請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51660
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高嘉宏(Jia-Horng Kao),陳昆鋒(Kuen-Feng Chen) | |
dc.contributor.author | Tung-Hung Su | en |
dc.contributor.author | 蘇東弘 | zh_TW |
dc.date.accessioned | 2021-06-15T13:43:21Z | - |
dc.date.available | 2018-02-24 | |
dc.date.copyright | 2016-02-24 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-12-22 | |
dc.identifier.citation | Abbas, G., Silveira, M. G. and Lindor, K. D. Hepatic fibrosis and the renin-angiotensin system. Am J Ther. 2011 Nov; 18(6):e202-8.
Abraldes, J. G., Pasarin, M. and Garcia-Pagan, J. C. Animal models of portal hypertension. World J Gastroenterol. 2006 Nov 7; 12(41):6577-84. Akpolat, N., Yahsi, S., Godekmerdan, A., Demirbag, K. and Yalniz, M. Relationship between serum cytokine levels and histopathological changes of liver in patients with hepatitis B. World J Gastroenterol. 2005 Jun 7; 11(21):3260-3. Aller, M. A., Arias, J. L., Garcia-Dominguez, J., Arias, J. I., Duran, M. and Arias, J. Experimental obstructive cholestasis: the wound-like inflammatory liver response. Fibrogenesis Tissue Repair. 2008 1(1):6. Andrae, J., Gallini, R. and Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008 May 15; 22(10):1276-312. Aoyama, T., Inokuchi, S., Brenner, D. A. and Seki, E. CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology. 2010 Oct; 52(4):1390-400. Atabai, K., Jame, S., Azhar, N., Kuo, A., Lam, M., McKleroy, W., et al. Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J Clin Invest. 2009 Dec; 119(12):3713-22. Barry-Hamilton, V., Spangler, R., Marshall, D., McCauley, S., Rodriguez, H. M., Oyasu, M., et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010 Sep; 16(9):1009-17. Basu, S. Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology. 2003 Jul 15; 189(1-2):113-27. Bonner, J. C. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004 Aug; 15(4):255-73. Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., Zhao, Y., Pestell, R. G., Albanese, C., et al. Stat3 as an oncogene. Cell. 1999 Aug 6; 98(3):295-303. Bruck, R., Schey, R., Aeed, H., Hochman, A., Genina, O. and Pines, M. A protective effect of pyrrolidine dithiocarbamate in a rat model of liver cirrhosis. Liver Int. 2004 Apr; 24(2):169-76. Bruix, J. and Sherman, M. Management of hepatocellular carcinoma: an update. Hepatology. 2011 Mar; 53(3):1020-2. Bruix, J., Takayama, T., Mazzaferro, V., Chau, G. Y., Yang, J., Kudo, M., et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015 Oct; 16(13):1344-54. Calvisi, D. F., Ladu, S., Gorden, A., Farina, M., Conner, E. A., Lee, J. S., et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 2006 Apr; 130(4):1117-28. Chang, C. Y., Martin, P., Fotiadu, A. and Hytiroglou, P. A patient with chronic hepatitis B and regression of fibrosis during treatment. Semin Liver Dis. 2010 Aug; 30(3):296-301. Chang, T. T., Liaw, Y. F., Wu, S. S., Schiff, E., Han, K. H., Lai, C. L., et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology. 2010 Sep; 52(3):886-93. Chang, Y. S., Adnane, J., Trail, P. A., Levy, J., Henderson, A., Xue, D., et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol. 2007 Apr; 59(5):561-74. Chen, C. H., Yang, P. M., Huang, G. T., Lee, H. S., Sung, J. L. and Sheu, J. C. Estimation of seroprevalence of hepatitis B virus and hepatitis C virus in Taiwan from a large-scale survey of free hepatitis screening participants. J Formos Med Assoc. 2007 Feb; 106(2):148-55. Chen, K. F., Tai, W. T., Hsu, C. Y., Huang, J. W., Liu, C. Y., Chen, P. J., et al. Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity. Eur J Med Chem. 2012 Sep; 55:220-7. Chen, K. F., Tai, W. T., Huang, J. W., Hsu, C. Y., Chen, W. L., Cheng, A. L., et al. Sorafenib derivatives induce apoptosis through inhibition of STAT3 independent of Raf. Eur J Med Chem. 2011 Jul; 46(7):2845-51. Chen, K. F., Tai, W. T., Liu, T. H., Huang, H. P., Lin, Y. C., Shiau, C. W., et al. Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res. 2010 Nov 1; 16(21):5189-99. Chen, Y. L., Lv, J., Ye, X. L., Sun, M. Y., Xu, Q., Liu, C. H., et al. Sorafenib inhibits transforming growth factor beta1-mediated epithelial-mesenchymal transition and apoptosis in mouse hepatocytes. Hepatology. 2011 May; 53(5):1708-18. Cheng, A. L., Kang, Y. K., Chen, Z., Tsao, C. J., Qin, S., Kim, J. S., et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009 Jan; 10(1):25-34. Chilakapati, J., Korrapati, M. C., Hill, R. A., Warbritton, A., Latendresse, J. R. and Mehendale, H. M. Toxicokinetics and toxicity of thioacetamide sulfoxide: a metabolite of thioacetamide. Toxicology. 2007 Feb 12; 230(2-3):105-16. Chong, Z. Z. and Maiese, K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol. 2007 Nov; 22(11):1251-67. Chu, P. S., Nakamoto, N., Ebinuma, H., Usui, S., Saeki, K., Matsumoto, A., et al. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology. 2013 Jul; 58(1):337-50. de Jongh, F. E., Janssen, H. L., de Man, R. A., Hop, W. C., Schalm, S. W. and van Blankenstein, M. Survival and prognostic indicators in hepatitis B surface antigen-positive cirrhosis of the liver. Gastroenterology. 1992 Nov; 103(5):1630-5. De Minicis, S., Seki, E., Uchinami, H., Kluwe, J., Zhang, Y., Brenner, D. A., et al. Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology. 2007 May; 132(5):1937-46. Deng, Y. R., Ma, H. D., Tsuneyama, K., Yang, W., Wang, Y. H., Lu, F. T., et al. STAT3-mediated attenuation of CCl4-induced mouse liver fibrosis by the protein kinase inhibitor sorafenib. J Autoimmun. 2013 Oct; 46:25-34. Di Sario, A., Bendia, E., Svegliati Baroni, G., Ridolfi, F., Casini, A., Ceni, E., et al. Effect of pirfenidone on rat hepatic stellate cell proliferation and collagen production. J Hepatol. 2002 Nov; 37(5):584-91. Dienstag, J. L., Goldin, R. D., Heathcote, E. J., Hann, H. W., Woessner, M., Stephenson, S. L., et al. Histological outcome during long-term lamivudine therapy. Gastroenterology. 2003 Jan; 124(1):105-17. Dooley, S. and ten Dijke, P. TGF-beta in progression of liver disease. Cell Tissue Res. 2012 Jan; 347(1):245-56. Duffield, J. S. and Lupher, M. L., Jr. PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis. Drug News Perspect. 2010 Jun; 23(5):305-15. Eckardt, K. U., Pugh, C. W., Meier, M., Tan, C. C., Ratcliffe, P. J. and Kurtz, A. Production of erythropoietin by liver cells in vivo and in vitro. Ann N Y Acad Sci. 1994 Apr 15; 718:50-60; discussion 61-3. Fallowfield, J. A., Mizuno, M., Kendall, T. J., Constandinou, C. M., Benyon, R. C., Duffield, J. S., et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007 Apr 15; 178(8):5288-95. Fan, L. C., Shiau, C. W., Tai, W. T., Hung, M. H., Chu, P. Y., Hsieh, F. S., et al. SHP-1 is a negative regulator of epithelial-mesenchymal transition in hepatocellular carcinoma. Oncogene. 2015 Jan 26. Fattovich, G., Giustina, G., Schalm, S. W., Hadziyannis, S., Sanchez-Tapias, J., Almasio, P., et al. Occurrence of hepatocellular carcinoma and decompensation in western European patients with cirrhosis type B. The EUROHEP Study Group on Hepatitis B Virus and Cirrhosis. Hepatology. 1995 Jan; 21(1):77-82. Fattovich, G., Stroffolini, T., Zagni, I. and Donato, F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004 Nov; 127(5 Suppl 1):S35-50. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008 Jan; 88(1):125-72. Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008 May; 134(6):1655-69. Friedman, S. L., Sheppard, D., Duffield, J. S. and Violette, S. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013 Jan 9; 5(167):167sr1. Gao, B., Wang, H., Lafdil, F. and Feng, D. STAT proteins - key regulators of anti-viral responses, inflammation, and tumorigenesis in the liver. J Hepatol. 2012 Aug; 57(2):430-41. Geraldes, P., Hiraoka-Yamamoto, J., Matsumoto, M., Clermont, A., Leitges, M., Marette, A., et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med. 2009 Nov; 15(11):1298-306. Gordon, S. Alternative activation of macrophages. Nat Rev Immunol. 2003 Jan; 3(1):23-35. Handy, J. A., Saxena, N. K., Fu, P., Lin, S., Mells, J. E., Gupta, N. A., et al. Adiponectin activation of AMPK disrupts leptin-mediated hepatic fibrosis via suppressors of cytokine signaling (SOCS-3). J Cell Biochem. 2010 Aug 1; 110(5):1195-207. Hartmann, J. T., Haap, M., Kopp, H. G. and Lipp, H. P. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr Drug Metab. 2009 Jun; 10(5):470-81. Hennenberg, M., Trebicka, J., Kohistani, Z., Stark, C., Nischalke, H. D., Kramer, B., et al. Hepatic and HSC-specific sorafenib effects in rats with established secondary biliary cirrhosis. Lab Invest. 2011 Feb; 91(2):241-51. Hessien, M. H., El-Sharkawi, I. M., El-Barbary, A. A., El-Beltagy, D. M. and Snyder, N. Non-invasive index of liver fibrosis induced by alcohol, thioacetamide and Schistosomal infection in mice. BMC Gastroenterol. 2010 10:53. Heymann, F., Hammerich, L., Storch, D., Bartneck, M., Huss, S., Russeler, V., et al. Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology. 