. In the later stage, the volume concentrated on middle levels because of the preceding falling ice crystals, and the precipitation pattern tended to stratiform component. Therefore, if we combine the advantages of C-band polarimetric observations and HCA, the structures of thunderstorms would be clearer, and earlier warning of intense rainfall on the ground could be strengthened.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:44:06Z (GMT). No. of bitstreams: 1
U0001-0908202015275800.pdf: 12276354 bytes, checksum: 963848fbd2ad4c69ec899761895d855c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
目錄 vi
表目錄 viii
圖目錄 ix
第一章 前言 1
1.1 研究背景 1
1.2 文獻回顧 3
1.3 研究動機與目的 7
第二章 資料與研究方法 9
2.1 個案概述 9
2.2 資料說明 10
2.3 分析方法 12
2.3.1 衰減訂正法 13
2.3.2 水象粒子分類演算法 15
第三章 結果分析與討論 19
3.1 雙偏極化觀測特徵 19
3.2 衰減訂正結果 21
3.3 水象粒子分類與統計結果 23
第四章 總結與未來展望 27
4.1 總結 27
4.2 未來展望 29
參考文獻 31
附表 37
附圖 43
dc.language.isozh-TW
dc.titleC波段雙偏極化雷達之雷暴觀測研究zh_TW
dc.titleObservational Study of Thunderstorm using C-Band Polarimetric Radar in Taiwanen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳正平(Jen-Ping Chen),楊明仁(Ming-Jen Yang)
dc.subject.keyword雙偏極化雷達,雙波段共站觀測,午後雷暴,水象粒子分類,zh_TW
dc.subject.keyworddual polarization,co-site observation of dual wavelength,afternoon thunderstorm,hydrometeor classification algorithm,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202002716
dc.rights.note有償授權
dc.date.accepted2020-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-0908202015275800.pdf
  目前未授權公開取用
11.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved