請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51649
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧奕璋(Yi-Chang Lu) | |
dc.contributor.author | Chin-Khai Tang | en |
dc.contributor.author | 陳晉凱 | zh_TW |
dc.date.accessioned | 2021-06-15T13:42:50Z | - |
dc.date.available | 2016-02-15 | |
dc.date.copyright | 2016-02-15 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-12-25 | |
dc.identifier.citation | [1] B. Lin, Optical Lithography: Here is Why, 1st ed, SPIE, Washington, USA, pages 95-132 and 323-441, 2009.
[2] C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication, John Wiley & Sons Ltd, West Sussex, England, pages 117-121, 2007. [3] C. Bencher, Y. Chen, H. Dai , W. Montgomery, and L. Huli, “22nm Half-Pitch Patterning by CVD Spacer Self Alignment Double Patterning (SADP),” Optical Microlithography XXI, Proc. SPIE 6924, 69244E, 2008. [4] M. A. Mohammad, M. Muhammad, S. K. Dew, and M. Stepanova, Nanofabrication: Techniques and Principles, 1st ed, Springer-Verlag/Wien, New York, USA, pages 11-41, 2012. [5] A. Kojima, N. Ikegamib, T. Yoshidac, H. Miyaguchic, M. Muroyamac, H. Nishinoc, S. Yoshidac, M. Sugataa, H. Ohyia, N. Koshidab, and M. Esashic, “Massively parallel electron beam direct writing (MPEBDW) system based on micro-electro-mechanical system (MEMS) /nanocrystallineSi emitter array,” in Alternative Lithographic Technologies VI, Proc. SPIE 9049, 904918, 2014. [6] E. Platzgummer, C. Klein, and H. Loeschner, “Electron multibeam technology for mask and wafer writing at 0.1 nm address grid,” J. Micro/Nanolithogr. MEMS MOEMS, 12(3), 031108, 2013. [7] E. Platzgummer, “Maskless lithography and nanopatterning with electron and ion multibeam projection,” in Alternative Lithographic Technologies II, Proc.SPIE 7637, 763703, 2010. [8] C. Klein, J. Klikovits, L. Szikszai, E. Platzgummer, and H. Loeschner, “50 keV electron-beam projection maskless lithography (PML2): Results obtained with 2,500 programmable 12.5-nm sized beams, ” in Alternative Lithographic Technologies II, Proc. SPIE 7637, 76370B, 2010 [9] I. Servin, N. A. Thiama, P. P.-Barrosa, M.-L. Pourteaua, A.-P. Mebienea, J. Jussota, J. Pradellesa, P. Essombaa, L. L. P. Brandtb, and M. Wielandb, “Ready for multi-beam exposure at 5kV on MAPPER tool: Lithographic & process integration performances of advanced resists/stack,” in Alternative Lithographic Technologies VII, Proc. SPIE 9423, 94231C, 2015. [10] P. Brandt, J. Belledent, C. Tranquillin, T. Figueiro, S. Meunier, S. Bayle, A. Fay, M. Milléquant, B. Icard, and M. Wieland, “Demonstration of EDA flow for massively parallel e-beam lithography,” in Alternative Lithographic Technologies VI, Proc. SPIE 9049, 904915, 2014. [11] G. de Boer, M. P. Dansberg, R. Jager, J. J. M. Peijster, E. Slot,S. W. H. K. Steenbrink, and M.J. Wieland, “MAPPER: progress towards a high volume manufacturing system,” Alternative Lithographic Technologies V, Proc. SPIE 8680, 86800O, 2013. [12] J. Belledent, G. Z. M. Berglund, P. L. Brandt, S. Bérard-Bergery, M. J. Wieland, and L. Pain, “Matching of beams on the MAPPER MATRIX tool: a simulation study,” Alternative Lithographic Technologies V, Proc. SPIE 8680, 86800J, 2013. [13] N. Vergeera, L. Lattardb, G. de Boerc, F. Couweleersd, D. Davee, J. Pradellesf, and J. Bustosg, “MAPPER Alignment sensor evaluation on Process Wafers,” in Alternative Lithographic Technologies V, Proc. SPIE, 8680, 86801E, 2013. [14] M.J. Wieland*, H. Derks, H. Gupta, T. van de Peut , F.M. Postma, A.H.V. van Veen, Y. Zhang, “Throughput enhancement technique for MAPPER maskless lithography,” in Alternative Lithographic Technologies II, Proc. SPIE 7637, 76371Z, 2010. [15] M.J. Wieland, G. de Boer, G.F. ten Berge, M. van Kervinck, R. Jager, J.J.M. Peijster, E. Slot, S.W.H.K. Steenbrink, T.F. Teepen, B.J. Kampherbeek, “MAPPER: High throughput maskless lithography,” in Alternative Lithographic Technologies II, Proc. SPIE 7637, 76370F, 2010. [16] E. Slot, M.J. Wieland, G. de Boer, P. Kruit*, G.F. ten Berge, A.M.C. Houkes, R. Jager, T. van de Peut, J.J.M. Peijster, S.W.H.K. Steenbrink, T.F. Teepen, A.H.V. van Veen, B.J. Kampherbeek, “MAPPER: High throughput maskless lithography,” in Emerging Lithographic Technologies XII, Proc. SPIE 6921, 69211P, 2008. [17] A. Carroll, L. Grella, K. Murray, M. A. McCord, P. Petric, W. M. Tong, and C. F. Bevis,“The REBL DPG: Recent Innovations and Remaining Challenges,” in Alternative Lithographic Technologies VI, Proc. SPIE 9049, 904917, 2014. [18] T. Gubiotti, J. F. Sun, R. Freed, F. Kidwingira, and J. Yang, et al., “Reflective electron beam lithography: lithography results using CMOS controlled digital pattern generator chip,” in Alternative Lithographic Technologies V, Proc. SPIE 8680, 86800H, 2013. [19] R. Freed, T. Gubiotti, J. Sun, F. Kidwingira, J. Yang, U. Ummethala, L. C. Hale, J. J. Hench, S. Kojima, W. D. Mieher, C. F. Bevis, S.-J. Lin, and W.-C. Wang, “Reflective electron-beam lithography: progress toward highthroughput production capability,” in Alternative Lithographic Technologies IV, Proc. SPIE 8323, 83230H, 2012. [20] R. Freed, T. Gubiotti, J. Sun, A. Cheung, J. Yang, M. McCord, P. Petric, A. Carroll, U. Ummethala, L. Hale, J. Hench, S. Kojima, W. Mieher, and C. F. Bevis, “Reflective electron-beam lithography performance for the 10 nm logic node,” in Photomask Technology 2012, Proc. SPIE 8522, 85221J, 2012. [21] M. A. McCord, P. Petric, U. Ummethala, A. Carroll, S. Kojima, L. Grella, S. Shriyan, C. T. Rettner, and C. F. Bevis, “REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography,” in Alternative Lithographic Technologies IV, Proc. SPIE 8323, 832311, 2012. [22] P. Petric, C. Bevis, M. McCord, A. Carroll, A. Brodie, U. Ummethala, L. Grella, A. Cheung, and R. Freed, “New advances with REBL for maskless high-throughput EBDW lithography,” in Alternative Lithographic Technologies III, Proc. SPIE 7970, 797018, 2011. [23] P. Petric, C. Bevis, A. Brodie, A. Carroll, A. Cheung, L. Grella, M. McCord, H. Percy, K. Standiford, and M. Zywno, “REBL Nanowriter: Reflective Electron Beam Lithography,” in Alternative Lithographic Technologies, Proc. SPIE 7271, 727107, 2009. [24] S. J. Lin, P. Y. Liu, C. H. Chen, W. C. Wang, J. J. Shin, B. J. Lin, M. A. McCord, and S. K. Shriyan, “Influence of Data Volume and EPC on Process Window in Massively Parallel E-Beam Direct Write,” in Alternative Lithographic Technologies V, Proc. SPIE 8680, 86801C, 2013. [25] C.-K. Tang, M.-S. Su, and Y.-C. Lu, “Efficient layout data compression algorithm and its low-complexity, high-performance hardware decoder implementation for multiple electronbeam direct-write systems,” in J. Micro/Nanolith. MEMS MOEMS 14(3), 031212, Jul–Sep 2015. [26] C.-K. Tang, M.-S. Su, and Y.-C. Lu, “LineDiff Entropy: lossless layout data compression scheme for maskless lithography systems,” Signal Processing Letters, IEEE, vol. 20, issue 7, pages 645-648, 2013. [27] E. D. Liu, and T. Prescop, “Optimization of e-beam landing energy for EBDW,” in Alternative Lithographic Technologies III, Proc. SPIE 7970, 79701S, 2011. [28] S. M. Changa, S. J. Lina, C. A. Lina, J. H. Chena, T. S. Gaua, Burn J. Lin, P. Veltman, R. Hanfoug, E. Slot, M. J. Wieland, and B.J. Kampherbeek, “Patterning Fidelity on Low-Energy Multiple-Electron-Beam Direct Write Lithography,” in Emerging Lithographic Technologies XII, Proc. SPIE 6921, 69211R, 2008. [29] C.-H. Liu, P. C. W. Ng, Y.-T. Shen, S.-W. Chien, and K.-Y. Tsai, “Impacts of point spread function accuracy on patterning prediction and proximity effect correction in low-voltage electron-beam–direct-write lithography,” in J. Vac. Sci. Technol. B 31, 021605, 2013. [30] S.-Y. Lee and B. D. Cook, “PYRAMID–A Hierarchical, Rule-Based Approach Toward Proximity Effect Correction Part I: Exposure Estimation,” IEEE Trans. Semiconductor Manufacturing, vol. 11, no. 1, pages 108-116, 1998. [31] B. D. Cook and S.-Y. Lee, “PYRAMID–A Hierarchical, Rule-Based Approach Toward Proximity Effect Correction Part II- Correction,” IEEE Trans. Semiconductor Manufacturing, vol. 11, no. 1, pages 117-128, 1998. [32] S. J. Lin, P. S. Chen, J. J. Shin, W. C. Wang, and B. J. Lin, “Influence of massively parallel e-beam direct-write pixel size on electron proximity correction,” Alternative Lithographic Technologies III, Proc. SPIE 7970, 79700Z, 2011. [33] Filiz Yesilkoy, “Implementation of E-Beam Proximity Effect Correction Using Linear Programming Techniques for the Fabrication of Asymmetric Bow-Tie Antennas,” Master Dissertation, Department of Electrical and Computer Engineering, University of Maryland at College Park, Maryland USA, 2010. [34] T. Klimpel, M. Schulz, R. Z., H.-J. Stock, and A. Zepka, “Model based hybrid proximity effect correction scheme combining dose modulation and shape adjustments,” in J. Vac. Sci. Technol. B 29, 06F315-1, 2011. [35] L. Martin, S. Manakli, S. Bayle, J. Belledent, S. Soulan, P. Wiedemann, A. Farah, and P. Schiavone, “Combined dose and geometry correction (DMG) for low energy multi electron beam lithography (5kV): application to the 16nm node,” in Alternative Lithographic Technologies IV, Proc SPIE 8323, 83231W, 2012. [36] H.-T. Ng, Y.-T. Shen, S.-Y. Chen, C.-H. Liu, P. C. W. Ng, and K.-Y. Tsai, “New method of optimizing writing parameters in electron beam lithography systems for throughput improvement considering patterning fidelity constraints,” in J. Micro/Nanolith. MEMS MOEMS 11(3), 033007, Jul–Sep 2012. [37] C.-H. Liu, H.-T. Ng, and K.-Y. Tsai, “New parametric point spread function calibration methodology for improving the accuracy of patterning prediction in electron-beam lithography,” in J. Micro/Nanolith. MEMS MOEMS 11(1), 013009, Jan–Mar 2012. [38] GenISys, “BEAMER Electron-Beam Lithography Software,” http://genisys-gmbh.com/web/products/beamer.html. [39] V. Dai, “Data compression for maskless lithography systems: architecture, algorithms and implementation,” Ph.D. Dissertation, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, CA USA, 2008. [40] H. I. Liu, “Architecture and Hardware Design of Lossless Compression Algorithms for Direct-Write Maskless Lithography Systems,” Ph.D. Dissertation, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, CA USA, 2010. [41] J. Yang and S. A. Savari, “Transform-based lossless image compression algorithm for electron beam direct write lithography systems,” in Recent Advances in Nanofabrication Techniques and Applications, B. Cui, Ed., InTech, Rijeka, Croatia, 95–110 (2011). [42] F. Krecinic, S. J. Lin, and J. J. H. Chen, “Data path development for multiple electron beam maskless lithography,” Alternative Lithographic Technologies III, Proc. SPIE 7970, 797010, 2011. [43] G. Cramer, H.-I. Liu, and A. Zakhor, “Lossless Compression Algorithm for REBL Direct-Write E-beam Lithography System,” Alternative Lithographic Technologies II, Proc. SPIE 7637, 76371L, 2010. [44] S. T. Klein, D. Shapira, and G. Shelef, “Lossless Compression of Rotated Maskless Lithography Images,” Proc. String Processing and Information Retrieval, Jerusalem, Israel, 186-196 (2013). [45] J. Yang, S. A. Savari, and H. R. Harris, “Datapath system for multiple electron beam lithography systems using image compression,” J. Micro/Nanolithogr. MEMS MOEMS 12(3), 033018, 2013. [46] J. Yang and S. A. Savari, “Lossless circuit layout image compression algorithm for maskless direct write lithography systems,” J. Micro/Nanolithogr. MEMS MOEMS 10(4), 043007, 2011. [47] J. Yang, X. Li, and S. A. Savari, “Hardware implementation of Corner2 lossless compression algorithm for maskless lithography systems,” Alternative Lithographic Technologies IV, Proc. SPIE 8323, 83232O, 2012. [48] N. Chaudhary, Y. Luo, and S. A. Savari, “Lossless layout image compression algorithms for electron-beam direct-write lithography,” in J. Vac. Sci. Technol. B 33(6), 06FD01-1, Nov/Dec 2015. [49] C.-C. Wu, J. Yang, W.-C. Wang, and S.-J. Lin, “An Instruction-based High-Throughput Lossless Decompression Algorithm for E-Beam Direct-Write System,” in Alternative Lithographic Technologies VII, Proc. SPIE 9423, 94231P, 2015. [50] A. M. Carroll, “System and Method for Compressed Data Transmission in a Maskless Lithography System,” Patent US20140097362 A1, (2014), http://www.google.com/patents/US20140097362. [51] S. A. Savari, 'An information theoretic perspective on e-beam direct-write as complementary lithography,' J. Vac. Sci. Technol. B, Vol. 32, Issue 6, 06F502-1 to 06F502-8 (2014) [doi: 10.1116/1.4894459]. [52] S. Beak, B. V. Hieu, G. Park, K. Lee, and T. Jeong, “A New Binary Tree Algorithm Implementation with Huffman Decoder on FPGA,” Consumer Electronics (ICCE), 2010 Digest of Technical Papers International Conference on, 437– 438 (2010) [doi: 10.1109/ICCE.2010.5418718]. [53] K.-L. Tsai, P. Lan, S.-J. Ruan, and M.-C. Shie, “A low power high performance design for jpeg Huffman decoder,” Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE International Conference on, 1151 -1154 (2008) [doi: 10.1109/ICECS.2008.4675062]. [54] J. Hahlbeck and B. Stabernack, “A 4k capable FPGA based high throughput binary arithmetic decoder for H.265/MPEG-HEVC,” Consumer Electronics Berlin (ICCE-Berlin), 2014 IEEE Fourth International Conference on, 388 – 390 (2014) [doi: 10.1109/ICCE-Berlin.2014.7034335]. [55] Y.-H. Chen and V. Sze, 'A deeply pipelined CABAC decoder for HEVC supporting Level 6.2 high-tier applications,' IEEE Trans. Circuits and Systems for Video Technology, vol. 25, no. 5, 856-868 (2015) [doi: 10.1109/TCSVT.2014.2363748]. [56] Y. Zhao, J. Zhou, D. Zhou, and S. Goto, “A 610 Mbin/s CABAC decoder for H.265/HEVC level 6.1 applications,” IEEE International Conference on Image Processing, 1268-1272 (2014) [doi: 10.1109/ICIP.2014.7025253]. [57] M.-B. Lin, J.