2012 Mar; 55(3):898-909. Hong, F., Chou, H., Fiel, M. I. and Friedman, S. L. Antifibrotic activity of sorafenib in experimental hepatic fibrosis: refinement of inhibitory targets, dosing, and window of efficacy in vivo. Dig Dis Sci. 2013 Jan; 58(1):257-64. Horiguchi, N., Lafdil, F., Miller, A. M., Park, O., Wang, H., Rajesh, M., et al. Dissociation between liver inflammation and hepatocellular damage induced by carbon tetrachloride in myeloid cell-specific signal transducer and activator of transcription 3 gene knockout mice. Hepatology. 2010 May; 51(5):1724-34. Horiguchi, N., Wang, L., Mukhopadhyay, P., Park, O., Jeong, W. I., Lafdil, F., et al. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology. 2008 Apr; 134(4):1148-58. Ichikawa, S., Mucida, D., Tyznik, A. J., Kronenberg, M. and Cheroutre, H. Hepatic stellate cells function as regulatory bystanders. J Immunol. 2011 May 15; 186(10):5549-55. Inagaki, Y. and Okazaki, I. Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis. Gut. 2007 Feb; 56(2):284-92. Iredale, J. P., Benyon, R. C., Pickering, J., McCullen, M., Northrop, M., Pawley, S., et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998 Aug 1; 102(3):538-49. Iredale, J. P., Thompson, A. and Henderson, N. C. Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation. Biochim Biophys Acta. 2013 Jul; 1832(7):876-83. Jiao, H., Berrada, K., Yang, W., Tabrizi, M., Platanias, L. C. and Yi, T. Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol. 1996 Dec; 16(12):6985-92. Jiao, J., Sastre, D., Fiel, M. I., Lee, U. E., Ghiassi-Nejad, Z., Ginhoux, F., et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology. 2012 Jan; 55(1):244-55. Kamal, S. M., Turner, B., He, Q., Rasenack, J., Bianchi, L., Al Tawil, A., et al. Progression of fibrosis in hepatitis C with and without schistosomiasis: correlation with serum markers of fibrosis. Hepatology. 2006 Apr; 43(4):771-9. Kao, J. H. and Chen, D. S. Global control of hepatitis B virus infection. Lancet Infect Dis. 2002 Jul; 2(7):395-403. Karlmark, K. R., Weiskirchen, R., Zimmermann, H. W., Gassler, N., Ginhoux, F., Weber, C., et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009 Jul; 50(1):261-74. Karlmark, K. R., Zimmermann, H. W., Roderburg, C., Gassler, N., Wasmuth, H. E., Luedde, T., et al. The fractalkine receptor CX(3)CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology. 2010 Nov; 52(5):1769-82. King, T. E., Jr., Bradford, W. Z., Castro-Bernardini, S., Fagan, E. A., Glaspole, I., Glassberg, M. K., et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014 May 29; 370(22):2083-92. Kisseleva, T. and Brenner, D. A. Anti-fibrogenic strategies and the regression of fibrosis. Best Pract Res Clin Gastroenterol. 2011 Apr; 25(2):305-17. Kisseleva, T., Cong, M., Paik, Y., Scholten, D., Jiang, C., Benner, C., et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A. 2012 Jun 12; 109(24):9448-53. Kong, X., Horiguchi, N., Mori, M. and Gao, B. Cytokines and STATs in Liver Fibrosis. Front Physiol. 2012 3:69. Kountouras, J., Billing, B. H. and Scheuer, P. J. Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol. 1984 Jun; 65(3):305-11. Krizhanovsky, V., Yon, M., Dickins, R. A., Hearn, S., Simon, J., Miething, C., et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008 Aug 22; 134(4):657-67. Lakner, A. M., Moore, C. C., Gulledge, A. A. and Schrum, L. W. Daily genetic profiling indicates JAK/STAT signaling promotes early hepatic stellate cell transdifferentiation. World J Gastroenterol. 2010 Oct 28; 16(40):5047-56. Lakner, A. M., Steuerwald, N. M., Walling, T. L., Ghosh, S., Li, T., McKillop, I. H., et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology. 2012 Jul; 56(1):300-10. Lee, C. G., Homer, R. J., Zhu, Z., Lanone, S., Wang, X., Koteliansky, V., et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med. 2001 Sep 17; 194(6):809-21. Lee, H. S., Huang, G. T., Chen, C. H., Chiou, L. L., Lee, C. C., Yang, P. M., et al. Less reversal of liver fibrosis after prolonged carbon tetrachloride injection. Hepatogastroenterology. 2001 Sep-Oct; 48(41):1312-5. Leyland, H., Gentry, J., Arthur, M. J. and Benyon, R. C. The plasminogen-activating system in hepatic stellate cells. Hepatology. 1996 Nov; 24(5):1172-8. Li, G., Xie, Q., Shi, Y., Li, D., Zhang, M., Jiang, S., et al. Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med. 2006 Jul; 8(7):889-900. Li, W., Liang, X., Kellendonk, C., Poli, V. and Taub, R. STAT3 contributes to the mitogenic response of hepatocytes during liver regeneration. J Biol Chem. 2002 Aug 9; 277(32):28411-7. Liedtke, C., Luedde, T., Sauerbruch, T., Scholten, D., Streetz, K., Tacke, F., et al. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis Tissue Repair. 2013 6(1):19. Liu, L., Cao, Y., Chen, C., Zhang, X., McNabola, A., Wilkie, D., et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006 Dec 15; 66(24):11851-8. Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J. F., et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008 Jul 24; 359(4):378-90. Lopez-Ruiz, P., Rodriguez-Ubreva, J., Cariaga, A. E., Cortes, M. A. and Colas, B. SHP-1 in cell-cycle regulation. Anticancer Agents Med Chem. 2011 Jan; 11(1):89-98. Macdonald, J. M., Xu, A., Kubota, H., LeCluyse, E., Hamilton, G., Liu, H., et al. (2002). Liver cell culture and lineage biology. Methods of Tissue Engineering. Atala, A. and Lanza, R. P., Academic Press: 155-60. Mair, M., Zollner, G., Schneller, D., Musteanu, M., Fickert, P., Gumhold, J., et al. Signal transducer and activator of transcription 3 protects from liver injury and fibrosis in a mouse model of sclerosing cholangitis. Gastroenterology. 2010 Jun; 138(7):2499-508. Mallat, A. and Lotersztajn, S. Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis. Am J Physiol Cell Physiol. 2013 Oct 15; 305(8):C789-99. Marcellin, P., Gane, E., Buti, M., Afdhal, N., Sievert, W., Jacobson, I. M., et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet. 2013 Feb 9; 381(9865):468-75. Mederacke, I., Hsu, C. C., Troeger, J. S., Huebener, P., Mu, X., Dapito, D. H., et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013 4:2823. Mejias, M., Garcia-Pras, E., Tiani, C., Miquel, R., Bosch, J. and Fernandez, M. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology. 2009 Apr; 49(4):1245-56. Mosser, D. M. and Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008 Dec; 8(12):958-69. Muller, A., Machnik, F., Zimmermann, T. and Schubert, H. Thioacetamide-induced cirrhosis-like liver lesions in rats--usefulness and reliability of this animal model. Exp Pathol. 1988 34(4):229-36. Neuschwander-Tetri, B. A., Loomba, R., Sanyal, A. J., Lavine, J. E., Van Natta, M. L., Abdelmalek, M. F., et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015 Mar 14; 385(9972):956-65. Nieto, N. Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells. Hepatology. 2006 Dec; 44(6):1487-501. Noble, P. W., Albera, C., Bradford, W. Z., Costabel, U., Glassberg, M. K., Kardatzke, D., et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011 May 21; 377(9779):1760-9. Ogawa, T., Enomoto, M., Fujii, H., Sekiya, Y., Yoshizato, K., Ikeda, K., et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut. 2012 Nov; 61(11):1600-9. Parsons, C. J., Takashima, M. and Rippe, R. A. Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol. 2007 Jun; 22 Suppl 1:S79-84. Pinzani, M., Gesualdo, L., Sabbah, G. M. and Abboud, H. E. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest. 1989 Dec; 84(6):1786-93. Popov, Y., Sverdlov, D. Y., Bhaskar, K. R., Sharma, A. K., Millonig, G., Patsenker, E., et al. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am J Physiol Gastrointest Liver Physiol. 2010 Mar; 298(3):G323-34. Pradere, J. P., Kluwe, J., De Minicis, S., Jiao, J. J., Gwak, G. Y., Dapito, D. H., et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 2013 Oct; 58(4):1461-73. Richeldi, L., Costabel, U., Selman, M., Kim, D. S., Hansell, D. M., Nicholson, A. G., et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011 Sep 22; 365(12):1079-87. Richeldi, L., du Bois, R. M., Raghu, G., Azuma, A., Brown, K. K., Costabel, U., et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014 May 29; 370(22):2071-82. Rockey, D. C. Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis. 2001 Aug; 21(3):337-49. Roderburg, C., Urban, G. W., Bettermann, K., Vucur, M., Zimmermann, H., Schmidt, S., et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011 Jan; 53(1):209-18. Saxena, N. K., Ikeda, K., Rockey, D. C., Friedman, S. L. and Anania, F. A. Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology. 2002 Apr; 35(4):762-71. Scholten, D., Osterreicher, C. H., Scholten, A., Iwaisako, K., Gu, G., Brenner, D. A., et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology. 2010 Sep; 139(3):987-98. Seki, E., De Minicis, S., Gwak, G. Y., Kluwe, J., Inokuchi, S., Bursill, C. A., et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest. 2009 Jul; 119(7):1858-70. Seki, E., De Minicis, S., Osterreicher, C. H., Kluwe, J., Osawa, Y., Brenner, D. A., et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007 Nov; 13(11):1324-32. Semela, D. and Dufour, J. F. Angiogenesis and hepatocellular carcinoma. J Hepatol. 