Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51652
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳媺玫
dc.contributor.authorMen-Chieng Linen
dc.contributor.author林孟謙zh_TW
dc.date.accessioned2021-06-15T13:42:58Z-
dc.date.available2016-02-15
dc.date.copyright2016-02-15
dc.date.issued2015
dc.date.submitted2015-12-24
dc.identifier.citation黃佩瑜(2010)嘉義和雲林縣內養殖魚種與分離鏈球菌間之相關性研究及對吳郭魚之毒性分析。國立嘉義大學水生生物科學系暨研究所碩士論文。
洪崇順(2006)台灣鯛鏈狀球菌之鑑定及分子分型研究。國立嘉義大學獸醫學系碩士論文。
陳沛君(2012)比較吳郭魚來源分離之莢膜型及不含莢膜型無乳鏈球菌之病原性。國立台灣大學獸醫專業學院獸醫學研究所碩士論文。
Abuseliana A, Daud H, Abdul -Aziz S, Khairani -Bejo S, Alsaid M (2010) Streptococcus agalactiae the etiological agent of mass mortality in farmed red tilapia (Oreochromis sp.) J Anim Vet Adv 9, 2640-2646.
Acharya T (2013) Blood Agar: Composition, Preparation, Uses and Types of Hemolysis. http://microbeonline.com/blood-agar-composition-preparation-uses-and-types-of-hemolysis/
Adler A, Block C, Engelstein D, Hochner-Celnikcier D, Drai-Hassid R & Moses AE (2008) Culture-based methods for detection and identification of Streptococcus agalactiae in pregnant women–what are we missing? Eur J Clin Microbiol Infect Dis 27: 241–243.
Aparicio JF, Mendes MV, Anton N, Recio E & Martın JF (2004) Polyene macrolide antibiotic biosynthesis. Curr Med Chem 11: 1645–1656.
Ayers SH & Rupp P (1922) Differentiation of hemolytic streptococci from human and bovine sources by the hydrolysis of sodium hippurate. J Infect Dis 30: 388–399.
Bartoli A & Marconi P (2011) Group B streptococcus (GBS) disrupts by calpain activation the actin and microtubule cytoskeleton of macrophages. Cell Microbiol 13: 859–884.
Beckmann C, Waggoner JD, Harris TO, et al (2002) Identification of novel adhesins
from group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding. Infect Immun 70:2869–2876.
Bland ND, Pinney JW, Thomas JE, Turner AJ, Isaac RE. (2008) Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evol Biol. 8:16.
Bouchier C, Barbe V & Glaser P (2013) Reductive evolution in Streptococcus agalactiae and the emergence of a host adapted lineage. BMC Genomics 14: 252.
Brglez I (1983) Pigment production in human and bovine Streptococcus agalactiae strains. Zentralbl Bakteriol Mikrobiol Hyg B 177: 533–538.
Brimil N, Barthell E, Heindrichsd U, Kuhn M, Lutticken R & Spellerberg B (2006) Epidemiology of Streptococcus agalactiae colonization in Germany. Int J Med Microbiol 296: 39–44.
Brown J.H. (1919) The use of blood agar for the study of Streptococci. Rockefeller Inst Med Res, 9.
Burnside K, Lembo A, Harrell MI et al. (2011) Serine/Threonine phosphatase Stp1 mediates post-transcriptional regulation of hemolysin, autolysis, and virulence of group B streptococcus. J Biol Chem 286: 44197–44210.
Busby S, Ebright RH. (1999). Transcription activation by catabolite activator protein (CAP). J Mol Biol 293: 199–213
Butler YX, Abhayawardhane Y, Stewart GC. (1993) Amplification of the Bacillus subtilis maf gene results in arrested septum formation. J Bacteriol. 175:3139-45.
Cagno CK, Pettit JM, Weiss BD.( 2012) Prevention of perinatal group B streptococcal disease: updated CDC guideline. Am Fam Physician. 86:59-65.
Chandler M, Mahillon J. (2002) Insertion Sequences Revisited. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. 305-366.

Cumley NJ, Smith LM, Anthony M & May RC (2012) The CovS/CovR acid response regulator is required for Intracellular survival of group B Streptococcus in
macrophages. Infect Immun 80: 1650–1661.
Dal MC & Monteil H (1983) Hemolysin produced by group B Streptococcus agalactiae. FEMS Microbiol Lett 6: 89–94.
Delannoy CMJ, Zadoks RN, Lainson FA, Ferguson HW, Crumlish M, Turnbull JF & Fontaine MC (2012) Draft genome sequence of a nonhemolytic fish-pathogenic Streptococcus agalactiae strain. J Bacteriol 194: 6341–6342.
Delannoy CM, Crumlish M, Fontaine MC, Pollock J, Foster G, Dagleish MP, Turnbull JF & Zadoks RN (2013) Human Streptococcus agalactiae strains in aquatic mammals and fish. BMC Microbiol 13: 41.
Domeenech A, Derenaaandez Garayzabal J, Pacual C, Garcia J, Cutuli M, Moreno M, Collin M, Dominguez L(1996) Streptococcosis in cultured turbot, Scopthalnus
maximus (L.), associated with Streptococcus parauberis. J Fish Dis, 19, 33-38.
Dobrindt U, Hochhut B, Hentschel U & Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2: 414–424.
Doran KS, Chang JC, Benoit VM, Eckmann L & Nizet V(2002) Group B streptococcal beta-hemolysin/cytolysin promotes invasion of human lung epithelial cells and the release of interleukin-8. J Infect Dis 185: 196–203.
Doran KS, Liu GY, Nizet V( 2003) Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest.;112:736–44.
Duremdez R, Al-Marzouk A, Qasem JA, Al-Harbi A, Gharabally H(2004) Isolation of Streptococcus agalactiae from cultured silver pomfret, Pampus argenteus (Euphrasen), in Kuwait. J Fish Dis. 27, 307–310.
Edwards MS & Nizet V (2011) Group B streptococcal infections. Infectious Diseases of the Fetus and Newborn Infant. 7th edn. (Remington JS, Klein JO, Wilson CB, Nizet V & Maldonado YA, eds), pp. 419–469. Elsevier, Amsterdam.
Eldar A, Bejerano Y, Bercovier H (1994) Streptococcus shiloi and Streptococcus difficile: two new streptococcal species causing a meningoencephalitis in fish. Curr Microbiol 28:139–143.
Eldar A, Bejerano Y, Livoff A, Horovitcz A, Bercovier H (1995) Experimental streptococcal meningo-encephalitis in cultured fish. Vet Microbiol 43:33–40.
Eldar A, Ghittino C (1999) Lactococcus garvieae and Streptococcus iniae infections in rainbow trout Oncorhynchus mykiss: similar, but different diseases. Dis Aquat Organ 36:227–231.
Evans JJ, Wiedenmayer AA, Klesius PH, Shoemaker CA (2004) Survival of Streptococcus agalactiae from frozen fish following natural and experimental infections. Aquaculture, 233, 15 -21.
Evans JJ, Bohnsack JF, Klesius PH, Whiting AA, Garcia JC, Shoemaker CA & Takahashi S (2008) Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human neonatal infections in Japan. J Med Microbiol 57: 1369–1376.
Ewards MS & Baker CJ (2010) Streptococcus agalactiae (Group B Streptococcus). Mandell, Douglas and Bennett’s. Principles & Practice of Infectious Diseases, Vol. 2. 7th edn. (Mandell GL, Bennett JE & Dolin R, eds), pp. 2655–2666. Elsevier, Amsterdam.
Fallon RJ (1974) The rapid recognition of Lancefield group B haemolytic streptococci. J Clin Pathol 27: 902–905.
Farley MM (2001) Group B streptococcal disease in nonpregnant adults. Clin Infect Dis 33: 556–561.
Ferrieri P (1982) Characterization of a hemolysin isolated from group B streptococci. Basic Concepts of Streptococci and Streptococcal Diseases. (Holm SE & Christebnsen P, eds), pp.142–143. Reedbooks, Chertsey.
Fettucciari K, Quotadano F, Noce R, Palumbo C, Modesti A, Rosati E, Mannucci R, Liu GY & Nizet V (2006) The group B streptococcal b-hemolysin/cytolysin. The Comprehensive Sourcebook of Bacterial Protein Toxins, 3rd edn. (Alouf JE & Popoff NR, eds), pp. 9737–9745. Elsevier, Oxford.
Firon A, Tazi A, Da Cunha V, Brinster S, Sauvage E, Dramsi S, Golenbock DT, Glaser P, Poyart C & Trieu-Cuot P (2013) The Abi-domain protein Abx1 interacts with the
CovS histidine kinase to control virulence gene expression in group B Streptococcus. PLoS Pathog 9: e1003179.
Flechard M & Gilot P (2014) Physiological impact of transposable elements encoding DDE transposases in the environmental adaptation of Streptococcus agalactiae. Microbiol 160: 1298–1315.
Fry RM (1938) Fatal infections by hemolytic streptococcus group B. Lancet I: 199–201.
Garcia JC, Klesius PH, Evans JJ & Shoemaker CA (2008) Non-infectivity of cattle Streptococcus agalactiae in Nile tilapia, Oreochromis niloticus and channel catfish, Ictalurus punctatus. Aquac 281: 151–154.
Goel AK, Rajagopal L, Nagesh N & Sonti RV (2002) Genetic locus encoding functions involved in biosynthesis and outer membrane localization of xanthomonadin in Xanthomonas oryzae pv. oryzae. J Bacteriol 184: 3539–3548.
Godoy DT, Carvalho-Castro GA, Leal CAG, Pereira UP, Leite RC and Figueiredo HCP (2013) Genetic diversity and new genotyping scheme for fish pathogenic Streptococcus agalactiae. Appl Microbiol 57: 476—483.