-F. Lee, and G. E. Jan, “A Lossless Data Compression and Decompression Algorithm and Its Hardware Architecture,” IEEE Trans. Very Large Scale Integration Systems, vol. 14, no. 9, (2006) [doi: 10.1109/TVLSI.2006.884045]. [58] Altera, “Stratix-IV Device Handbook,” http://www.altera.com/literature/lit-stratix-iv.jsp. [59] Altera, “Quartus II,” https://www.altera.com/products/design-software/overview.html. [60] Xilinx, “Virtex-II Pro and Virtex-II Pro X FPGA User Guide,” http://www.xilinx.com/support/documentation/user_guides/ug012.pdf. [61] Cadence, “Cadence Encounter Digital Implementation System,” http://www.cadence.com/rl/resources/datasheets/edi_system_ds.pdf. [62] Nangate Inc, “Open Cell Library,” http://www.nangate.com. [63] North Carolina State University, “FreePDK45 1.4,” http://www.eda.ncsu.edu/wiki/FreePDK. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51649 | - |
dc.description.abstract | The advances in optical projection lithography have ensured the steady continuation of Moore's law. However, the wavelength of light sources has reached the lowest limit of 193-nm, and optical diffraction has become a major problem. Thus, other cost effective solutions are urgently needed. Electron-beam maskless lithography is a powerful technology capable of very-high resolution writing. However, electron-beam maskless lithography suffers from slow electron-beam scanning process and low throughput. In recent years, new research on multiple electron-beam direct-write systems that use massively parallel electron-beam emitters to achieve fast scanning process and high WPH has gained popularity. In multiple electron-beam direct-write systems, one of the technical challenges is to transfer very large amounts of electron-beam layout data that controls electron-beam emitters from the data centers to multiple electron-beam direct-write systems. Furthermore, due to the enormous data transfer rates, a large number of hardware decoders are required in multiple electron-beam direct-write systems. Each hardware decoder must be able to decompress EBL data at high data rates, and the hardware resource requirements should be low so that the cost of implementing and operating the multiple electron-beam direct-write systems can be minimized.
In this dissertation, a lossless electron-beam layout data compression algorithm, LineDiff Entropy, and its low-complexity high-performance hardware decoder for multiple electron-beam direct-write lithography systems are proposed. The algorithm compares consecutive data scanlines and encodes the data based on the change/no-change of pixel values and the lengths of pixel sequences. Then, the compaction steps of data omission, merging, and encoding of consecutive long identical scanlines are applied. Then, custom prefix codes are assigned to data with high occurrence frequency. The hardware decoder is designed as three circuit blocks that perform entropy decoding, de-compaction, and electron-beam layout data generation through parallel outputs. The hardware decoder only requires minimum resource.The results demonstrate that our algorithm can achieve excellent compression performance and that the hardware decoder can decompress data at very high data rates. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:42:50Z (GMT). No. of bitstreams: 1 ntu-104-D98943039-1.pdf: 2160435 bytes, checksum: b6414f126d2c745b4a26267a48ca3b78 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Acknowledgements …………………….. vii