2004 Nov; 41(5):864-80. Shah, R. R., Morganroth, J. and Shah, D. R. Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives. Drug Saf. 2013 Jul; 36(7):491-503. Shi, J., Aisaki, K., Ikawa, Y. and Wake, K. Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. Am J Pathol. 1998 Aug; 153(2):515-25. Shirakami, Y., Lee, S. A., Clugston, R. D. and Blaner, W. S. Hepatic metabolism of retinoids and disease associations. Biochim Biophys Acta. 2012 Jan; 1821(1):124-36. Sica, A., Invernizzi, P. and Mantovani, A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology. 2014 May; 59(5):2034-42. Sripa, B., Mairiang, E., Thinkhamrop, B., Laha, T., Kaewkes, S., Sithithaworn, P., et al. Advanced periductal fibrosis from infection with the carcinogenic human liver fluke Opisthorchis viverrini correlates with elevated levels of interleukin-6. Hepatology. 2009 Oct; 50(4):1273-81. Su, T. H. and Kao, J. H. Improving clinical outcomes of chronic hepatitis B virus infection. Expert Rev Gastroenterol Hepatol. 2015 Feb; 9(2):141-54. Su, T. H., Kao, J. H. and Liu, C. J. Molecular mechanism and treatment of viral hepatitis-related liver fibrosis. Int J Mol Sci. 2014 15(6):10578-604. Tacke, F. and Weiskirchen, R. Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol. 2012 Feb; 6(1):67-80. Tai, W. T., Cheng, A. L., Shiau, C. W., Huang, H. P., Huang, J. W., Chen, P. J., et al. Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol. 2011 Nov; 55(5):1041-8. Tai, W. T., Shiau, C. W., Chen, P. J., Chu, P. Y., Huang, H. P., Liu, C. Y., et al. Discovery of novel src homology region 2 domain-containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Hepatology. 2014 Jan; 59(1):190-201. Taura, K., Miura, K., Iwaisako, K., Osterreicher, C. H., Kodama, Y., Penz-Osterreicher, M., et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology. 2010 Mar; 51(3):1027-36. Thabut, D., Routray, C., Lomberk, G., Shergill, U., Glaser, K., Huebert, R., et al. Complementary vascular and matrix regulatory pathways underlie the beneficial mechanism of action of sorafenib in liver fibrosis. Hepatology. 2011 Aug; 54(2):573-85. Tibaldi, E., Zonta, F., Bordin, L., Magrin, E., Gringeri, E., Cillo, U., et al. The tyrosine phosphatase SHP-1 inhibits proliferation of activated hepatic stellate cells by impairing PDGF receptor signaling. Biochim Biophys Acta. 2014 Feb; 1843(2):288-98. Trebicka, J., Hennenberg, M., Odenthal, M., Shir, K., Klein, S., Granzow, M., et al. Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells. J Hepatol. 2010 Oct; 53(4):702-12. Troeger, J. S., Mederacke, I., Gwak, G. Y., Dapito, D. H., Mu, X., Hsu, C. C., et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology. 2012 Oct; 143(4):1073-83 e22. Vogel, S., Piantedosi, R., Frank, J., Lalazar, A., Rockey, D. C., Friedman, S. L., et al. An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J Lipid Res. 2000 Jun; 41(6):882-93. Wang, H., Lafdil, F., Kong, X. and Gao, B. Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target. Int J Biol Sci. 2011 7(5):536-50. Wang, H., Lafdil, F., Wang, L., Park, O., Yin, S., Niu, J., et al. Hepatoprotective versus oncogenic functions of STAT3 in liver tumorigenesis. Am J Pathol. 2011 Aug; 179(2):714-24. Wang, J., Leclercq, I., Brymora, J. M., Xu, N., Ramezani-Moghadam, M., London, R. M., et al. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 2009 Aug; 137(2):713-23. Wang, S. H., Yeh, S. H., Shiau, C. W., Chen, K. F., Lin, W. H., Tsai, T. F., et al. Sorafenib Action in Hepatitis B Virus X-Activated Oncogenic Androgen Pathway in Liver through SHP-1. J Natl Cancer Inst. 2015 Oct; 107(10). Wang, T. H., Chen, T. C., Teng, X., Liang, K. H. and Yeh, C. T. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy. Sci Rep. 2015 5:12962. Wang, W., Liu, L., Song, X., Mo, Y., Komma, C., Bellamy, H. D., et al. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. J Cell Biochem. 2011 Aug; 112(8):2062-71. Wang, Y., Gao, J., Zhang, D., Zhang, J., Ma, J. and Jiang, H. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol. 2010 Jul; 53(1):132-44. Wick, G., Grundtman, C., Mayerl, C., Wimpissinger, T. F., Feichtinger, J., Zelger, B., et al. The immunology of fibrosis. Annu Rev Immunol. 2013 31:107-35. Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004 Oct 1; 64(19):7099-109. Worns, M. A., Weinmann, A., Pfingst, K., Schulte-Sasse, C., Messow, C. M., Schulze-Bergkamen, H., et al. Safety and efficacy of sorafenib in patients with advanced hepatocellular carcinoma in consideration of concomitant stage of liver cirrhosis. J Clin Gastroenterol. 