Gottschalk B, Broker G, Kuhn M, Aymanns S, Gleich-Theurer U & Spellerberg B (2006) Transport of multidrug resistance substrates by the Streptococcus agalactiae hemolysin transporter. J Bacteriol 188: 5984–5992.
Hamoen LW (2011) Cell division blockage: but this time by a surprisingly conserved protein. Mol Microbiol 81: 1-3.
Haro M & Andreu A (1999) Use of Granada medium to detect group B streptococcal
colonization in pregnant women. J Clin Microbiol 37: 2674–2677.
Hensler ME, Liu GY, Sobczak S, Benirschke K, Nizet V, Heldt GP (2005) Virulence role of group B Streptococcus beta-hemolysin/cytolysin in a neonatal rabbit model of early-onset pulmonary infection. J Infect Dis 191:1287–1291.
Herbert MA, Beveridge CJ, Saunders NJ (2004) Bacterial virulence factors in neonatal sepsis: group B streptococcus. Curr Opin Infect Dis 17:225-229.
Hernandez E, Figueroa J and Iregui C (2009) Streptococcosis on a red tilapia, Oreochromis sp., farm: A case study. J Fish Dis 32: 247-252.
Hood M, Janney A & Dameron G (1961) Beta hemolytic streptococcus group B associated with problems of the perinatal period. Am J Obstet Gynecol 82: 809–818.
Imperi M, Pataracchia M, Alfarone G, Baldassarri L, Orefici G, Creti R (2010) A multiplex PCR assay for the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae. J Microbiol Methods 80: 212-214.
Inocente Filho C, Muller EE, Pretto-Giordano LG, Bracarense APFRL (2009) Histological findings of experimental Streptococcus agalactiae infection in Nile tilapias (Oreochromis niloticus). Braz J Vet Pathol 2: 12-15.
Islam AKMS (1977) Rapid recognition of group B streptococci. Lancet I: 256–257.
Jiang SM, Cieslewicz MJ, Kasper DL & Wessels MR (2005) Regulation of virulence by a two-component system in group B streptococcus. J Bacteriol 187: 1105–1113.
Jiang SM, Ishmael N, Dunning Hotopp J et al. (2008) Variation in the group B Streptococcus CsrRS regulation and effects on pathogenicity. J Bacteriol 190: 1956–1965.
Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376-393.
Kayansamruaj P, Pirarat N, Katagiri T, Hirono I and Rodkhum C (2014a) Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia(Oreochromis sp.) farms in Thailand. J Vet Diagn Invest 26: 488–495.
Kayansamruaj P, Pirarat N, Hirono I, Rodkhum C (2014b) Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Vet Microbiol 172 :265–271.
Keefe GP (1997) Streptococcus agalactiae mastitis: a review. Can Vet J 38: 429–437.
Kong F, Ma L, Gilbert GL (2005) Simultaneous detection and serotype identification of Streptococcus agalactiae using multiplex PCR and reverse line blot hybridization. J Med Microbiol 54: 1133–1138.
Kong F, Lambertsen LM, Slotved HC, Ko D, Wang H, Gilbert GL (2008) Use of phenotypic and molecular serotype identification methods to characterize
previously nonserotypeable group B streptococci. J Clin Microbiol 46: 2745–2750.
Kornblatt AN, Adams RL, Barthold SW & Cameron GA (1983) Canine neonatal deaths associated with group B streptococcal septicemia. J Am Vet Med Assoc 183: 700–701.
Koskiniemi S, Sellin M, Norgren M (1998) Identification of two genes, cpsX and cpsY, with putative regulatory function on capsule expression in group B streptococci. FEMS Immunol Med Microbiol 21:159–168.
L?ammler C, Schaufuss P & Blobel H (1985) Pigment production by streptococci of serological group B. IRCS Med Sci 13: 396.
Lamy MC, Zouine M, Fert J et al. (2004) CovS/CovR of group B Streptococcus: a two-component global regulatory system involved in virulence. Mol Microbiol 54: 1250–1268.
Lancefield RC (1933) A serological differentiation of humans and others groups of hemolytic streptococci. J Exp Med 57: 571–595.
Lancefield RC (1934) A Serological differentiation of specific types of bovine hemolytic Strpetococci (Group B). J Exp Med 59: 441-458.
Lancefield R & Hare R (1935) The serological differentiation of pathogenic and non-pathogenic strains of hemolytic streptococci from parturient women. J Exp Med 61: 335–349.
Lawson CL, Swigon D, Murakami KS, Darst SA, Berman HM, Ebright RH (2004) Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 14: 10–20.
Lembo A, Gurney MA, Burnside K et al. (2010) Regulation of CovR expression in group B streptococcus impacts blood-brain barrier penetration. Mol Microbiol 77: 431–443.