Abstract …………………….. ix List of Tables …………………….. xvi List of Figures …………………….. xviii Chapter 1. Introduction …………………….. 1 1.1 The Challenge of Optical Projection Lithography …………………….. 1 1.2 Electron-Beam Maskless Lithography …………………….................... 2 1.3 Overview of Dissertation ……………………………………………… 6 1.4 Organization of Dissertation …………………………………………... 7 Chapter 2. Multiple Electron-Beam Direct-Write Systems …………………….. 9 2.1 MAPPER ………………………………………………………………. 9 2.1.1 The Architecture of MAPPER ………………………………... 9 2.1.2 The Writing Method of MAPPER ……………………………. 10 2.1.3 The Data Transfer Rates of MAPPER ………………………... 12 2.2 Reflective Electron Beam Lithography (REBL) ………………………. 13 2.2.1 The Architecture of REBL ……………………………………. 13 2.2.2 The Writing Method of REBL ………………………………... 14 2.2.3 The Data Transfer Rates of REBL ……………………………. 16 2.3 Data Transfer Requirements of MEBDW Systems ……………………. 16 Chapter 3. Electron-Beam Layout Data …………………….. 19 3.1 Electron Proximity Effect ……………………………………………… 19 3.2 Proximity Effect Correction and Data Preparation ……………………. 21 3.3 Idealized Pixel Printing Model ………………………………………… 24 3.4 The Data Redundancy in EBL Data …………………………………… 25 Chapter 4. Electron-Beam Layout Data Compression Algorithms …………………….. 27 4.1 C4, BC4, BGC3, and BRGC3 …………………………………………. 28 4.1.1 Context-Based Bit-Level Prediction ………………………… 30 4.1.2 Context-Based Block-Level Prediction ……………………… 31 4.1.3 Block-Level Copy …………………………………………… 32 4.1.4 HCC ………………………………………………………….. 33 4.1.5 The Strengths and Weaknesses of BC4 ……………………… 34 4.2 Corner, Corner2, CornerGray, and Corner2-EPC ……………………... 35 4.2.1 Corner2-EPC Transformation ……………………………….. 36 4.2.2 Corner2-EPC Entropy Encoding …………………………….. 37 4.2.3 The Strengths and Weaknesses of Corner2-EPC ……………. 38 4.3 Compression Methods of MEBDW Systems ………………………….. 38 4.3.1 Instruction-Based Hybrid Method (IBHM) of TSMC ………. 38 4.3.2 REBL Compression Algorithm ……………………………… 39 4.4 Compression Algorithm and Hardware Decoder for MEBDW Systems 39 Chapter 5. The LineDiff Entropy Compression Algorithm …………………….. 41 5.1 LineDiff Encoding ……………………………………………………... 42 5.2 LineDiff Compaction ………………………………………………….. 43 5.3 Entropy Encoding ……………………………………………………… 46 5.4 Implementation and Performance of LineDiff Entropy Compression … 54 Chapter 6. The LineDiff Entropy Hardware Decoder …………………….. 60 6.1 The Design of LineDiff Entropy Hardware Decoder ………………….. 60 6.2 Entropy Decoder ………………………………………………………. 63 6.3 LineDiff De-compactor ………………………………………………... 64 6.4 LineDiff Decoder ……………………………………………………… 66 6.5 Analysis of LineDiff Entropy Hardware Decoder Performance ………. 72 Chapter 7. Benchmark Results …………………….. 74 7.1 FPGA Synthesis Results ……………………………………………….. 74 7.2 Benchmark Data ……………………………………………………….. 76 7.3 Compression Results …………………………………………………... 77 7.4 Decompression Results ………………………………………………... 80 Chapter 8. Concluding Remarks and Future Work …………………….. 87 8.1 Concluding Remarks …………………………………………………... 87 8.2 Future Work …………………………………………………………… 88 Bibliography …………………….. 92 Vita …………………….. 103 Publication List …………………….. 105 | |
dc.language.iso | en | |
dc.title | 用於多電子束直寫系統之佈局資料壓縮演算法與其硬體解碼器設計 | zh_TW |
dc.title | Layout Data Compression Algorithm and Its Hardware Decoder Design for Multiple Electron-Beam Direct-Write Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 顏家鈺(Jia-Yush Yen),蔡坤諭(Kuen-Yu Tsai),丁建均(Jian-Jiun Ding),劉宗德(Tsung-Te Liu) | |
dc.subject.keyword | 無光罩微影技術,電子束微影技術,電子束直寫,資料壓縮,硬體解碼器, | zh_TW |
dc.subject.keyword | Maskless lithography,electron beam lithography,multiple electron-beam direct-write,data compression,hardware decoder, | en |
dc.relation.page | 106 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-12-25 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。