2009 May-Jun; 43(5):489-95. Wu, C., Sun, M., Liu, L. and Zhou, G. W. The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene. 2003 Mar 13; 306:1-12. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008 Jan; 214(2):199-210. Wynn, T. A. and Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012 Jul; 18(7):1028-40. Xu, E., Schwab, M. and Marette, A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord. 2014 Mar; 15(1):79-97. Xu, L., Hui, A. Y., Albanis, E., Arthur, M. J., O'Byrne, S. M., Blaner, W. S., et al. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut. 2005 Jan; 54(1):142-51. Yang, J., Liu, L., He, D., Song, X., Liang, X., Zhao, Z. J., et al. Crystal structure of human protein-tyrosine phosphatase SHP-1. J Biol Chem. 2003 Feb 21; 278(8):6516-20. Yeh, C. L., Chen, B. R., Tseng, L. Y., Jao, P., Su, T. H. and Li, P. C. Shear-wave elasticity imaging of a liver fibrosis mouse model using high-frequency ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Jul; 62(7):1295-307. Zeisberg, M., Yang, C., Martino, M., Duncan, M. B., Rieder, F., Tanjore, H., et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem. 2007 Aug 10; 282(32):23337-47. Zhang, W., Wu, R., Zhang, F., Xu, Y., Liu, B., Yang, Y., et al. Thiazolidinediones improve hepatic fibrosis by activating the adenosine monophosphate-activated protein kinase (ampk) signaling pathway in rats with non-alcoholic steatohepatitis. Clin Exp Pharmacol Physiol. 2012 Nov 6. Zimmermann, T., Franke, H. and Dargel, R. Studies on lipid and lipoprotein metabolism in rat liver cirrhosis induced by different regimens of thioacetamide administration. Exp Pathol. 1986 30(2):109-17. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51660 | - |
dc.description.abstract | 慢性B型、C型肝炎以及後續產生的肝纖維化、肝硬化、肝癌及死亡一直是重要的健康議題。肝臟細胞長期發炎及壞死,是導致肝纖維化進展及肝臟癌變的主要原因。目前對於慢性B型、C型肝炎或是肝癌已經有抗病毒藥物或抗癌的標靶藥物可以使用,然而對於肝纖維化及肝硬化,目前並沒有任何有效的治療,因此仍是臨床上重要且未解決的問題。
肝臟星狀細胞(hepatic stellate cells)的增生及活化是引起肝臟纖維化的主要原因。若能了解星狀細胞活化,表現膠原蛋白基因的分子生物機轉,可以協助我們發展新的抗纖維化藥物。轉化生長因子(transforming growth factor-β)及血小板衍生性生長因子(platelet-derived growth factor)均可以促進肝臟星狀細胞的增生及活化。信號轉導與轉錄激活因子3(signal transducer and activator of transcription 3)是一個跟肝臟損傷、發炎及再生有關的轉錄因子。SHP-1去磷酸酶調控信號轉導與轉錄激活因子3,並可以直接影響血小板衍生性生長因子受體,這些因子均可能作為纖維化治療的重要標的。 Sorafenib目前是肝癌治療的標靶藥物,可以抑制包括Raf激酶(kinase)、酪氨酸激酶(tyrosine kinase)、血管內皮生長因子受體(vascular endothelial growth factor receptor)及血小板衍生性生長因子受體等。其藉由抑制肝臟星狀細胞的增殖及促其細胞凋亡而具有抗纖維化的能力,且可以增加基質金屬蛋白酶(matrix metalloproteinases)並減少基質金屬蛋白酶組織抑制劑(tissue inhibitor of matrix metalloproteinases),因而減少肝臟星狀細胞中膠原蛋白的合成。最近的研究發現sorafenib及其缺乏Raf激酶活性的結構衍生物(SC-1)均可以抑制信號轉導與轉錄激活因子3傳導路徑。而另一個sorafenib結構衍生物(SC-43)為SHP-1去磷酸酶促進劑亦可以抑制信號轉導與轉錄激活因子3傳導路徑。本研究的目的是探討SHP-1/信號轉導與轉錄激活因子3訊息傳導路徑在肝纖維化進展的角色,且研究sorafenib及其衍生物SC-1及SC-43之抗肝纖維化進展的能力及探討可能的分子機轉,並進一步探討SHP-1/信號轉導與轉錄激活因子3訊息傳導路徑在慢性B型肝炎伴隨肝纖維化患者的臨床運用。 我們使用硫代乙醯胺(thioacetamide)、四氯化碳(carbon tetrachloride)及總膽管結紮誘發肝纖維化的小鼠模式,以評估sorafenib、SC-1及SC-43之抗纖維化的能力。另外,我們利用大鼠的肝臟星狀細胞株(HSC-T6)、人類肝臟星狀細胞株(LX2)及小鼠的初代肝臟星狀細胞(primary hepatic stellate cells)探討sorafenib、SC-1及SC-43抗纖維化的能力:包含藥物對於細胞增生、細胞凋亡評估,利用西方墨點法檢測與信號轉導與轉錄激活因子3相關的蛋白質表現。另外,我們藉由細胞轉染實驗活化信號轉導與轉錄激活因子3及轉染SHP-1去磷酸酶及其結構突變型以活化SHP-1去磷酸酶活性,來探討這兩個因子對於肝臟星狀細胞的增生及sorafenib、SC-1及SC-43等藥物作用的機轉。最後利用在台大醫院接受肝切片的慢性B型肝炎患者中,我們隨機挑選了40位肝纖維化程度由低到高的患者,檢測他們肝組織中磷酸化-信號轉導與轉錄激活因子3、平滑肌肌動蛋白-α及SHP-1的表現,並進行分析這些因子與肝纖維化的相關性。 在第一部分的研究,我們發現經過硫代乙醯胺或總膽管結紮誘導產生肝纖維化後,給予小鼠sorafenib及SC-1治療後顯著減少肝纖維化。在細胞研究的結果指出sorafenib及SC-1可以降低星狀細胞的增生及增加細胞凋亡,且隨著劑量及用藥時間增加效果更顯著。Sorafenib及SC-1都可以抑制轉信號轉導與轉錄激活因子3訊息傳導路徑,過度表達信號轉導與轉錄激活因子3後,可以減少sorafenib及SC-1誘導的細胞凋亡。SHP-1去磷酸酶會下調磷酸化-信號轉導與轉錄激活因子3。使用SHP-1去磷酸酶抑制劑增加磷酸化-信號轉導與轉錄激活因子3,且逆轉sorafenib或SC-1誘導的肝臟星狀細胞的細胞凋亡。我們也發現sorafenib及SC-1會增強SHP-1去磷酸酶活性且抑制信號轉導與轉錄激活因子3。我們進一步發現慢性B型肝炎的患者中,肝纖維化越嚴重的患者肝組織中表達顯著較高的磷酸化-信號轉導與轉錄激活因子3蛋白。介白素-6(interleukin-6)是信號轉導與轉錄激活因子3的主要刺激信號,我們證明了介白素-6的刺激活化了肝臟星狀細胞中的信號轉導與轉錄激活因子3路徑,且發現慢性B型肝炎患者血漿介白素-6濃度與肝纖維化程度及肝臟中磷酸化-信號轉導與轉錄激活因子3蛋白的表現量有高度正相關。 在第二部分的研究中,我們進一步探討SHP-1去磷酸酶在肝纖維化進展的角色以及利用SC-43研究SHP-1去磷酸酶促進劑治療肝纖維化的療效。在細胞研究的結果中,我們發現SC-43可以促進肝臟星狀細胞的凋亡,且抑制轉化生長因子受體及血小板衍生性生長因子受體訊息傳導路徑。另外,SC-43可以透過與血小板衍生性生長因子受體無關的機轉抑制信號轉導與轉錄激活因子3。活化SHP-1去磷酸酶顯著抑制肝臟星狀細胞的增生,而抑制SHP-1活性則可以逆轉SC-43導致的細胞凋亡。細胞轉染SHP-1去磷酸酶結構突變型(N-SH2結構區)後,我們發現SC-43無法再度活化SHP-1去磷酸酶及抑制下游的信號轉導與轉錄激活因子3且降低SC-43導致的細胞凋亡,代表SC-43作用在SHP-1結構中的N-SH2結構區以提升其SHP-1去磷酸酶活性。我們在小鼠的四氯化碳或總膽管結紮誘導產生肝纖維化模型中,發現SC-43可以有效的預防及治療肝纖維化的進展,甚至可以增加小鼠的存活。最後,我們發現纖維化的肝臟組織中,SHP-1蛋白表現隨著肝纖維化的程度而增加,且主要分佈在纖維化的區域。這些研究結果證實了SHP-1促進劑的確可以治療肝纖維化,且特定作用在纖維化的肝組織中。 從我們的研究中,確認SHP-1/信號轉導與轉錄激活因子3是肝纖維化進展的重要訊息傳導途徑,SC-1及SC-43均可以有效藉由調控SHP-1/信號轉導與轉錄激活因子3而抑制肝纖維化。信號轉導與轉錄激活因子3可做為慢性B型肝炎患者纖維化的生物標記,而SHP-1去磷酸酶促進劑相關的抗纖維化療法可做為治療肝纖維化的新策略。 | zh_TW |