Li S, Jedrzejas MJ (2001) Hyaluronan binding and degradation by Streptococcus
agalactiae hyaluronate lyase. J Biol Chem 276: 41407–41416.
Lin WJ, Walthers D, Connelly JE, Burnside K, Jewell KA, Kenney LJ & Rajagopal L (2009) Threonine phosphorylation prevents promoter DNA binding of the Group B
Streptococcus response regulator CovR. Mol Microbiol 71: 1477–1495.
Liu G, Zhang W & Lu C (2012) Complete genome sequence of Streptococcus agalactiae GD201008-001, isolated in China from tilapia with meningoencephalitis. J Bacteriol 194: 6653.
Liu G, Zhang W & Lu C (2013) Comparative genomics analysis of Streptococcus agalactiae reveals that isolates from cultured tilapia in China are closely related to the human strain A909. BMC Genomics 14: 775.
Liu GY, Doran KS, Lawrence T, Turkson N, Puliti M, Tissi L et al. (2004) Sword and shield: linked group B streptococcal beta-hemolysin/cytolysin and carotenoid pigment function to subvert host phagocyte defense. Proc Natl Acad Sci U S A 101:14491–14496.
Liu GY & Nizet V (2004) Extracellular virulence factors of group B streptococci. Front Biosci 9: 1794–1802.
Lupo A, Ruppen C, Hemphill A, Spellerberg B, Sendi P (2014) Phenotypic and molecular characterization of hyperpigmented groupB Streptococci. Int J Med Microbiol 304: 717-724.
Mahillon J and Chandler M (1998) Insertion sequences. Microbiol Mol J Exp Med. 78, 127–133. Biol Rev 62: 725–774.
Manning SD, Lacher DW, Davies HD, Foxman B, Whittam TS (2005) DNA
polymorphism and molecular subtyping of the capsular gene cluster of group B
streptococcus. J Clin Microbiol 43: 6113–6116.
Marchlewicz DA & Duncan JL (1980) Properties of a hemolysin produced by group B streptococci. Infect Immun 30: 805–813.
Marchlewicz DA & Duncan JL (1981) Lysis of erythrocites by a hemolysin produced by group B streptococcus sp. Infect Immun 34: 787–794.
Merrit K & Jacobs NJ (1976) Improved medium for detecting pigment production by group B streptococci. J Clin Microbiol 4: 379–380.
Merrit K, Treadwell Tl & Jacobs JN (1976) Rapid recognition of group B streptococci by pigment production and counterimmunoelectrophoresis. J Clin Microbiol 3: 287–290.
Merritt K & Jacobs NJ (1978) Characterization and incidence of pigment production by human clinical group B streptococci. J Clin Microbiol 8: 105–107.
Messier S, Daminet S & Lemarchand T (1995) Streptococcus agalactiae endocarditis with embolization in a dog. Can Vet J 36: 73–74.
Mhalu FS (1976) Infection with Streptococcus agalactiae in a London hospital. J Clin Pathol 29: 309–312.
Mian GF, Godoy DT, Leal CA, Yuhara TY, Costa GM, Figueiredo HC (2009) Aspects of the natural history and virulence of Streptococcus agalactiae infection in Nile tilapia. Vet Microbiol 136: 180–183.
Musa N, Wei LS, Musa N, Hamdan RH, Leong LK, Wee W, Amal MN, Kutty BM, Abdullah SZ (2009) Short communication: Streptococcosis in red hybrid tilapia (Oreochromis niloticus) commercial farms in Malaysia. Aquacult Res 40: 630-632.
Nizet V, Gibson RL & Rubens CE (1997) The role of group B streptococci beta-hemolysin expression in newborn lung injury. Adv Exp Med Biol 418: 627–630.
Nizet V (2002) Streptococcal b-hemolysins: genetics and role in disease pathogenesis. Trends Microbiol 10: 575–580.
Nizet W, Gibson RL, Chi EM, Framson PE, Hulse M & Ribens CE (1996) Group B streptococcal beta-hemolysin expression is associated with injury of lung epithelial cells. Infect Inmun 64: 3818–3826.
Noble MA, Bent JM & West AB (1983) Detection and identification of group B streptococci by use of pigment production. J Clin Pathol 36: 350–352.
Paradas M, Jurado R, Haidour A, Rodrıguez-Granger J, Sampedro Martınez A, Rosa-Fraile M, Robles R, Justicia J & Cuerva JM (2012) Clarifying the structure of granadaene:total synthesis of related analogue 2-granadaene and confirmation of its absolute stereochemistry. Bioorg Med Chem 20: 6655–6661.
Parkinson JS and Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26: 71–112.
Patras KA, Wang NY, Fletcher EM, Cavaco CK, Jimenez A, Garg M, Fierer J, Sheen TR, Rajagopal L & Doran KS (2013) Group B Streptococcus CovR regulation modulates host immune signalling pathways to promote vaginal colonization. Cell Microbiol 15: 1154–1167.
Pereira UP, Santos AR, Aburjaile FF et al. (2013) Complete genome sequence of Streptococcus agalactiae strain SA20-06, a fish pathogen associated to meningoencephalitis outbreaks. Stand Genomic Sci 8: 188–197.
Platt MW (1995) In vivo hemolytic activity of group B streptococcus is dependent on erythrocyte-bacteria contact and independent of a carrier molecule. Curr Microbiol 31: 5–9.
Plumb JA, Schachte JH, Gaines JL, Peltier W and Carroll B (1974) Streptococcus sp. from marine fishes along the Alabama and northwest Florida coast of the Gulf of Mexico. Trans Am Fish Soc 103:358–361.
Plummer H (1941) A serological and biochemical study of haemolytic streptococci. J Inmunol 42: 91–107.
Poyart C, Pellegrini E, Marceau M, et al. (2003) Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol 49: 1615–1625.
Poyart C, Tazi A, Réglier-Poupet H, Billoët A, Tavares N, Raymond J, Trieu-Cuot P (2007) Multiplex PCR assay for rapid and accurate capsular typing of group B streptococci. J Clin Microbiol 45: 1985–1988.
Pritzlaff CA, Chang JC, Kuo SP, Tamura GS, Rubens CE & Nizet V (2001) Genetic basis for the beta-haemolytic/cytolytic activity of group B streptococcus. Mol Microbiol 39: 236–248.
Puliti M, Nizet V, von Hunolstein C, Bistoni F, Mosci P, Orefi ci G et al. (2000) Severity of group B streptococcal arthritis is correlated with beta-hemolysin expression. J Infect Dis 182: 824–832.
Rajagopal L, Clancy C & Rubens CE (2003) A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem 278: 14429–14441.
Rajagopal L (2009) Understanding the regulation of group B streptococcal virulence factors. Future Microbiol 4: 201–221.
Ramaswamy SV, Ferrieri P, Madoff LC, Flores AE, Kumar N, Tettelin H, Paoletti LC (2006) Identification of novel cps locus polymorphisms in nontypable group B Streptococcus. J Med Microbiol 55: 775–783.
Rasheed V and Plumb J (1984) Pathogenicity of a non-haemolytic group B Streptococcus sp. in Gulf Killifish (Fundulus grandis Baird & Girard). Aquac 37: 97–105.
Rattanachaikunsopon P and Phumkhachorn P (2009) Prophylactic effect of Andrographis paniculata extracts against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). J Biosci Bioeng 107: 579-582.
Reardon EP, Noble MA, Luther ER, Wort AJ, Bent J & Swift M (1984) Evaluation of a rapid method for the detection of vaginal group B streptococci in women in labor. Am J Obstet Gynecol 148: 575–578.
Rosa-Fraile M, Dramsi S, Spellerberg B. Group B streptococcal hemolysin and pigment, a tale of twins. FEMS Microbiol Rev. 2014 Sep; 38(5): 932–946.
Rodriguez-Granger J, Alvar-Gonzalez JC, Berardi A et al.(2012) Prevention of group B streptococcal neonatal disease revisited. The DEVANI European project. Eur J Clin
Microbiol Infect Dis 31: 2097–2104.
Rosa-Fraile M, Rodrıguez-Granger J, Haidour-Benamin A, Cuerva JM & Sampedro A (2006) Granadaene: proposed structure of the group B streptococcus polyenic pigment. Appl Environ Microbiol 72: 6367–6370.
Rosa-Fraile M, Rodriguez-Granger J, Cueto-Lopez M, Sampedro A, Biel Gaye E,
Spellerberg B & Brandt C (2011) Streptococcus. Manual of Clinical Microbiology, Vol. 1, 10th edn (Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML & Warnock DW, eds), pp. 331–334. ASM Press, Washington, DC.
Rosinski-Chupin I, Sauvage E, Mairey B, Mangenot S, Ma L, Da Cunha V, Rusniok C, Wang B, Jian J, Lu Y, Cai S, Huang Y, Tang J & Wub Z (2013a) Complete genome sequence of Streptococcus agalactiae ZQ0910, a pathogen causing meningoencephalitis in the GIFT strain of Nile tilapia (Oreochromis niloticus). J Bacteriol 194: 5132–5133.
Rosinski-Chupin I, Sauvage E, Mairey B, Mangenot S et al. (2013b) Reductive evolution in Streptococcus agalactiae and the emergence of a host adapted lineage. BMC Genomics 14: 252.
Rubens CE, Heggen LM & Kuypers JM (1989) IS861, a group B streptococcal insertion sequence related to IS150 and IS3 of Escherichia coli. J Bacteriol 171: 5531–5535.
Samen UM, Eikmanns BJ & Reinscheid DJ (2006) The transcriptional regulator RovS controls the attachment of Streptococcus agalactiae to human epithelial cells and the
expression of virulence genes. Infect Immun 74: 5625–5635.