dc.description.abstract | Chronic hepatitis B and C and their subsequent liver fibrosis progression, cirrhosis, hepatocellular carcinoma (HCC) and death are important health challenges. Repeated liver inflammation and hepatocyte damage are major pathogenesis for liver fibrosis progression and hepatocellular carcinogenesis. Currently, there are several antiviral agents against viral hepatitis B and C, and there is also one molecular target agent against HCC. However, effective antifibrotic therapy is unavailable, which remains an important unmet clinical need.
The proliferation and activation of hepatic stellate cells (HSC) is the major contributor for hepatic fibrogenesis. A comprehensive understanding of the molecular mechanisms involved in HSC activation, perpetuation and collagen gene expression, will provide insight to develop antifibrotic therapy. The transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) are key mitogens for HSC proliferation and activation. The signal transducer and activator of transcription 3 (STAT3) is a transcription factor associated with liver injury, inflammation and regeneration. Src-homology protein tyrosine phosphatase-1 (SHP-1) regulates STAT3 and can directly interact with the PDGF receptor. These molecules are potential targets for antifibrotic therapy. Sorafenib is the only FDA-approved molecular target agent against advanced HCC by inhibition of the Raf kinase, the receptor tyrosine kinase, vascular endothelial growth factor receptor, and PDGF receptor. Sorafenib is found to have antifibrotic effect by reducing HSC proliferation and inducing apoptosis. In addition, sorafenib increases the ratio of matrix metalloproteinases to tissue inhibitor of matrix metalloproteinases and reduces collagen synthesis in HSC. Recent studies found sorafenib, and its derivative (SC-1), which lacks Raf kinase activity, all inhibit the STAT3 pathway. Another sorafenib derivative, SC-43, a SHP-1 agonist, can also inhibit the STAT3 pathway. The aim of this study is to investigate the role of SHP-1/STAT3 signaling pathway in fibrogenesis. The antifibrotic activity of sorafenib, SC-1 and SC-43 are examined and the molecular mechanisms are explored. Furthermore, the clinical implications of SHP-1/STAT3 in chronic hepatitis B (CHB) patients with liver fibrosis are studied. In this study, the antifibrotic activities of sorafenib, SC-1, and SC-43 are investigated in experimental murine liver fibrosis models by the induction of thioacetamide or carbon tetrachloride, or by bile duct ligation. We use the rat (HSC-T6) and human (LX2) HSC cell lines and mouse primary HSC for mechanistical investigation, including cell proliferation and apoptosis assays. The expression of STAT3 pathway related proteins are evaluated by western blot. The STAT3, or SHP-1 with its N-SH2 domain mutants are transfected to investigate their role for HSC proliferation and the mechanisms of sorafenib, SC-1 or SC-43. Among CHB patients who received liver biopsies at National Taiwan University Hospital, we randomly select 40 patients with various stage of liver fibrosis. Their hepatic phospho-STAT3 (p-STAT3), α-SMA, and SHP-1 expressions are correlated with the severity of fibrosis. In the first part of this study, after thioacetamide induction or bile duct ligation, sorafenib or SC-1 treatment significantly reduce hepatic fibrosis. In vitro studies show that both sorafenib and SC-1 have dose and time-dependent effects against cell viability and promote the apoptosis of HSCs. Both sorafenib and SC-1 downregulate p-STAT3 signaling pathway. The sorafenib- and SC-1-induced apoptosis are rescued in STAT3-overexpressing HSC cells. SHP-1 phosphatase is involved in downregulation of p-STAT3, and SHP-1 phosphatase inhibition can upregulate p-STAT3 and reverse sorafenib- or SC-1-induced HSC apoptosis. Both sorafenib and SC-1 may increase SHP-1 activity. CHB patients with advanced fibrosis have overexpressed p-STAT3. Finally, interleukin-6 (IL-6) is the main activating signal of STAT3 and we demonstrate IL-6 stimulation activates the STAT3 pathway in HSCs. We further find plasma IL-6 concentration significantly correlates with the severity of liver fibrosis and hepatic p-STAT3 level. In the second part of this study, we further investigate the role of SHP-1 phosphatase in fibrogenesis and the antifibrotic activity of SC-43, a SHP-1 agonist. In vitro studies show that SC-43 may promote the apoptosis of HSC and inhibit the TGF-β and PDGF receptor