Schmidt H & Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17: 14–56.
Schwartz E, Kröger M, Rak B (1988) IS150: distribution, nucleotide sequence and phylogenetic relationships of a new E. coli insertion element. Nucleic Acids Res 16: 6789-6802.
Sendi P, Johansson L, Norrby-Teglund A (2008) Invasive group B Streptococcal disease in non-pregnant adults: a review with emphasis on skin and soft-tissue infections. Infect 36:100-111.
Sendi P, Johansson L, Dahesh S, Van-Sorge NM, Darenberg J, Norgren M, Sjölin J,
Nizet V and Norrby-Teglund A (2009) Bacterial phenotype variants in group B streptococcal toxic shock syndrome. Emerg Infect Dis 15: 223-232.
Sherman JM (1937) The streptococci. Bacteriol Rev 1: 3–97.
Shoemaker CA, Klesius PH, Evans JJ (2001) Prevalence of Streptococcus iniae in tilapia, hybrid striped bass, and channel catfish on commercial fish farms in the United States. Am J Vet Res 62:174–177.
Shuster KA, Hish GA, Selles LA, Chowdhury MA, Wiggins RC, Dysko RC & Bergin IL (2013) Naturally occurring disseminated group B Streptococcus Infections in postnatal rats. Comp Med 63: 55–61.
Sigge A, Schmid M, Mauerer S & Spellerberg B (2008) Heterogeneity of hemolysin expression during neonatal Streptococcus agalactiae sepsis. J Clin Microbiol 46: 807–809.
Slotved HC, Sauer S, Konradsen HB (2002) False-negative results in typing of group B streptococci by the standard Lancefield antigen extraction method. J Clin
Microbiol 40: 1882–1883.
Slotved HC, Kong F, Lambertsen L, Sauer S, Gilbert GL (2007) Serotype IX, a
proposed new Streptococcus agalactiae serotype. J Clin Microbiol 45: 2929–2936.
Soto E, Wang R, Wiles J, Baumgartner W, Green C, Plumb J & Hawke J (2015) Characterization of Isolates of Streptococcus agalactiae from Diseased Farmed and Wild Marine Fish from the U.S. Gulf Coast, Latin America, and Thailand. J Aquat Anim Health 27: 123-134.
Spellerberg B, Pohl B, Haase G, Martin S, Weber-Heynemann J & L?utticken R (1999) Identification of genetic determinants for the hemolytic activity of Streptococcus agalactiae by ISS1 transposition. J Bacteriol 181: 3212–3219.
Spellerberg B, Martin S, Brandt C & Lutticken R (2000a) The cyl genes of Streptococcus agalactiae are involved in the production of pigment. FEMS Microbiol Lett 188: 125–128.
Spellerberg B, Martin S, Franken C, Berner R & L?utticken R (2000b) Identification of a novel insertion sequence element in Streptococcus agalactiae. Gene 241: 51–56.
Stock AM, Robinson VL & Goudreaux PN (2000) Two-component signal transduction. Annu Rev Biochem 69: 183–215.
Suanyuk N, Kong F, Ko D, Gilbert GL, Supamattaya K (2008) Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand –relationship to human isolates? Aquac 284: 35–40.
Tapsall JW (1987) Relationship between pigment production and hemolysin formation by Lancefield group B streptococci. J Med Microbiol 24: 83–87.
Tapsall JW & Phillips EA (1991) The hemolytic and cytolytic activity of group B streptococcal hemolysin and its possible role in early onset group B streptococcal disease. Pathol 23: 139–144.
Tettelin H, Masignani V, Cieslewicz MJ et al. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. P Natl Acad Sci USA 102: 13950–13955.
Todd EW (1938) The differentiation of two distinct serologic varieties of streptolysin, streptolysin O and streptolysin S. J Pathol Bacteriol 47: 423–445.
Tsaihong JC & Wennerstrom DE (1983) Effect of carrier molecules on production and properties of extracellular hemolysin produced by Streptococcus agalactiae. Curr
Microbiol 9: 333–338
Verani JR, McGee L & Schrag SJ (2010) Prevention of perinatal group B streptococcal disease revised guidelines from CDC. MMWR Recomm Rep 59: 1–32.
Weickert MJ, Adhya S (1993). The galactose regulon of Escherichia coli. Mol Microbiol 10 : 245–251.
Wennerstrom DE, Tsaihong JC & Crawford JT (1985) Evaluation of the role of hemolysin and pigment in pathogenesis of early-onset group B streptococcal infection. Recent Advances in Streptococci and Streptococcal Diseases (Kimura Y, Kotami S & Shiokawa Y, eds), pp. 155–156. Redbooks, Bracknell.
Whidbey C, Harrell MI, Burnside K, Ngo L, Becraft AK, Iyer LM, Aravind L, Hitti J,
Schweizer E (1989) Biosynthesis of fatty acids and related compounds. Microbial Lipids, Vol. 2. (Ratledge C & Wilkinson SG, eds), pp. 3–50. Academic Press. London.
Whidbey C, Harrell MI, Burnside K, et al. (2013) A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta. J Exp Med 210: 1265-1281.
Yanong RPE and Francis-Floyd R (2010) Streptococcal Infections of Fish. IFSA, University of Florida, Circular 57.
Yao K, Poulsen K, Maione D, et al (2013) Capsular Gene Typing of Streptococcus agalactiae Compared to Serotyping by Latex Agglutination. J Clin Microbiol 51: 503-507.
Zubair S, de Villiers EP, Fuxelius HH, et al (2013) Genome Sequence of Streptococcus agalactiae Strain 09mas018883, Isolated from a Swedish Cow. Genome Announc 1: e00456-13.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51652-
dc.description.abstract無乳鏈球菌(Streptococcus agalactiae)為革蘭氏陽性球菌,又稱為B群鏈球菌(Group B Streptococcus,GBS),可感染吳郭魚、虹鱒、烏魚、雜交條紋鱸等魚類,於養殖期間造成嚴重的經濟損失。本研究於自98年至103年間,於養殖魚(吳郭魚、鱸魚等)分離之無乳鏈球菌中,鑑別出三種不同溶血型:α、β以及γ溶血型菌株。無乳鏈球菌的溶血性與其毒力相關,溶血素(hemolysin)由cyl操縱子(cyl operon)基因組成,而cyl操縱子主要由二元調控系統(two-component regulatory system,TCS)基因covS/R(control of virulence,sensor and regulator )負責調控,covS/R亦可調控莢膜化(encapsulation)的程度。本研究之目的,在於分析各溶血型菌株表現性狀之差異並探討其溶血素基因序列之差異。在莢膜化及生長速率上,α及β溶血型菌株並無明顯差異,皆於18小時進入高原期(stationary phase);在indian ink染色法觀察下,γ溶血型菌株莢膜化程度較高,生長速率亦較緩慢,於48小時進入高原期。而以PCR方式增幅cyl操縱子基因並比對其序列,發現α溶血型菌株在cylF基因含有1252 bp的嵌入序列(insertion sequence,IS)。此嵌入序列具有兩段開放讀序框架(open reading frame)負責編碼轉位酶(transposase),並於cylF基因起始碼(start codon)下游23bp處插入截斷cylF,以致於無法產生完整之CylF產物;β溶血型菌株之cyl基因組並無基因缺失;而γ溶血型菌株發現有整組cyl操縱子的缺失,並在其位置發現含有DNA重組酶(DNA recombinase)及中隔形成蛋白Maf(septum formation protein,Maf)等的14kb基因組島(genomic island)。三種溶血型之無乳鏈球菌株於covS/R調控基因上皆未發現變異。由本試驗研究結果得知,α溶血型菌株與β溶血型菌株的溶血素基因差異為cylF基因區域內的嵌入序列,而γ溶血型菌株則為cyl操縱子全段基因的缺失並被取代,而三種溶血型菌株莢膜表現有差異但covS/R調控基因則無變異。zh_TW
dc.description.abstractStreptococcus agalactiae are Gram positive cocci, also known as Group B Streptococcus (GBS). S. agalactiae can infect numerous fish species, including tilapia, rainbow trout, mullet, and hybrid striped seabass, and cause economic losses during cultivation. From 2009 to 2014, it was found that all S. agalactiae strains isolated from cultured fishes, such as tilapia and seabass, had different hemolytic phenotypes including α, β and γ. GBS hemolysin is responsible for hemolysis, and it is encoded by cyl operon. cyl operon is mainly regulated by the two-component regulatory systems (TCS), covS/R (control of virulence, sensor and regulator). Besides hemolysis, covS/R can also regulate encapsulation. The objective of the present study was to compare phenotype differences among three hemolytic variant strains and investigate genetic composition of hemolysin genes. α and β hemolytic strains showed no difference on encapsulation and growth rate, and these two strains grew into stationary phase after 18 hours culture. γ hemolytic strain showed higher encapsulation by Indian ink staining and slower growth rate with the stationary phase of 48 hours. Genetic analysis of cyl operon among GBS strains by PCR and sequencing found a 1,252 bp insertion sequence (IS), located in cylF region of α hemolytic strains. The IS had two open reading frames, both encoding transposase. The IS interrupted cylF gene by insertion in 23 bp downstream of the ATG start codon of cylF region, causing incomplete mRNA transcription of cylF. β hemolytic strain showed no mutation in cyl operon. γ hemolytic strain lost whole cyl operon with replacement of 14 kb genomic island containing genes of DNA recombinase and septum formation protein, Maf, etc. No mutation of covS/R regulatory gene was found among all three hemolytic variant strains. The results of the present study indicated that the difference of hemolysin gene between α and β hemolytic strain was due to the IS inserted in cylF region, while in the case of γ hemolytic strain, whole cyl operon was deleted and replaced. Differences of encapsulation were found among three hemolytic strains, with no genetic difference of covS/R regulatory gene.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:42:58Z (GMT). No. of bitstreams: 1