pathways. In addition, the inhibition of STAT3 is independent to the PDGF receptor inhibition. The enhanced SHP-1 activity significantly inhibits the proliferation of HSC; while knockdown SHP-1 may rescue the SC-43-induced apoptosis. After transfection of the N-SH2 domain mutants of SHP-1, the SC-43 cannot further increase SHP-1 activity or downregulate p-STAT3, and the pro-apoptotic effect of SC-43 is significantly abolished, indicating that SC-43 interacts with the N-SH2 domain of SHP-1 to enhance its SHP-1 phosphatase activity. In the carbon tetrachloride or the bile duct ligation fibrotic murine models, SC-43 effectively prevents and regresses the fibrogenesis, and promotes the mouse survival. Finally, the SHP-1 is overexpressed in the area of significant fibrosis, indicating that SHP-1 agonist may ameliorate fibrosis with tissue specificity. According to our study, we confirm that SHP-1/STAT3 is an important signaling pathway in fibrogenesis. Both SC-1 and SC-43 can regulate the SHP-1/STAT3 pathway to inhibit liver fibrogenesis effectively. STAT3 may be a fibrotic biomarker in CHB patients with active fibrogenesis, and SHP-1 phosphatase-directed antifibrotic therapy may represent a novel strategy for antifibrotic drug discovery. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:43:21Z (GMT). No. of bitstreams: 1 ntu-104-Q97421004-1.pdf: 3675493 bytes, checksum: fa289f9d3f07b1bdcac25cbf43d3a250 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 目 錄
論文口試委員審定書 i 誌謝 ii 中文摘要 iii English Abstract vi Index of Figures xii Index of Tables xiii Introduction 1 1. The mechanism of liver fibrogenesis 2 2. Inflammation: the first step of fibrogenesis 4 3. Fibrosis regression 6 4. The introduction of sorafenib in the role of fibrogenesis 8 5. Sorafenib and its derivatives (SC-1, SC-43) against HCC through STAT3 pathway inhibition 9 6. The review of STAT3 pathway in fibrogenesis 12 7. The review of SHP-1 in fibrogenesis 12 8. The review of experimental fibrotic models 14 9. Importance of current study 17 10. Hypothesis 17 11. Study goal and specific aims 18 Materials and Methods 19 1. Antibodies and reagents 19 2. Liver fibrosis model 19 3. Pathology evaluation 22 4. Cell biology investigation 23 5. Patient enrollment 26 6. Statistical Analysis 27 Results 28 1. Sorafenib and its derivative SC-1 exhibit antifibrotic effects through STAT3 inhibition 28 1-1 The antifibrotic effects of sorafenib and SC-1 28 1-2 The antifibrotic mechanisms of sorafenib and SC-1 30 1-3 The role of STAT3 in the apoptosis of hepatic stellate cells 31 1-4 P-STAT3 overexpression in chronic hepatitis B patients with advanced liver fibrosis 32 2. The tyrosine phosphatase SHP-1 promotes apoptosis of hepatic stellate cells and reduces liver fibrosis 34 2-1 SC-43 treatment induces apoptosis of hepatic stellate cells. 34 2-2 SC-43 induces the apoptosis of hepatic stellate cells by inhibition of STAT3 pathway 34 2-3 The SHP-1 plays an important role in SC-43 induced STAT3 inhibition and apoptosis 35 2-4 The association of SHP-1 mutants and proliferation of HSCs. 36 2-5 SC-43 activates SHP-1 by interaction with its inhibitory N-SH2 domain 37 2-6 The antifibrotic activity of SC-43 in experimental hepatic fibrosis mouse models 38 2-7 SHP-1 is associated with liver fibrosis 40 Discussion 42 1. Sorafenib and its derivative SC-1 exhibit antifibrotic effects through STAT3 inhibition 42 2. The tyrosine phosphatase SHP-1 promotes the apoptosis of hepatic stellate cells and reduces liver fibrosis 47 Perspectives 54 1. Our future work 54 2. Problems for the translation between bench work and bedside 55 3. The development of antifibrotic therapies 57 4. The discovery of antifibrotic therapy – lesson from idiopathic pulmonary fibrosis 58 5. Ongoing clinical trials of molecular target agents for antifibrotic therapy 60 6. Future directions 61 References 64 Figures and Tables 76 縮寫表 111 附錄 113 1. 修業期間所發表之相關論文 113 2. 修業期間所發表之其他論文 114 | |
dc.language.iso | en | |
dc.title | 分子標靶治療藥物在肝纖維化進展之療效 | zh_TW |
dc.title | The effects of molecular target agents on hepatic fibrogenesis | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),鄭永銘(Yung-Ming Jeng),葉秀慧(Shiou-Hwei Yeh),蕭崇瑋(Chung-Wai Shiau),林漢傑(Han-Chieh Lin) | |
dc.subject.keyword | 肝纖維化,星狀細胞,信號轉導與轉錄激活因子3,SHP-1,蕾莎瓦,SC-1,SC-43, | zh_TW |
dc.subject.keyword | liver fibrosis,stellate cell,STAT3,SHP-1,sorafenib,SC-1,SC-43, | en |
dc.relation.page | 119 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-12-22 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。