ntu-104-R01629016-1.pdf: 12703726 bytes, checksum: 8c00358dbb362ec505da4f6bd153d965 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………… .…i
中文摘要…………………………………………………………………………….…ii
英文摘要…………………………………………………………………………….... iii
目錄……………………………………………………………………… ………….....v
圖目錄…………………………………………………………………………………viii
表目錄…………………………………………………………………… ………….....x
第一章 緒論………………………………….……………………………………… 1
第二章 文獻回顧………………………………….………………………………… 3
2.1 無乳鏈球菌介紹………………………………………..……………………..3
2.1.1 無乳鏈球菌之流行病學………………………….…………………….3
2.1.2 無乳鏈球菌之生理生化特性……………………….………………….5
2.1.3 無乳鏈球菌之毒力因子……………………………….……………….6
2.2 無乳鏈球菌之莢膜……………………………………………...…………….7
2.2.1 莢膜成分及作用…………………………………………….…………..7
2.2.2 莢膜血清型…………………………………………………….…….….7
2.3 無乳鏈球菌之溶血作用……………………………………………………….8
2.3.1 β溶血素(β-hemolysin) ………………………………………………..8
2.3.2 cyl操縱子(cyl operon) ………………………………………………10
2.3.3 cyl操縱子(cyl operon)之調控機制………………………………….12
2.3.4 非溶血之無乳鏈球菌………………………………………………….13
第三章 材料與方法………………………………………………………………….15
3.1 實驗設計………………………………………………………………………15
3.2 水產動物來源鏈球菌株收集…………………………………………………16
3.3 菌株種別鑑定及性狀分析……………………………………………………16
3.3.1 溶血型判定…………………………………………………………….16
3.3.2 革蘭氏染色…………………………………………………………….16
3.3.3 菌種鑑定……………………………………………………………….17
3.3.4 莢膜分析……………………………………………………………….19
3.3.4.1 Indian ink染色…………………………………………………19
3.3.4.2 莢膜血清型分類………………………………………………20
3.3.5 生長曲線……………………………………………………………….21
3.4溶血型分類…………………………………………………………………….21
3.5 溶血相關基因之分析…………………………………………………………22
3.5.1聚合酶鏈鎖反應………………………………………………………..22
3.5.2 巢式聚合酶鏈鎖反應……………………………………….…………24
3.5.3 反轉錄聚合酶鏈鎖反應……………………………………………….25
3.5.3.1 RNA萃取………………………………………………………25
3.5.3.2反轉錄-聚合酶鏈鎖反應………………………………………26
3.6 基因純化與選殖………………………………………………………………27
3.6.1 PCR產物純化…………………………………………………………..27
3.6.2 大腸桿菌選殖………………………………………………………….28
3.6.3 菌落PCR ( Colony PCR) …………………………………………..29
3.7基因定序及引子設計……….…………………………………………………30
第四章 實驗結果…………………………………………………………………….31
4.1水產動物來源鏈球菌株種別鑑定及性狀分析………………………………..31
4.1.1 溶血型判定…………………………………………………………….31
4.1.2菌種鑑定………………………………………………………………..31
4.1.3 革蘭氏染色…………………………………………………………….32
4.1.4 莢膜分析……………………………………………………………….32
4.1.4.1 Indian ink染色………………………………………………....32
4.1.4.2 莢膜血清型分類………………………………………………32
4.1.5 生長曲線……………………………………………………………….33
4.2 溶血相關基因之分析…………………………………………………………33
4.2.1聚合酶鏈鎖反應………………………………………………………..33
4.2.1.1 cyl操縱子基因的偵測…………………………………………33
4.2.1.2 調控溶血相關基因CovS/R的偵測………………………….35
4.2.1.3 全段基因序列的合成…………………………………………36
4.2.2 巢式聚合酶鏈鎖反應………………………………………………….36
4.2.2.1 cyl操縱子基因的偵測…………………………………………36
4.2.2.2 γ溶血型菌株基因的偵測……………………………………..37
4.2.3 反轉錄聚合酶鏈鎖反應……………………………………………….38
第五章 討論………………………………………………………………………….39
參考文獻……………………………………………………………………………….52
附錄…………………………………………………………………………………….74
dc.language.isozh-TW
dc.title台灣魚隻分離之無乳鏈球菌溶血型表現與其基因分析zh_TW
dc.titleHemolysis Phenotype and Genetic Analysis of Streptococcus agalactiae Isolated from Diseased Fish in Taiwanen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張本恆,黃子鳴,張錦宜
dc.subject.keyword無乳鏈球菌,溶血,zh_TW
dc.subject.keywordStreptococcus agalactiae,hemolysis,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2015-12-24
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
12.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved